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Abstract In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion

system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions.

The critical exponent is determined under various situations of the weight functions. It is ob-

served that the boundary weight functions play an important role in determining the blow-up

conditions. In addition, the blow-up rate estimate of non-global solutions for a class of weight

functions is also obtained, which is found to be independent of nonlinear diffusion parameters m

and n.
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1. Introduction

In this paper, we study the following quasilinear parabolic system with coupled nonlocal

sources and weighted nonlocal Dirichlet boundary conditions






















ut = ∆um + auα

∫

Ω

vpdx, vt = ∆vn + bvβ

∫

Ω

uqdx, (x, t) ∈ Ω × (0, T ),

u =

∫

Ω

ϕ(x, y)u(y, t)dy, v =

∫

Ω

ψ(x, y)v(y, t)dy, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄,

(1.1)

where a, b, p, q > 0, α, β ≥ 0, m,n > 1, Ω is a bounded domain in R
N with smooth boundary

∂Ω. The weight functions ϕ(x, y), ψ(x, y) are continuous, nonnegative on ∂Ω × Ω̄ and satisfy
∫

Ω
ϕ(x, y)dy,

∫

Ω
ψ(x, y)dy > 0 on ∂Ω. The initial data u0(x), v0(x) ∈ C2+ν with 0 < ν < 1 and

satisfy

(H1) u0, v0 > 0 in Ω, u0 = (
∫

Ω
ϕ(x, y)u0dy), v0 = (

∫

Ω
ψ(x, y)v0dy) on ∂Ω.

(H2) ∆um
0 + auα

0

∫

Ω
v

p
0dx ≥ 0, ∆vn

0 + bv
β
0

∫

Ω
u

q
0dx ≥ 0 in Ω.

By the standard parabolic theory, there exist local nonnegative solutions to (1.1).
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Much effort has been contributed to the study of blow-up properties for nonlinear parabolic

equations with nonlocal sources and homogeneous Dirichlet boundary conditions, see [1, 5, 6, 8–

10, 12–15,17] and references therein. In addition, there are some models equipped with nonlocal

boundary conditions [3, 4].

Lin and Liu [11] considered the semilinear nonlocal problem with nonlocal boundary condition























ut − ∆u =

∫

Ω

g(u)dy, (x, t) ∈ Ω × (0, T ),

u(x, t) =

∫

Ω

K(x, y)u(y, t)dy, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω̄

to investigate the local existence, the global and non-global existence, as well as the blow-up

properties of solutions. Then, the coupled system case, i.e., m = n = 1 in (1.1), was studied in

[16], where it was found that the boundary weight functions play substantial roles to determine

whether the solutions are global or nonglobal. The scalar case of degenerate parabolic equation

with nonlocal source and weighted nonlocal boundary condition was considered in [2].

This paper will extend the above results to the degenerate system (1.1). We will establish

the critical exponents under various situations of the weight functions, as well as the blow-up

rate of solutions for a class of weight functions.

2. Critical exponent

We deal with the critical exponents of (1.1) in this section. The discussion will be carried

out via five cases with different combinations for
∫

Ω
ϕ(x, y)dy and

∫

Ω
ψ(x, y)dy being larger or

smaller than one.

Theorem 2.1 Assume that
∫

Ω ϕ(x, y)dy,
∫

Ω ψ(x, y)dy > 1 for all x ∈ ∂Ω. If pq > (1−α)(1−β),

or max{α, β} > 1, then the solutions of (1.1) blow up in finite time for any initial data.

Proof Since
∫

Ω ϕ(x, y)dy,
∫

Ω ψ(x, y)dy > 0 on ∂Ω, and the compatibility conditions u0 =
∫

Ω ϕ(x, y)u0(y)dy, v0 =
∫

Ω ψ(x, y)v0(y)dy on ∂Ω with u0, v0 > 0 in Ω, we have u0, v0 ≥ δ > 0

on Ω̄.

Consider the ODE system






w′(t) = a|Ω|wαzp, z′(t) = b|Ω|wqzβ,

w(0) = w0, z(0) = z0.
(2.1)

It is well known that the solution of (2.1) blows up in finite time whenever pq > (1 − α)(1 − β),

or max{α, β} > 1. Choose w0 = z0 = δ. Obviously, (w, z) is a subsolution of (1.1). 2

Theorem 2.2 Assume that
∫

Ω ϕ(x, y)dy > 1,
∫

Ω ψ(x, y)dy ≤ 1 for all x ∈ ∂Ω. If α > 1, then

the solutions of (1.1) blow up in finite time for any initial data.

Proof Suppose α > 1. Notice u0, v0 ≥ δ on Ω̄. According to the assumption (H2) and the
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comparison principle, ut, vt ≥ 0. Thus u, v ≥ δ on Ω̄ × [0, T ). Then u satisfies






















ut ≥ ∆um + aδp|Ω|uα in Ω × (0, T ),

u =

∫

Ω

ϕ(x, y)u(y, t)dy on ∂Ω × (0, T ),

u(x, 0) = u0(x) on Ω̄.

(2.2)

Let s(t) solve the ODE problem

s′(t) = aδp|Ω|sα, s(0) = δ. (2.3)

Since α > 1, s(t) blows up in finite time. On the other hand, obviously, s(t) is a subsolution of

(2.2) due to
∫

Ω
ϕ(x, y)dy > 1. 2

Theorem 2.3 Assume that
∫

Ω
ϕ(x, y)dy,

∫

Ω
ψ(x, y)dy < 1 for all x ∈ ∂Ω.

(i) If α > m or β > n or pq > (m−α)(n−β), then the solutions of (1.1) are global for small

initial data, and non-global for large initial data.

(ii) If α < m, β < n, with pq < (m − α)(n − β), then the solutions of (1.1) are global for

any initial data.

(iii) If α < m, β < n, with pq = (m − α)(n − β), then the solutions of (1.1) are globally

bounded provided that a, b are small enough, and blow up in finite time provided that a, b are

large enough.

Proof Let Φ(x), Ψ(x), respectively, be the unique positive solutions of the linear elliptic problems

−∆Φ = ε1 in Ω, Φ =

∫

Ω

ϕ(x, y)dy on ∂Ω,

and

−∆Ψ = ε2 in Ω, Ψ =

∫

Ω

ψ(x, y)dy on ∂Ω.

Since
∫

Ω
ϕ(x, y)dy,

∫

Ω
ψ(x, y)dy < 1, we choose ε1, ε2 > 0 small enough such that 0 < Φ(x) < 1,

0 < Ψ(x) < 1. Let

max
x∈Ω̄

Φ(x) = K1, min
x∈Ω̄

Φ(x) = K1, max
x∈Ω̄

Ψ(x) = K2, min
x∈Ω̄

Ψ(x) = K2.

(i) Define u = M l1Φ
1
m , v = M l2Ψ

1
n , where l1, l2, M > 0 are to be determined. A direct

computation shows

∆um + auα

∫

Ω

vpdx ≤ −ε1M
ml1 + a|Ω|Mαl1+pl2K

α
m

1 K
p

n

2 ,

∆vn + bvβ

∫

Ω

uqdx ≤ −ε2M
nl2 + b|Ω|Mβl2+ql1K

β

n

2 K
q

m

1 .

Since α > m or β > n or pq > (m−α)(n−β), we can choose l1, l2 > 0 such that αl1 +pl2 > ml1,

ql1 + βl2 > nl2. Let

M = min
{

(ε−1
1 a|Ω|K

α
m

1 K
p

n

2 )
1

ml1−αl1−pl2 , (ε−1
2 b|Ω|K

β

n

2 K
q

m

1 )
1

nl2−ql1−βl2

}

.

Then

0 = ut ≥ ∆um + auα

∫

Ω

vpdx, 0 = vt ≥ ∆vn + bvβ

∫

Ω

uqdx
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for (x, t) ∈ Ω × R
+. Moreover,

u(x, t)|x∈∂Ω = M l1Φ
1
m |x∈∂Ω = M l1

(

∫

Ω

ϕ(x, y)dy
)

1
m

≥M l1

∫

Ω

ϕ(x, y)dy

≥M l1

∫

Ω

ϕ(x, y)Φ(y)
1
m dy =

∫

Ω

ϕ(x, y)u(y, t)dy,

and similarly,

v̄(x, t) |x∈∂Ω>

∫

Ω

ψ(x, y)v̄(y, t)dy.

Let u0, v0 be small enough such that u = M l1Φ
1
m ≥ u0, v = M l2Ψ

1
n ≥ v0 to ensure (u, v) is a

positive bounded supersolution of (1.1).

On the other hand, let (u, v) be the solution of






















ut = ∆um + auα

∫

Ω

vpdx, vt = ∆vn + bvβ

∫

Ω

uqdx in Ω × (0, T ),

u(x, t) = v(x, t) = 0, on ∂Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω̄,

(2.4)

and obviously a subsolution of (1.1). It is known that (u, v) blows up for large initial data if

pq > (m− α)(n− β) or α > m or β > n (see [17]).

(ii) Similarly to the arguments for (i), let

u = M l1Φ
1
m , v = M l2Ψ

1
n ,

where l1, l2, M > 0 are to be determined. By α < m, β < n and pq < (m − α)(n − β), choose

l1, l2 > 0 such that αl1 + pl2 < ml1, ql1 + βl2 < nl2. Let

M = max
{

(ε−1
1 a|Ω|K

α
m

1 K
p

n

2 )
1

ml1−αl1−pl2 , (ε−1
2 b|Ω|K

β

n

2 K
q

m

1 )
1

nl2−ql1−βl2 ,

(K
−

1
m

1 max
Ω̄

u0)
1
l1 , (K

−
1
n

2 max
Ω̄

v0)
1
l2

}

.

We have

0 = ut ≥ ∆um + auα

∫

Ω

vpdx, 0 = vt ≥ ∆vn + bvβ

∫

Ω

uqdx

for (x, t) ∈ Ω × R
+. So, (u, v) is a bounded supersolution of (1.1) provided

u(x, 0) = M l1Φ
1
m ≥ u0, v(x, 0) = M l2Ψ

1
n ≥ v0.

(iii) Let u = M l1Φ
1
m , v = M l2Ψ

1
n , where l1, l2, M > 0 are to be determined. Since α < m,

β < n, pq = (m−α)(n− β), choose l1, l2 > 0 such that αl1 + pl2 = ml1, ql1 + βl2 = nl2. Let a, b

be small so that

a ≤ ε1(|Ω|K
α
m

1 K
p

n

2 )−1, b ≤ ε2(|Ω|K
β

n

2 K
q

m

1 )−1.

We have

0 = ut ≥ ∆um + auα

∫

Ω

vpdx, 0 = vt ≥ ∆vn + bvβ

∫

Ω

uqdx

for (x, t) ∈ Ω × R
+. Now choose M large enough to satisfy

M l1Φ
1
m ≥ ‖u0(x)‖∞, M

l2Ψ
1
n ≥ ‖v0(x)‖∞ on Ω̄.
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Then (ū, v̄) is a time-independent supersolution of (1.1).

On the other hand, suppose that h(t) solves the ODE problem

h′(t) = C0h
s(t), h(0) = h0,

with

C0 = min
{(

l1K
1
m

1

)−1(

a|Ω|K
α
m

1 K
p
n

2 − ε1

)

,
(

l2K
1
n

2

)−1(

b|Ω|K
β
n

2 K
q
m

1 − ε2

)}

,

s = min{(m− 1)l1 + 1, (n− 1)l2 + 1}, h0 = min
{

(δk
−1
m

1 )
1
l1 , (δk

−1
n

2 )
1
l2

}

.

Clearly, h(t) blows up in finite time T1 > 0, whenever a > ε1(|Ω|K
α
m

1 K
p

n

2 )−1, b > ε2(|Ω|K
β

n

2 K
q

m

1 )−1.

Set

u = hl1(t)Φ
1
m (x), v = hl2(t)Ψ

1
n (x),

with l1, l2 > 0 satisfying αl1 + pl2 = ml1, ql1 + βl2 = nl2. A direct computation shows

∆um + auα

∫

Ω

vpdx ≥
(

− ε1 + a|Ω|K
α
m

1 K
p

n

2

)

hml1(t)

≥ l1h
l1−1(t)h′(t)Φ(x)

1
m = ut,

and similarly,

∆vn + bvβ

∫

Ω

uqdx ≥ vt.

Moreover,

u(x, 0) = u0(x) ≥ hl1
0 Φ

1
m (x), v(x, 0) = v0(x) ≥ hl2

0 Ψ
1
n (x) on Ω̄.

Obviously, (u, v) is a blow-up subsolution to (1.1). 2

Theorem 2.4 Assume that
∫

Ω
ϕ(x, y)dy =

∫

Ω
ψ(x, y)dy = 1 for all x ∈ ∂Ω.

(i) If pq > (1 − α)(1 − β) or α > 1 or β > 1, then the solutions of (1.1) blow up in finite

time for any initial data.

(ii) If pq ≤ (1−α)(1−β), α < 1 and β < 1, then the solutions of (1.1) are globally bounded.

Proof Notice that u0, v0 ≥ δ on Ω̄, and the solution (w, z) of (2.1) blows up for any initial

data (w0, z0) for pq > (1 − α)(1 − β) or α > 1 or β > 1. Moreover, (w, z) is a subsolution to

(1.1) by letting (w0, z0) be so small that w0 ≤ u0, z0 ≤ v0. On the other hand, (w, z) is global

bounded for any (w0, z0) if pq ≤ (1 − α)(1 − β), α < 1 and β < 1. Choose (w0, z0) so large that

w0 ≥ u0, z0 ≥ v0, then (w, z) is a supersolution of (1.1). 2

Theorem 2.5 Assume that
∫

Ω
ϕ(x, y)dy = 1,

∫

Ω
ψ(x, y)dy < 1 for all x ∈ ∂Ω.

(i) If α > 1, then the solutions of (1.1) blow up in finite time for any initial data.

(ii) If α ≤ 1 and β > n or pq > (m− α)(n− β), then the solutions of (1.1) blow up in finite

time for large initial data.

Proof The proofs for the two cases are similar to those of Theorems 2.2 and 2.3 (i), respectively.

We omit the detail. 2
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3. Blow-up rate

To obtain the estimate, we introduce the following transformation

um = U, vn =
(m

n

)
n

n−1

V, τ = mt.

Then (1.1) becomes






















Uτ = U r1

(

∆U + a1U
α1

∫

Ω

V p1dx
)

, Vτ = V r2

(

∆V + b1V
β1

∫

Ω

U q1dx
)

in Ω × (0, T1),

U(x, τ) =
(

∫

Ω

ϕ(x, y)U
1
m (y, τ)dy

)m

, V (x, τ) =
(

∫

Ω

ψ(x, y)V
1
n (y, τ)dy

)n

on ∂Ω × (0, T1),

U(x, 0) = U0(x), V (x, 0) = V0(x) on Ω̄,

(3.1)

where

r1 = 1 −
1

m
, r2 = 1 −

1

n
, α1 =

α

m
, p1 =

p

n
, β1 =

β

n
, q1 =

q

n
, (3.2)

U0 = um
0 , V0 =

( n

m

)
n

n−1

vn
0 , a1 =

( n

m

)
p

n−1

a, b1 =
( n

m

)
β−n

n−1

b. (3.3)

For convenience, a special algebraic characteristic system is introduced.
(

α1 + r1 − 1 p1

q1 β1 + r2 − 1

)(

k1

k2

)

=

(

1

1

)

, (3.4)

namely

k1 =
1 + p1 − r2 − β1

p1q1 − (1 − r1 − α1)(1 − r2 − β1)
, k2 =

1 + q1 − r1 − α1

p1q1 − (1 − r1 − α1)(1 − r2 − q1)
.

Assumptions (H1)–(H2) become

(H3) U0, V0 > 0 in Ω, U0 = (
∫

Ω ϕ(x, y)U
1
m

0 dy)m, V0 = (
∫

Ω ψ(x, y)V
1
n

0 dy)n on ∂Ω.

(H4) ∆U0 + a1U
α1
0

∫

Ω V
p1

0 dx, ∆V0 + b1V
β1

0

∫

Ω U
q1

0 dx ≥ 0 in Ω.

We also need additional assumptions on the initial data U0, V0.

(H5) ∆U0 + a1U
α1
0

∫

Ω
V

p1

0 dx ≥ δU
1

k1
+1−r1

0 , ∆V0 + b1V
β1

0

∫

Ω
U

q1

0 dx ≥ δV
1

k2
+1−r2

0 in Ω,

with

δ = max
{

δ1, δ2, 2k1C̃
−

1
k1(1+q1−r1−α1)

0 , 2k2C̃
−

1
k2(1+p1−r2−β1)

0

}

,

δ1 = a1(k2r1)
−1|Ω|

(

k2(1+k1)
k1(k2p1+1)

)k2p1+1

, δ2 = b1(k1r2)
−1|Ω|

(

k1(1+k2)
k2(k1q1+1)

)k1q1+1

and C̃0 defined by the sequel (3.6).

We will use parameters k1 and k2 to describe the blow-up rate for (3.1), which give the

blow-up rate of u and v near the blow-up time immediately.

Theorem 3.1 Under the assumptions (H3)–(H4), suppose p1 > max{β1 + r2 − 1, 1}, q1 >

max{α1 + r1−1, 1}, with
∫

Ω
ϕ(x, y)dy,

∫

Ω
ψ(x, y)dy ≤ 1. Let (U, V ) be the solution of (3.1) with

blow-up time T1. Then

C3(T1 − τ)−k1 ≤ max
Ω̄

U(·, τ) ≤ C1(T1 − τ)−k1 ,
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C4(T1 − τ)−k2 ≤ max
Ω̄

V (·, τ) ≤ C2(T1 − τ)−k2

with Ci > 0 (i = 1, . . . , 4) independent of t.

Proof Denote M(τ) = maxΩ̄ U(·, τ), N(τ) = maxΩ̄ V (·, τ). Then

Mτ ≤ a1|Ω|M r1+α1Np1 , Nτ ≤ b1|Ω|N r2+β1M q1 .

By the Young inequality with 1 + p1 − r2 − β1, 1 + q1 − r1 − α1 > 0,

d

dτ
(M1+q1−r1−α1 +N1+p1−r2−β1)

≤ [a1(1 + q1 − r1 − α1) + b1(1 + p1 − r2 − β1)] |Ω|M q1Np1

≤ K1(M
1+q1−r1−α1 +N1+p1−r2−β1)

q1(1+p1−r2−β1)+p1(1+q1−r1−α1)

(1+p1−r2−β1)(1+q1−r1−α1) ,

where

K1 = [a1(1 + q1 − r1 − α1) + b1(1 + p1 − r2 − β1)]|Ω|K
q1(1+p1−r2−β1)+p1(1+q1−r1−α1)

(1+p1−r2−β1)(1+q1−r1−α1)

0 ,

K0 = max
{ q1(1 + p1 − r2 − β1)

q1(1 + p1 − r2 − β1) + p1(1 + q1 − r1 − α1)
,

p1(1 + q1 − r1 − α1)

q1(1 + p1 − r2 − β1) + p1(1 + q1 − r1 − α1)

}

.

Integrating the above inequality from τ to T1, we obtain

M1+q1−r1−α1 +N1+p1−r2−β1 ≥ C̃0 (T1 − τ)
−

(1+p1−r2−β1)(1+q2−r1−α1)

p1q1−(1−r1−α1)(1−r2−q1) (3.5)

with

C̃0 =
[ p1q1 − (1 − r1 − α1)(1 − r2 − β1)

(1 + p1 − r2 − β1)(1 + q1 − r1 − α1)
K1

]−
(1+p1−r2−β1)(1+q1−r1−α1)

p1q1−(1−r1−α1)(1−r2−β1) . (3.6)

Set

J1(x, τ) = Uτ − δU
1

k1
+1
, J2(x, τ) = Vτ − δV

1
k2

+1
.

We know from (H4) that Uτ , Vτ ≥ 0 on Ω̄T . It follows from p2 > max{α1 + r1 − 1, 1}, p1 >

max{β1 + r2 − 1, 1} that k1, k2 > 0. A direct computation shows

J1τ − U r1∆J1 − 2r1δU
1

k1 J1 − a1p1U
α1+r1

∫

Ω

V p1−1J2dx

= r1U
−1J2

1 + r1δ
2U

2
k1

+1 + δ k1+1
k2
1
U

r1+
1

k1
−1|∇U |2 + a1δp1U

α1+r1

∫

Ω

V
p1+ 1

k2 dx+

a1α1UτU
α1+r1−1

∫

Ω

V p1dx− a1δ(
1
k1

+ 1)U
α1+r1+ 1

k1

∫

Ω

V p1dx

≥ r1δ
2U

2
k1

+1
+ a1δp1U

α1+r1

∫

Ω

V
p1+

1
k2 dx− a1δ(

1
k1

+ 1)U
α1+r1+

1
k1

∫

Ω

V p1dx.

Since 1
2+k1(1−α1−r1)

+ p1k2

1+p1k2
= 1, by the Hölder inequality and the Young inequality, we have

U
1

k1

∫

Ω

V p1dx ≤|Ω|
1

1+p1k2 U
1

k1

(

∫

Ω

V
p1+ 1

k2 dx
)

p1k2
1+p1k2

≤|Ω|
1

1+p1k2
p1k2

1+p1k2
θ
−

1+p1k2
p1k2

∫

Ω

V
p1+ 1

k2 dx+

|Ω|
1

1+p1k2
1

2+k1(1−α1−r1)

(

θU
1

k1

)2+k1(1−α1−r1)
,
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where θ = |Ω|
k2p1

(1+p1k2)2 ( k2(1+k1)
k1(1+p1k2) )

p1k2
1+p1k2 . From the above inequality, we have

J1τ − U r1∆J1 − 2r1δU
1

k1 J1 − a1p1U
α1+r1

∫

Ω

V p1−1J2dx

≥ r1δ
2U

2
k1

+1 − a1δ|Ω|
1

1+p1k2
1+k1

k1(2+k1(1−α1−r1))
θ2+k1(1−α1−r1)U

2
k1

+1

≥ r1δ(δ − δ1)U
2

k1
+1 ≥ 0,

and similarly,

J2τ − V r2∆J2 − 2r2δV
1

k2 J2 − b1q1V
β1+r2

∫

Ω

U q1−1J1dx ≥ 0.

We have for (x, τ) ∈ ∂Ω × (0, T1) that

J1(x, τ) = Uτ − δU
1

k1
+1

=
(

∫

Ω

ϕ(x, y)u(y, τ)dy
)m−1(

∫

Ω

ϕ(x, y)uτ (y, τ)dy − δ
(

∫

Ω

ϕ(x, y)u(y, τ)dy
)

m
k1

+1)

.

Since Uτ (x, τ) = J1(x, τ) + δU
1

k1
+1

, we have
∫

Ω

ϕ(x, y)uτ (y, τ)dy − δ
(

∫

Ω

ϕ(x, y)u(y, τ)dy
)

m
k1

+1

=

∫

Ω

ϕ(x, y)U
1−m

m J1(y, τ)dy + δ
(

∫

Ω

ϕ(x, y)U
1
m

( m
k1

+1)(y, τ)dy −
(

∫

Ω

ϕ(x, y)U
1
m (y, τ)dy

)
m
k1

+1)

.

Noticing that 0 < F (x) =
∫

Ω
ϕ(x, y)dy ≤ 1 on ∈ ∂Ω with m

k1
+ 1 > 1, we can apply the Jensen

inequality to the last integral in the above inequality to get
∫

Ω

ϕ(x, y)U
1
m

( m
k1

+1)
(y, τ)dy −

(

∫

Ω

ϕ(x, y)U
1
m (y, τ)dy

)
m
k1

+1

≥ F (x)
(

∫

Ω

ϕ(x, y)U
1
m (y, τ)

dy

F (x)

)
m
k1

+1

−
(

∫

Ω

ϕ(x, y)U
1
m (y, τ)dy

)
m
k1

+1

≥ 0,

since m
k1

+ 1 > 1, 0 < F (x) ≤ 1. Hence,

J1(x, τ) ≥
[

∫

Ω

ϕ(x, y)U
1
m (y, τ)dy

]m−1
∫

Ω

ϕ(x, y)U
1−m

m (y, τ)J1(y, τ)dy

for (x, τ) ∈ ∂Ω × (0, T1), and similarly,

J2(x, τ) ≥
[

∫

Ω

ψ(x, y)V
1
n (y, τ)dy

]n−1
∫

Ω

ψ(x, y)V
1−n

n (y, τ)J2(y, τ)dy

on ∂Ω × (0, T1). Moreover, J1(x, 0), J2(x, 0) ≥ 0 on Ω̄. By the comparison principle, we get

J1, J2 ≥ 0 on Ω̄ × (0, T1), namely,

Uτ ≥ δU
1

k1
+1
, Vτ ≥ δV

1
k2

+1 on Ω̄ × (0, T1).

Integrating from τ to T1, we conclude that

U(x, τ) ≤ C1(T1 − τ)−k1 , V (x, τ) ≤ C2(T1 − τ)−k2 , (3.7)

with C1 = (δk−1
1 )−k1 , C2 = (δk−1

2 )−k2 .
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Combining (3.7) with (3.5) yields the lower bounds of the blow-up rate. The proof is com-

pleted. 2

Finally, let us go back to consider the blow-up rate of (1.1). Introduce a new algebraic system




α− 1 p

q β − 1









η1

η2



 =





1

1



 ,

namely

η1 =
p− β + 1

pq − (1 − α)(1 − β)
, η2 =

q − α+ 1

pq − (1 − α)(1 − β)
.

From Theorem 3.1 with (3.2), (3.3), we obtain the blow-up rate theorem for (1.1) immediately.

Theorem 3.2 Under the conditions of Theorem 3.1, let (u, v) be the solution of (1.1) with

blow-up time T . Then there exist C∗

i > 0 (i = 1, . . . , 4) such that

C∗

3 (T − t)−η1 ≤ max
Ω̄

u(·, t) ≤ C∗

1 (T − t)−η1 ,

C∗

4 (T − t)−η2 ≤ max
Ω̄

v(·, t) ≤ C∗

2 (T − t)−η2 .
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