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reflective subcategory.
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1. Introduction and preliminaries

Convergence of filters and nets, called the Moore-Smith convergence, is an important topic

in general topology. For convenience, sometimes we use filters and sometimes use nets to define

and study convergence in topology since there is a close relation between them.

In L-topology theory, the Moore-Smith convergence theory had been completely established

by Pu and Liu in [1] by means of L-fuzzy nets and L-fuzzy filters (of crisp degree). Analo-

gously, in L-fuzzifying topology [2], in order to study convergence structures, L-fuzzifying filters

or L-fuzzifying nets should be used. While there is no proper definition of L-fuzzifying nets

corresponding to L-fuzzifying filters in fuzzy set theory.

The aim of this paper is to give a definition of L-fuzzifying nets corresponding to L-fuzzifying

filters and then to establish the Moore-Smith convergence in L-fuzzifying topology. This paper

is arranged as follows. In the rest of this section, we recall some materials which will be used
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throughout this paper. In Section 2, we give definitions of L-fuzzifying filters and L-fuzzifying

nets and then study the Moore-Smith convergence in L-fuzzifying topology. In Section 3, we

define an L-fuzzifying generalized convergence spaces and show that the resulting category L-

FYGConv embeds the category of L-fuzzifying topological spaces as a reflective category. In

Section 4, we show that L-FYGConv is a cartesian-closed topological category.

In the following, we will list some preliminaries which are used in this paper.

An element a of a lattice is called ∧-irreducible if a = b ∧ c always implies a = b or a = c for

any elements b, c. A lattice with a ∧-irreducible button 0 is called 0-∧-inaccessible. For example,

the unit interval [0, 1] is such a lattice. A DeMorgan algebra is a complete lattice equipped with

an order-reversing involution.

A complete lattice L is a frame or a complete Heyting algebra if the binary meets are distribu-

tive over arbitrary joins, i.e., a∧ (
∨

i bi) =
∨

i(a∧ bi) holds for all a, bi(i ∈ I) ∈ L. For a frame L,

an implicative operator →: L×L −→ L can be defined as a → b =
∨

{c ∈ L| a∧c ≤ b} (∀a, b ∈ L).

Then for any a, b, c ∈ L, a ∧ c ≤ b ⇐⇒ c ≤ a → b. A frame is called spatial if it is generated

by all ∧-irreducible elements, that is, any element is the meets of all ∧-irreducible elements less

than or equal to it. Properties of frames can be found in many literatures, e.g. [3].

In this paper, L is always assumed to be a 0-∧ irreducible frame. We put L0 = L − {0}.

2. L-fuzzifying filters, L-fuzzifying nets and their Moore-Smith conver-

gence

Definition 1 ([4]) We call a map F : 2X −→ L an L-fuzzifying filter on X if

(LF1) F(∅) = 0,F(X) = 1;

(LF2) F(A ∩ B) = F(A) ∧ F(B).

An L-fuzzyfying topology on a set X is a map τ : 2X −→ L satisfying that (1) τ(∅) = τ(X) =

1; (2) τ(A∩B) ≥ τ(A)∧τ(B); (3) τ(
⋃

i Ai) ≥
∧

i τ(Ai). The pair (X, τ) is called an L-fuzzifying

topological space [2]. A map f : (X, τX) −→ (Y, τY ) between two L-fuzzifying topological spaces

is called continuous if τX(f−1(B)) ≥ τY (B) for all B ⊆ Y . Let L-FYS denote the category of all

L-fuzzifying topological spaces with continuous maps as morphisms.

Let τ : LX −→ L be an L-fuzzifying topology and x ∈ X . Define N x
τ (A) =

∨

x∈B⊆A τ(B).

Then N x
τ is an L-fuzzifying filter, which is the neighborhood filter in [5].

Definition 2 For a directed set ∆, we call a map ξ = (p, v) : ∆ −→ X ×L0 an L-fuzzifying net

on X if

(LN1)
∨

d∈∆ v(d) = 1;

(LN2) For any d1, d2 ∈ ∆, there exists an upper bound d of d1, d2 such that v(d1)∧ v(d2) ≤

v(d).

For L = 2, an L-fuzzifying net is just an ordinary net. Let ξ = (p, v) : ∆ −→ X × L0 be an

L-fuzzifying net. We call ξ an L-fuzzifying net of crisp degree if v ≡ 1. We call ξ a constant net

if p : ∆ −→ X is a constant map with a value x and v ≡ 1, and in this case, ξ is also denoted by

x.
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We denote the set of all L-fuzzifying filters (resp., nets) on a set X by F(X) (resp., N(X)).

Let ξ = (p1, v1) : D −→ X × L0, η = (p2, v2) : E −→ X × L0 be two L-fuzzifying nets. We

call η a subnet of ξ if there is a map j : E −→ D satisfying that p2 = p1 ◦ j, v2 = v1 ◦ j and for

each d ∈ D, there exists an e0 ∈ E such that v2(e0) ≥ v1(d) and j(e) ≥ d for all e ≥ e0.

Proposition 1 (1) Let f : X −→ Y be a map and ξ = (p, v) ∈ N(X), F ∈ F(X). Define

f(ξ) = (f ◦ p, v) : ∆ −→ Y × L0 and for all B ⊆ Y , f(F)(B) = F(f−1(B)), then f(ξ) ∈

N(Y ), f(F) ∈ F(Y ).

(2) Let f : X −→ Y be a map and ξ, η be two L-fuzzifying nets of X . If η is a subnet of ξ,

then f(η) is a subnet of f(ξ).

Proof Straightforward. 2

Definition 3 Suppose that ξ = (p, v) : D −→ X × L0 is an L-fuzzifying net on X . Define

Fξ(A) =
∨

{v(d)| ∀e ≥ d, p(e) ∈ A}, which can be considered as the degree for ξ eventually

belonging to A.

Proposition 2 Fξ is an L-fuzzifying filter.

Proof (a) Fξ(0X) =
∨

∅ = 0, Fξ(X) =
∨

d ∈ ∆v(d) = 1. (b) Obviously, Fξ is order-preserving.

For any A, B ∈ LX ,

Fξ(A) ∧ Fξ(B) =
∨

{v(d1)| ∀e ≥ d1, p(e) ∈ A} ∧
∨

{v(d2)| ∀e ≥ d2, p(e) ∈ B}

=
∨

{v(d1) ∧ v(d2)| ∀e1 ≥ d1, ∀e2 ≥ d2, p(e1) ∈ A, p(e2) ∈ B}

≤
∨

{v(d)| ∀e ≥ d, p(e) ∈ A ∩ B} = Fξ(A ∩ B). 2

Proposition 3 If η = (p2, v2) : E −→ X × L0 is a subnet of ξ = (p1, v1) : D −→ X × L0, then

Fξ ≤ Fη.

Proof For A ⊆ X , suppose that d ∈ D satisfying that p1(d1) ∈ A for all d1 ≥ d. Since η is a

subnet of ξ, there is a map j : E −→ D satisfying that p2 = p1 ◦ j, v2 = v1 ◦ j and for this d,

there exists an e0 ∈ E such that v2(e0) ≥ v1(d), j(e) ≥ d and p2(e) = p1(j(e)) ∈ A for all e ≥ e0.

By v2(e0) ≥ v1(d), we have Fξ ≤ Fη. 2

Proposition 4 Let f : X −→ Y be a map. For every L-fuzzifying net ξ on a set X , Ff(ξ) =

f(Fξ).

Proof For every A ⊆ X , we have

Ff(ξ)(A) =
∨

{v(d)| ∀e ≥ d, f(p(e)) ∈ A} =
∨

{v(d)| ∀e ≥ d, p(e) ∈ f−1(A)}

=Fξ(f
−1(A)) = f(Fξ)(A).

For F an L-fuzzifying filter on X , put F+ = {A ⊆ X | F(A) ∈ L0} and ∆F = {(x, A)| x ∈

A ∈ F+}. Define a relation ≺ on ∆F as (x, A) ≺ (y, B) iff B ⊆ A. Define ξF = (pF , vF ) :

∆F −→ X × L0 by (x, A) 7→ (x,F(A)). 2
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Proposition 5 ξF is an L-fuzzifying net.

Proof (1) ∆F is a direct set. For (x, A), (y, B) ∈ ∆F , we have F(A),F(B) 6= 0 and then

F(A∩B) = F(A)∧F(B) 6= 0. Then A∩B 6= 0 and there exists z ∈ A∩B. Thus (x, A), (y, B) ≺

(z, A ∩ B) ∈ ∆F .

(2) ξF is an L-fuzzifying net. (LN1)
∨

(x,A)∈∆F
vF (x, A) ≥ F(X) = 1. (LN2) For

(x, A), (y, B) ∈ ∆F , then (z, A ∩ B) is an upper bound of (x, A), (y, B). vF (x, A) ∧ vF (y, B) =

F(A) ∧ F(B) = F(A ∩ B) = vF (z, A ∩ B). 2

Proposition 6 For every L-fuzzifying filter F on a set X , FξF = F .

Proof Let A ⊆ X . If F(A) 6= 0, then A 6= ∅. Choose x ∈ A, we have (x,F(A)) ∈ ∆F . For

any (y, B) ∈ ∆F with (y, B) ≻ (x, A), we have ξF (y, B) = y ∈ B ⊆ A. Thus vF (x,F(A)) =

F(A) ∈ P (F , A) and FξF (A) ≥ F(A). Conversely, for any (x, B) ∈ ∆F , pF(y, C) = y ∈ A for

any (y, C) ≻ (x, B). For z ∈ B, we have (z, B) ∈ ∆F and (z, B) ≻ (x, B), then z ∈ A. Then

B ⊆ A. Hence vF (x, B) = F(B) ≤ F(A). Consequently we have FξF (A) ≤ F(A). 2

In the rest of this paper, we assume that L has an order-reversing involution ∗. For any

L-fuzzifying topological space (X, τ), define cl : 2X −→ LX by cl(A)(x) = (N x
τ (A′))∗. This is a

special case of the closure operator cl in [6] (see Theorem 5.3).

Define Lf : F(X)×X −→ L by Lf(F , x) =
∧

A∈LX cl(A)(x)∨F(A′) and Ln : N(X)×X −→ L

by Ln(ξ, x) = Lf(Fξ, x). The value Lf (F , x) (resp., Ln(ξ, x)) can be considered as the degree of

x to be a limit point of F (resp., ξ). By Proposition 6, we have Ln(ξF , x) = Lf (F , x).

Remark 1 In a crisp topological space (X, T ), a filter F is convergent to a point x iff U(x) ⊆ F

[7]. In fact, we can show that U(x) ⊆ F iff for any A ⊆ X , x ∈ A− or A′ ∈ F . Thus Lf , Ln are

generalizations of classical convergence in crisp topology.

Proof Suppose that U(x) ⊆ F . For A ⊆ X , if A′ 6∈ F , then A′ 6∈ U(x). For all U ∈ U(x), if

U ∩ A = ∅, then U ⊆ A′, which implies that A′ ∈ U(x), which is a contradiction to A′ 6∈ U(x).

Hence x ∈ A−. Conversely, for any open neighborhood U of x, if U = (U ′)′ 6∈ F , then x ∈ U ′− =

U ′ (notice that U is open and U ′ is closed), which is a contradiction to U ∈ U(x).

We define Cf : F(X) × X −→ L by Cf (F , x) =
∧

A∈X cl(A)(x) ∨ (F(A))∗ and Cn : N(X) ×

X −→ L by Cn(ξ, x) = Cf (Fξ, x). The value Cf (F , x) (resp., Cn(ξ, x)) can be considered as the

degree of x to be a cluster point of F (resp., ξ). By Proposition 6, Cn(ξF , x) = Cf (F , x). 2

Remark 2 In a crisp topological space (X, T ), x ∈ X is a cluster point of a filter F iff for all

A ∈ F , x ∈ A− (see [7]). Thus Cf , Cn are generalizations of cluster in crisp topology.

Proposition 7 For every F ∈ F(X), ξ ∈ N(X) and x ∈ X , we have Lf(F , §) ≤ C{(F , §),

Ln(ξ, x) ≤ Cn(ξ, x).

Proof We only need to show Lf ≤ Cf or just Fξ(A
′) ≤ (Fξ(A))∗. If (Fξ(A))∗ 6= 1, then

Fξ(A) 6= 0. While Fξ(A
′)∧Fξ(A) = Fξ(A

′∩A) = 0, then Fξ(A
′) = 0 since L is 0-∧-irreducible. 2
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For any L-fuzzifying topology τ on X and p a ∧-irreducible element of L, it is easy to check

that the family τ(p) = {A ⊆ X | τ(A) 6≤ p} is a crisp topology on X . In a topological space

(X, T ), for x ∈ X, A ⊆ X , we have x ∈ A− if and only if U ∩ A 6= ∅ for any U ∈ U(x) (see [7]).

Let U(x) be the neighborhood system of x. If x ∈ A−, then there exists a net ξ : U(x) −→ X

such that for any U ∈ U(x), ξ(U) ∈ A ∩ U . We denote such a net by ξU(x).

Let ξ = (p, v) : D −→ X × L0 be an L-fuzzifying net and A ⊆ X . For a notation ξ ⊆ A, we

mean p(d) ∈ A for all d ∈ D. We also denote by N
c(X) the set of all L-fuzzifying nets of crisp

degree on X .

We now give the main results of this section.

Theorem 1 Suppose that L is a spatial frame. For A ∈ LX , x ∈ X , the following five values

are equal to each other:

(1) cl(A)(x); (2)
∨

ξ⊆A Ln(ξ, x); (3)
∨

ξ⊆A Cn(ξ, x);

(4)
∨

Nc(X)∋ξ⊆A Ln(ξ, x); (5)
∨

Nc(X)∋ξ⊆A Cn(ξ, x).

Proof Obviously (4)≤(5,2)≤(3).

(3)≤(1). First, it is easy to see that if ξ ⊆ A, then Fξ(A) = 1 and (Fξ(A))∗ = 0.
∨

ξ⊆A Cn(ξ, x) =
∨

ξ⊆A

∧

B⊆X cl(B)(x)∨(Fξ(B))∗ ≤
∧

ξ⊆A cl(A)(x)∨(Fξ(A))∗ =
∧

ξ⊆A cl(A)(x)∨

0 = cl(A)(x).

(1)≤(4). We only need to show that

N x
τ (A′) ≥

∧

Nc(X)∋ξ⊆A

∨

B∈LX

N x
τ (B) ∧ (Fξ(B))∗.

In fact, for all prime element p ≥ N x
τ (A′), then x ≤ A|τ(p) (otherwise, there exists an open

neighborhood U of x in τ(p) such that U ⊆ A′, then x ∈ U ⊆ A and then τ(U) ≤ p, which

is a contradiction to U ∈ τ(p)). Let U(x) be the neighborhood system of x in τ(p). Clearly,

ξU(x) ⊆ A. Consider ξ as an L-fuzzifying net of crisp degree, then the value (Fξ(B))∗ is 0 or

1. If (FξU(x)
(B))∗ = 1, then FξU(x)

(B) = 0. Then for all U ∈ U(x), there exists V ∈ U(x) such

that V ⊆ U and ξU(x)(V ) 6∈ B. In order to complete the proof, we only need to show that for all

x ∈ C ⊆ B, τ(C) ≤ p. If not, then C ∈ τ(p), and C ∈ U(x). For this C, there exists D ⊆ C such

that ξU(x)(D) 6∈ B, while ξU(x)(D) ∈ D ⊆ C ⊆ B, leading to a contradiction. 2

3. Embed L-FYS in the category of L-fuzzifying generalized convergence

spaces

A pair of functors (F, G) is called an adjunction [8] between two categories A and B if for any

A ∈ ob(A), B ∈ ob(B), there is a bijection between homA(A, G(B)) and homB(F (A), B). The

functor F is called the left adjoint of G and G the right adjoint of F . If A is a subcategory of B

and the inclusion functor i : A −→ B has a left (resp., right) adjoint, then A is called a reflective

(resp., coreflective) subcategory of B.

In this section, we will show that the category of L-fuzzifying topological spaces can be

embedded in the category of net-theoretical L-fuzzifying generalized convergence spaces as a
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reflective subcategory.

Definition 4 We call a map S : N(X) × X −→ L an L-fuzzifying generalized convergence

structure on X if it satisfies

(LC1) For all x ∈ X, S(x, x) = 1;

(LC2) If η is a subnet of ξ, then for any x ∈ X, S(ξ, x) ≤ S(η, x).

The pair (X, S) is called an L-fuzzifying generalized convergence space.

For two L-fuzzifying generalized convergence spaces (X, S1) and (Y, S2), a map f : X −→ Y is

called continuous if for any (ξ, x) ∈ N(X)×X, S1(ξ, x) ≤ S2(f(ξ), f(x)). Denote by L-FYGConv

the category of L-fuzzifying generalized convergence spaces with continuous maps as morphisms.

Let (X, S) be an L-fuzzifying generalized convergence space. Define Ux
S : LX −→ L by

Ux
S(A) =







∧

ξ∈N(X)

S(ξ, x) → Fξ(A), x ∈ A;

0, x 6∈ A.

Lemma 1 (1) For all x ∈ X , Ux
S is an L-fuzzifying filter.

(2) Let f : (X, S1) −→ (Y, S2) be a continuous map. Then f(Ux
S1

) ≥ U
(f(x))
S2

.

Proof (1) Ux
S(∅) = 0, Ux

S(X) = 1 are obvious. For all A, B ⊆ X , x ∈ A ∩ B iff x ∈ A, x ∈ B.

Then

Ux
S(A) ∧ Ux

S(B) ≤
∧

ξ∈N(X)

(S(ξ, x) → Fξ(A)) ∧ (S(ξ, x) → Fξ(B))

=
∧

ξ∈N(X)

S(ξ, x) → (Fξ(A) ∧ Fξ(B))

=
∧

ξ∈N(X)

S(ξ, x) → Fξ(A ∩ B)

= Ux
S(A ∩ B).

Clearly, Ux
S is order-preserving. Hence Ux

S(A ∩ B) = Ux
S(A) ∧ Ux

S(B).

(2) For all B ⊆ Y ,

f(Ux
S1

)(B) = Ux
S1

(f−1(B)) =
∧

ξ∈N(X)

S1(ξ, x) → Fξ(f
−1(B))

≥
∧

ξ∈N(X)

S2(f(ξ), f(x)) → f(Fξ)(B) =
∧

ξ∈N(X)

S2(f(ξ), f(x)) → Ff(ξ)(B)

≥
∧

η∈N(Y )

S2(η, f(x)) → Fη(B)

= U
f(x)
S2

(B). 2

Define τS : 2X −→ L by

τS(A) =
∧

x∈A

Ux
S(A), ∀A ⊆ X.

Proposition 8 The map τS is an L-fuzzifying topology on X .
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Proof (O1) Obviously, τS(∅) = τS(X) = 1.

(O2) For any A, B ⊆ X , if A ∩ B = ∅, then τS(A ∩ B) = 1 ≥ τS(A) ∧ τS(B). Otherwise,

τS(A) ∧ τS(B) =
∧

x∈A

Ux
S(A) ∧

∧

y∈B

Uy
S(B) ≤

∧

z∈A∩B

Uz
S(A) ∧ Uz

S(B)

=
∧

z∈A∩B

Uz
S(A ∩ B) = τS(A ∩ B).

(O3)

τS(
⋃

i

Ai) =
∧

x∈
⋃

i
Ai

Ux
S(

⋃

i

Ai) ≥
∧

∃i, x∈Ai

Ux
S(Ai) =

∧

i

∧

x∈Ai

Ux
S(Ai) =

∧

i

τS(Ai). 2

Proposition 9 If f : (X, S1) −→ (Y, S2) is continuous, then f : (X, τS1) −→ (Y, τS2) is

continuous.

Proof For all B ⊆ Y ,

τS1(f
−1(B)) =

∧

x∈f−1(B)

Ux
S1

(f−1(B)) =
∧

f(x)∈B

f→(Ux
S1

)(B) ≥
∧

f(x)∈B

U
f(x)
S2

(B) ≥ τS2(B). 2

By Propositions 8 and 9, we obtain a concrete functor TS from L-FYS to L-FYGConv

transferring an L-fuzzifying generalized convergence structure S to τS .

Let (X, τ) be an L-fuzzifying topological space. Define Sτ : N(X) × X −→ L by

Sτ (ξ, x) =
∧

x∈A

τ(A) → Fξ(A), ∀(ξ, x) ∈ N(X) × X.

Proposition 10 For an L-fuzzifying topology τ on X , we have

(1) Sτ is an L-fuzzifying generalized convergence structure on X .

(2) For each x ∈ X, Ux
Sτ

≥ Ux
τ .

Proof (1) (LC1) is straightforward and (LC2) can be implied by Proposition 3.

(2) For all x ∈ A ⊆ X and all x ∈ B ⊆ A,

Ux
Sτ

(A) ≥ Ux
Sτ

(B) =
∧

ξ∈N(X)

Sτ (ξ, x) → Fξ(B)

=
∧

ξ∈N(X)

(
∧

x∈C

(τ(C) → Fξ(C)) → Fξ(B)

≥
∧

ξ∈N(X)

(τ(B) → Fξ(B)) → Fξ(B) ≥ τ(B).

Hence Ux
Sτ

≥ Ux
τ . 2

Proposition 11 If f : (X, τ1) −→ (Y, τ2) is continuous, then so is f : (X, Sτ1) −→ (Y, Sτ2).

Proof For all (ξ, x) ∈ N(X) × X ,

Sτ2(f(ξ), f(x)) =
∧

B∋f(x)

τ2(B) → Ff(ξ)(B)

≥
∧

B∋f(x)

τ1(f
−1(B)) → Fξ(f

−1(B))
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≥
∧

A∋x

τ1(A) → Fξ(A) = Sτ1(ξ, x). 2

By Propositions 10 and 11, we obtain a concrete functor ST from L-FYS to L-FYGConv

transferring an L-fuzzifying topology τ to Sτ .

Proposition 12 Let τ be an L-fuzzifying topology and S be an L-fuzzifying generalized con-

vergence space. Then SτS
≥ S, τSτ

≥ τ .

Proof (1) For all (ξ, x) ∈ N(X) × X ,

SτS
(ξ, x) =

∧

x∈A

τS(A) → Fξ(A) ≥
∧

x∈A

(S(ξ, x) → Fξ(A)) → Fξ(A) ≥ S(ξ, x).

(2) For all A ⊆ X ,

τSτ
(A) =

∧

x∈A

Ux
Sτ

(A) ≥
∧

x∈A

Ux
τ (A) ≥ τ(A). 2

Theorem 2 The category L-FYS can be embedded in L-FYGConv as a reflective subcategory.

4. L-FYGConv is a cartesian-closed topological category

A construct C over Set (U is the forgetful functor) is called topological [8] if for any U -source

(fi −→ (Xi, ξi))i∈I , there exists a unique initial U -lift (X, ξ), that is for any C-object (Y, η), a

map g : (Y, η) −→ (X, ξ) is a C-morphism if and only if for any i ∈ I, fi ◦ g : (Y, η) −→ (Xi, ξi)

is a C-morphism.

A category with finite products is called cartesian-closed [8] if for each pair (A, B) of objects

there exists an object [A → B] and an evaluation morphism ev : [A → B] × A −→ B with the

following universal property: for each morphism f : C×A −→ B there exists a unique morphism

f̂ : C −→ [A → B] such that ev ◦ (f̂ × id) = f .

Theorem 3 L-FYGConv is a topological category.

Proof Let U : L-FYGConv−→ Set be the forgetful functor and (X, fi, (Xi, Si))i∈I be a U -

source. Define S : N(X) × X −→ L by S(ξ, x) =
∧

i Si(fi(ξ), fi(x)). It is routine to show that

(X, S) is an L-fuzzifying generalized convergence space.

Suppose that (Y, SY ) is an L-fuzzifying generalized convergence space. A map g : (Y, SY ) −→

(X, S) is an L-FYGconv-morphism if and only if ∀(ξ, y) ∈ N(Y ) × Y , SY (ξ, y) ≤ S(g(ξ), (g(y)))

if and only if ∀(ξ, y) ∈ N(Y )× Y , ∀i ∈ I, SY (ξ, y) ≤ Si((fig)(ξ), ((fig)(y))) if and only if ∀i ∈ I,

fig : (Y, SY ) −→ (Xi, Si) is an L-FYGConv-morphism. Hence (X, S) is a unique initial U -lift

for the given U -source (the uniqueness is obvious). 2

Since L-FYGConv is topological, there exist products in L-FYGConv [8]. By Theorem 3,

let {(Xi, Si)| i ∈ I} be a nonempty family of L-fuzzifying generalized convergence spaces and

X =
∏

i∈X Xi. For all (ξ, x) ∈ N(X) × X , let S(ξ, x) =
∧

i∈I Si(pi(ξ), (pi(x))). Then (X, S) is

the product of {(Xi, Si)| i ∈ I} in L-FYGConv. For an L-fuzzifying net ξ = (p, v) : ∆ −→ X =
∏

i Xi, we have pi ◦ ξ = (pi ◦ p, v) : ∆ −→ Xi is an L-fuzzifying net for any i ∈ I.
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Proposition 13 (Product of two L-fuzzifying nets) Let ξ = (p1, v1) : D −→ X × L0, η =

(p2, v2) : E −→ Y × L0 be two L-fuzzifying nets. Define ξ × η : D × E −→ (X × Y ) × L0 by

(ξ × η)(d, e) = ((p1(d), p2(e)), v1(d) ∧ v2(e)), ∀(d, e) ∈ D × E.

Then ξ × η is an L-fuzzifying net of X × Y .

Proof Since L is 0-∧-inaccessible, for any (d, e) ∈ D×E, h1(d)∧h2(e) ∈ L0, v1(d)∧v2(e) ∈ L0.

(LN1)
∨

(d,e)∈D×E v1(d) ∧ v2(e) =
∨

d∈D v1(d) ∧
∨

e∈E v2(e) = 1 ∧ 1 = 1.

(LN2) For all (d1, e1), (d2, e2) ∈ D × E, there exists an upper bound d of d1, d2 such that

v1(d1) ∧ v1(d2) ≤ v1(d) and an upper bound e of e1, e2 such that v2(e1) ∧ v2(e2) ≤ v2(e). Then

(d, e) is an upper bound of (d1, e1), (d2, e2) such that (v1(d1) ∧ v2(e1)) ∧ (v1(d2) ∧ v2(e2)) ≤

v1(d) ∧ v2(e). 2

Let (X, SX) and (Y, SY ) be two L-fuzzifying generalized convergence spaces and [X → Y ]

the set of all continuous maps from (X, SX) to (Y, SY ). For any (ξ, f) ∈ N([X → Y ])× [X → Y ],

define

S[X→Y ](ξ, f) =
∧

(η,x)∈N(X)×X

SX(η, x) → SY (ev(ξ × η), f(x)).

Lemma 2 For all f ∈ [X → Y ], η ∈ N(X), a ∈ L0, ev(f × η) is a subnet of f(η), where f is a

constant net on [X → Y ].

Proof Let f : D −→ [X → Y ] × L0, η = (p, v) : E −→ X × L0 be two L-fuzzifying nets. Then

the net ev(f × η) : D ×E −→ Y ×L0 is defined by (d, e) 7→ (f(η(e)), v(e)) and [f(η)] : E −→ Y

by e 7→ (f(η(e)), v(e)). Define j : D × E −→ E by (d, e) 7→ e. Then ev(f × η) is a subnet of

[f(η)]. 2

Lemma 3 If ξ1, ξ2 are two L-fuzzifying nets on X and ξ1 is a subnet of ξ2. Then for any L-

fuzzifying net η on Y and any map f : X×Y −→ Z, ξ1×η is a subnet of ξ2×η and consequently

f(ξ1 × η) is a subnet of f(ξ2 × η).

Proof Straightforward. 2

Proposition 14 S[X→Y ] is an L-fuzzifying convergence structure on [X → Y ].

Proof (LC2) can be easily derived by Lemma 3.

(LC1) By Lemma 2,

S[X→Y ](f, f) =
∧

(η,x)∈N(X)×X

SX(η, x) → SY (ev(f × η), f(x))

≥
∧

(η,x)∈N(X)×X

SX(η, x) → SY (f(η), f(x))

=
∧

(η,x)∈N(X)×X

SX(η, x) → SY (f(η), f(x)) = 1. 2

Proposition 15 The evaluation ev : ([X → Y ], S[X→Y ]) × (X, SX) −→ (Y, SY ) is a continuous

map.
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Proof For any (ξ, f) ∈ N([X → Y ]) × [X → Y ] and any (η, x) ∈ N(X) × X ,

S[X→Y ](ξ, f) =
∧

(β,x)∈N(X)×X

SX(β, x) → SY (ev(ξ × β), f(x))

≤ SX(η, x) → SY (ev(ξ × η), f(x)).

Then

S[X→Y ]×X((ξ, η), (f, x)) = S[X→Y ](ξ, f) ∧ SX(η, x) ≤ SY (ev(ξ × η), f(x)).

That is, ev is continuous. 2

Now let us consider the following situation. Let f : X ×Y −→ Z be a map. Define for x ∈ X

the map fx : Y −→ Z, y 7−→ f(x, y) and with this the map f∗ : X −→ ZY , x 7−→ fx. The map

ϕ : ZX×Y −→ (ZY )X , f 7−→ f∗ is called the exponential map.

Lemma 4 Let f : X × Y −→ Z be a map, ξ = (p, v) : D −→ Y × L0 an L-fuzzifying net and

x : E −→ X × L0 a constant L-fuzzifying net on X . Then fx(ξ) is a subnet of f(x × ξ).

Proof We suppose that E has a top element t. Otherwise, we first do a transformation for x. Put

Et = E ∪{t} such that t is the top of E, then Et is also a direct set. Define (x)∗ : Et −→ X ×L0

by e 7→ (x, 1) for all e ∈ Et. Thus (x)∗ is also a constant net on X , which has hardly difference

from x. Now we consider (x)∗ and x are the same, that is, E has a top element t.

The net f(x× ξ) : E ×D −→ Z ×L0 is defined by f(x× ξ)(e, d) = (f(x, p(d)), v(d)) and the

net fx(ξ) : D −→ Z × L0 is defined by fx(ξ)(d) = (f(x, p(d)), v(d)). Define j : D −→ E × D by

j(d) = (t, d). Then we have fx(ξ) = f(x× ξ) ◦ j, and for any (e, d) ∈ E ×D, v[fx(ξ)](d) = v(d) =

vf(x×ξ) and j(d1) = (t, d1) ≥ (e, d) for any d1 ≥ d. Hence fx(ξ) is a subnet of f(x × ξ). 2

Lemma 5 Let f : (X, SX) × (Y, SY ) −→ (Z, SZ) be a continuous map. Then for each x ∈ X ,

fx : (Y, SY ) −→ (Z, SZ) is also continuous.

Proof For any (ξ, y) ∈ N(Y ) × Y ,

SZ(fx(ξ), fx(y)) ≥ SZ(f(x × ξ), f(x, y)) ≥ SX×Y (x × ξ, (x, y))

= SX(x, x) ∧ SY (ξ, y) = SY (ξ, y).

Thus fx is continuous. 2

Lemma 6 For all ξ ∈ N(X), η ∈ N(Y ), f : X × Y −→ Z, we have ev(ϕ(f)(ξ) × η) = f(ξ × η).

Proof Let ξ = (p1, v1) : D −→ X × L0 and η = (p2, v2) : E −→ Y × L0 be two L-fuzzifying

nets. The net ϕ(f)(ξ) : D −→ ZY × L0 is defined by d 7→ (fp1(d), v1(d)). And ev(ϕ(f)(ξ) × η) :

D×E −→ Z×L0 is defined by (d, e) 7→ (ev(fp1(d), p2(e)), v1(d)∧v2(e))) = (f(p1(d), p2(e)), v1(d)∧

v2(e)). Therefore, ev(ϕ(f)(ξ) × η) = f(ξ × η). 2

Proposition 16 If the map f : X × Y −→ Z is continuous, then so is ϕ(f) : X −→ [Y → Z].

Proof If f : X × Y −→ Z is continuous, then by Lemma 5, for any x ∈ X , ϕ(f)(x) = fx :
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Y −→ Z is continuous and then ϕ(f) is a well-defined map. For any (ξ, x) ∈ N(X) × X ,

S[Y →Z](ϕ(f)(ξ), ϕ(f)(x))

=
∧

(η,y)∈N(Y )×Y

SY (η, y) → SZ(ev(ϕ(f)(ξ) × η), fx(y))

=
∧

(η,y)∈N(Y )×Y

SY (η, y) → SZ(f(ξ × η), f(x, y))

≥
∧

(η,y)∈N(Y )×Y

SY (η, y) → SX×Y (ξ × η, (x, y))

≥
∧

(η,y)∈N(Y )×Y

SY (η, y) → (SX(ξ, x) ∧ SY (η, y))

≥ SX(ξ, x).

Hence S[Y →Z](ϕ(f)(ξ), ϕ(f)(x)) ≥ SX(ξ, x). Therefore, ϕ(f) is continuous. 2

By Propositions 14, 15 and 16, we have

Theorem 4 L-FYGConv is cartesian-closed.
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