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Abstract This paper presents a definition of L-fuzzifying nets and the related L-fuzzifying gen-
eralized convergence spaces. The Moore-Smith convergence is established in L-fuzzifying topol-
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reflective subcategory.
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1. Introduction and preliminaries

Convergence of filters and nets, called the Moore-Smith convergence, is an important topic
in general topology. For convenience, sometimes we use filters and sometimes use nets to define
and study convergence in topology since there is a close relation between them.

In L-topology theory, the Moore-Smith convergence theory had been completely established
by Pu and Liu in [1] by means of L-fuzzy nets and L-fuzzy filters (of crisp degree). Analo-
gously, in L-fuzzifying topology [2], in order to study convergence structures, L-fuzzifying filters
or L-fuzzifying nets should be used. While there is no proper definition of L-fuzzifying nets
corresponding to L-fuzzifying filters in fuzzy set theory.

The aim of this paper is to give a definition of L-fuzzifying nets corresponding to L-fuzzifying
filters and then to establish the Moore-Smith convergence in L-fuzzifying topology. This paper

is arranged as follows. In the rest of this section, we recall some materials which will be used
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throughout this paper. In Section 2, we give definitions of L-fuzzifying filters and L-fuzzifying
nets and then study the Moore-Smith convergence in L-fuzzifying topology. In Section 3, we
define an L-fuzzifying generalized convergence spaces and show that the resulting category L-
FYGConv embeds the category of L-fuzzifying topological spaces as a reflective category. In
Section 4, we show that L-FYGConv is a cartesian-closed topological category.

In the following, we will list some preliminaries which are used in this paper.

An element a of a lattice is called A-irreducible if a = b A ¢ always implies a = b or a = ¢ for
any elements b, c. A lattice with a A-irreducible button 0 is called 0-A-inaccessible. For example,
the unit interval [0, 1] is such a lattice. A DeMorgan algebra is a complete lattice equipped with
an order-reversing involution.

A complete lattice L is a frame or a complete Heyting algebra if the binary meets are distribu-
tive over arbitrary joins, i.e., a A (\/,; b;) = \/;(a Ab;) holds for all a,b;(i € I) € L. For a frame L,
an implicative operator —: L x L — L can be defined asa — b = \/{c € L| aAc < b} (Va,b € L).
Then for any a,b,c € L, aANc < b<= ¢ < a — b. A frame is called spatial if it is generated
by all A-irreducible elements, that is, any element is the meets of all A-irreducible elements less
than or equal to it. Properties of frames can be found in many literatures, e.g. [3].

In this paper, L is always assumed to be a 0-A irreducible frame. We put Lo = L — {0}.

2. L-fuzzifying filters, L-fuzzifying nets and their Moore-Smith conver-
gence

Definition 1 ([4]) We call a map F : 2X — L an L-fuzzifying filter on X if

(LF1) F(0) =0,F(X)=1;

(LF2) F(ANB)=F(A)AF(B).

An L-fuzzyfying topology on a set X is a map 7 : 2%X — L satisfying that (1) 7(0) = 7(X) =
1; (2) 7(ANB) > 1(A)AT(B); (3) 7(U; Ai) > \; 7(A;). The pair (X, 7) is called an L-fuzzifying
topological space [2]. A map f: (X,7x) — (Y, 7y) between two L-fuzzifying topological spaces
is called continuous if 7x (f~1(B)) > 7y (B) for all B C Y. Let L-FYS denote the category of all
L-fuzzifying topological spaces with continuous maps as morphisms.

Let 7 : LY — L be an L-fuzzifying topology and 2 € X. Define N*(A) = \/ 54 7(B).
Then N is an L-fuzzifying filter, which is the neighborhood filter in [5]. B

Definition 2 For a directed set A, we call a map £ = (p,v) : A — X X Ly an L-fuzzifying net
on X if

(LN1) Vgep o(d) = 1;

(LN2) For any dy,ds € A, there exists an upper bound d of dy, dy such that v(di) Av(dz) <
v(d).

For L = 2, an L-fuzzifying net is just an ordinary net. Let £ = (p,v) : A — X X Lo be an
L-fuzzifying net. We call £ an L-fuzzifying net of crisp degree if v = 1. We call £ a constant net
if p: A — X is a constant map with a value x and v = 1, and in this case, £ is also denoted by

.
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We denote the set of all L-fuzzifying filters (resp., nets) on a set X by F(X) (resp., N(X)).

Let £ = (p1,v1) : D — X X Lo,n = (p2,v2) : E — X X Lo be two L-fuzzifying nets. We
call n a subnet of £ if there is a map j : E — D satisfying that ps = p; 0 j, vo = v o j and for
each d € D, there exists an ep € E such that ve(eg) > v1(d) and j(e) > d for all e > ey.

Proposition 1 (1) Let f : X — Y be a map and £ = (p,v) € N(X), F € F(X). Define
f(€) = (fop,v) : A — Y x Lg and for all B C Y, f(F)(B) = F(f~Y(B)), then f(¢) €
N(Y), f(F) € F(Y).

(2) Let f: X — Y be a map and &,7n be two L-fuzzifying nets of X. If n) is a subnet of &,
then f(n) is a subnet of f(§).

Proof Straightforward. O

Definition 3 Suppose that £ = (p,v) : D — X x Lg is an L-fuzzifying net on X. Define
Fe(A) = V{v(d)| Ye > d, p(e) € A}, which can be considered as the degree for £ eventually
belonging to A.

Proposition 2 F; is an L-fuzzifying filter.

Proof (a) F:(0x) =V 0 =0, Fe(X) =V d e Av(d) = 1. (b) Obviously, F¢ is order-preserving.
For any A, B € LX,
Fe(A) A Fe(B) = \[{o(d)| Ve > di, p(e) € A} A \/{v(ds)| Ve > da, ple) € B}
:\/{U(dl) Av(d2)| Ver > di,Ves > da, ple1) € A, p(e2) € B}
<\/{v(d)| Ve > d, p(e) € AN B} = Fe(ANB). O
Proposition 3 Ifn = (p2,v2) : E — X X Ly is a subnet of £ = (p1,v1) : D — X X Ly, then
Fe < Fy.

Proof For A C X, suppose that d € D satisfying that p;(dy) € A for all d; > d. Since 7 is a
subnet of £, there is a map j : B — D satisfying that ps = p; 0 j, va = v1 0 j and for this d,
there exists an ey € E such that va(eg) > vi(d), j(e) > d and p2(e) = p1(j(e)) € A for all e > ey.
By va2(eg) > vi(d), we have Fe < F,). O

Proposition 4 Let f: X — Y be a map. For every L-fuzzifying net { on a set X, Fy) =
f(Fe).
Proof For every A C X, we have
Fro)(4) =\/{o(d)| Ve = d, f(ple)) € A} = \/{v(d)| Ve = d, p(e) € f1(A)}
=Fe(f7H(A) = f(Fe)(A).

For F an L-fuzzifying filter on X, put F* = {A C X| F(A) € Lo} and Ar = {(z,A)| = €
A € Ft}. Define a relation < on Ax as (z,A4) < (y,B) iff B C A. Define {x = (pr,vz) :
Ar — X x Lo by (x,A) — (x,F(A)). O
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Proposition 5 &r is an L-fuzzifying net.

Proof (1) Ar is a direct set. For (z,A),(y,B) € Az, we have F(A),F(B) # 0 and then
F(ANB) = F(A)AF(B) # 0. Then ANB # 0 and there exists z € ANB. Thus (z, A), (y, B) <
(z, AN B) € Ar.

(2) & is an L-fuzzifying net. (LN1) V(, 4cn,vF(z,A) = F(X) = 1. (LN2) For
(x,A),(y,B) € Az, then (2, AN B) is an upper bound of (z, A4), (y, B). vr(z,A) Nvr(y,B) =
F(A)ANF(B)=F(ANB)=vr(z,ANB). O

Proposition 6 For every L-fuzzifying filter 7 on a set X, F¢, = F.

Proof Let A C X. If F(A) # 0, then A # (). Choose x € A, we have (x,F(A)) € Ax. For
any (y, B) € Ar with (y,B) > (z,A), we have £x(y,B) =y € B C A. Thus ve(z, F(4)) =
F(A) € P(F,A) and Fe,(A) > F(A). Conversely, for any (z,B) € Ar, pr(y,C) =y € A for
any (y,C) > (x,B). For z € B, we have (z,B) € Az and (z,B) = (z,B), then z € A. Then
B C A. Hence vg(z, B) = F(B) < F(A). Consequently we have F¢,. (4) < F(A). O

In the rest of this paper, we assume that L has an order-reversing involution *

L-fuzzifying topological space (X, 7), define cl : 2¥ — L¥X by cl(A)(z) = (NZ(A’))*. This is a
special case of the closure operator cl in [6] (see Theorem 5.3).
Define Ly : F(X)xX — Lby Lg(F,x) = \ 4cpx cl(A)(z)VF(A") and Ly, : N(X)x X — L
L, (&, z) = Ly(Fe,x). The value Ly (F,z) (resp., L, (€, z)) can be considered as the degree of
x to be a limit point of F (resp., ). By Proposition 6, we have L, ({x,z) = L;(F, ).

. For any

Remark 1 In a crisp topological space (X, T), a filter F is convergent to a point x iff U (z) C F
[7]. In fact, we can show that U(z) C F iff for any AC X,z € A~ or A’ € F. Thus Ly, L,, are

generalizations of classical convergence in crisp topology.

Proof Suppose that U(z) C F. For A C X, if A’ ¢ F, then A" ¢ U(x). For all U € U(z), if
UNA=10, then U C A’, which implies that A’ € U(x), which is a contradiction to A" & U(z).
Hence x € A~. Conversely, for any open neighborhood U of z, if U = (U') ¢ F, thenz € U~ =
U’ (notice that U is open and U’ is closed), which is a contradiction to U € U(x).

We define Cy : F(X) x X — L by Cy(F,x) = A e x cl(A)(x) V (F(A))" and Cp, : N(X) x
X — Lby Cp(&,x) = Cp(Fe,x). The value Cf(F,z) (resp., Cy(§, z)) can be considered as the
degree of = to be a cluster point of F (resp., §). By Proposition 6, C,,(§£,x) = Cp(F,z). O

Remark 2 In a crisp topological space (X,T), x € X is a cluster point of a filter F iff for all
AeF, xe A (see [7]). Thus Cy, C, are generalizations of cluster in crisp topology.

Proposition 7 For every F € F(X),{ € N(X) and z € X, we have L(F,§) < C((F,$),

Proof We only need to show Ly < Cj or just Fe(A') < (Fe(A))*. If (Fe(A))* # 1, then
Fe(A) # 0. While Fe (A )AFe(A) = Fe(A'NA) = 0, then F¢(A’) = 0 since L is 0-A-irreducible. O
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For any L-fuzzifying topology 7 on X and p a A-irreducible element of L, it is easy to check
that the family 7,y = {A € X| 7(A) £ p} is a crisp topology on X. In a topological space
(X,T), for z € X, A C X, we have x € A~ if and only if U N A # (0 for any U € U(z) (see [7]).
Let U(x) be the neighborhood system of z. If z € A~, then there exists a net £ : U(x) — X
such that for any U € U(x), {(U) € ANU. We denote such a net by §(z)-

Let £ = (p,v) : D — X X Ly be an L-fuzzifying net and A C X. For a notation { C A, we
mean p(d) € A for all d € D. We also denote by N¢(X) the set of all L-fuzzifying nets of crisp
degree on X.

We now give the main results of this section.

Theorem 1 Suppose that L is a spatial frame. For A € L,z € X, the following five values
are equal to each other:

(1) cl(A)(x); (2) \/594 Ln(&2);: (3) \/594 Cn(& 2);

(4) \/Nc(x)aggA Ln(&,); (5) \/Nc(x)aggA Cn(& 2).

Proof Obviously (4)<(5,2)<(3).

(3)<(1). First, it is easy to see that if & C A, then F¢(A) = 1 and (Fe(A4))* = 0.
Veca Cn(€,7) = Veca Apex AB)(@)V(Fe(B))" < Aeca l(A)(@)V(Fe(A)" = N¢ca cl(A)(x)V
0 = cl(A)(x).

(1)<(4). We only need to show that

Nz N NEB) A (FB))
Ne¢(X)36CA BeLX
In fact, for all prime element p > NZ*(A’), then z < Z|T(p) (otherwise, there exists an open
neighborhood U of x in 7,y such that U C A’, then x € U C A and then 7(U) < p, which
is a contradiction to U € 7(;,)). Let U(x) be the neighborhood system of x in 7(,). Clearly,

*is 0 or

Su) € A. Consider § as an L-fuzzifying net of crisp degree, then the value (F¢(B))
L If (Fey., (B))" =1, then F¢,,,(B) = 0. Then for all U € U(z), there exists V € U(z) such
that V' C U and &y (,)(V) ¢ B. In order to complete the proof, we only need to show that for all
r € C C B, 1(C) <p. If not, then C € 7, and C' € U(x). For this C, there exists D C C such

that &) (D) ¢ B, while §,)(D) € D C C C B, leading to a contradiction. O

3. Embed L-FYS in the category of L-fuzzifying generalized convergence
spaces

A pair of functors (F, G) is called an adjunction [8] between two categories A and B if for any
A € ob(A), B € ob(B), there is a bijection between hom 4(A, G(B)) and homp(F(A), B). The
functor F' is called the left adjoint of G and G the right adjoint of F. If A is a subcategory of B
and the inclusion functor i : A — B has a left (resp., right) adjoint, then A is called a reflective
(resp., coreflective) subcategory of 5.

In this section, we will show that the category of L-fuzzifying topological spaces can be

embedded in the category of net-theoretical L-fuzzifying generalized convergence spaces as a
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reflective subcategory.

Definition 4 We call a map S : N(X) x X — L an L-fuzzifying generalized convergence
structure on X if it satisfies

(LC1) Forallz € X, S(T,z) =1;

(LC2) Ifn is a subnet of €, then for any x € X, S(§,z) < S(n,x).

The pair (X, S) is called an L-fuzzifying generalized convergence space.

For two L-fuzzifying generalized convergence spaces (X, S1) and (Y, S2),amap f : X — Y is
called continuous if for any (¢, z) € N(X)x X, S1(&,2) < Sa(f (&), f(x)). Denote by L-FYGConv
the category of L-fuzzifying generalized convergence spaces with continuous maps as morphisms.

Let (X, S) be an L-fuzzifying generalized convergence space. Define U% : LX — L by

A S x) = Fe(A), xe
US(A) = €eN(X)
0, x & A
Lemma 1 (1) For all z € X, U% is an L-fuzzifying filter.
(2) Let f:(X,S1) — (Y, S2) be a continuous map. Then f(US ) > Z/Ig;(z))

Proof (1) U%(0) =0, U%(X) =1 are obvious. Forall A, BC X,z € ANBiff x € A,z € B.
Then
UFA) AUSB) <\ (S(&.2) = Fe(4) A (S(.x) — Fe(B))

£eN(X)
= N\ S — (Fe(A) A Fe(B))

£EN(X)

= N\ Sz - F(ANB)
£eEN(X)
=US(ANB).

Clearly, U3 is order-preserving. Hence UE(A N B) = UE(A) AUE(B).
(2) Forall BCY,

FUE)(B) =UE (f = N Su&az)— Fe(f1(B)
£EN(X)
> N Sa(f(©), f@) = [(F)(B) = N\ S2(f(&), f(2)) = Fre)(B)
£eEN(X) £EN(X)
> N S, f(x) = Fy(B)
neN(Y)

1(B). D

Define 75 : 2% — L by

= A\ ui(4), vAC x.
z€A

Proposition 8 The map 7g is an L-fuzzifying topology on X.
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Proof (01) Obviously, 75(0) = 7s(X) = 1.
(02) For any A,BC X, if ANB =, then 7s(ANB) =1 > 75(A) A 75(B). Otherwise,

Ts(A)Ars(B) = N\ Us(A) A \Ud(B) < N\ Ui(A) AUE(B)
z€A yeB zeAﬁB
= /\ UiAnB)=15(ANB).
z€EANB
(03)
sUan= A ug UA AN\ usan =\ N usa = N\rs(s
i zelJ,; Aq i, z€A; i TEA;

Proposition 9 If f : (X,51) — (Y,S2) is continuous, then f : (X,75,) — (Y,7s,) is
continuous.
Proof Forall BCY,
s (fB) = N\ ULGTIB) = N\ B > N\ ul(B) > e (B). O
zef~1(B) f(x)eB f(x)eB

By Propositions 8 and 9, we obtain a concrete functor Ts from L-FYS to L-FYGConv
transferring an L-fuzzifying generalized convergence structure S to 7g.

Let (X, 7) be an L-fuzzifying topological space. Define S, : N(X) x X — L by

S ) = N\ T(A) = Fe(A), V() € N(X) x X.
T€A

Proposition 10 For an L-fuzzifying topology 7 on X, we have

(1) S; is an L-fuzzifying generalized convergence structure on X.
(2) Foreachx € X, Ug > UF.

Proof (1) (LC1) is straightforward and (LC2) can be implied by Proposition 3.
(2) Forallz € AC X and all z € B C A,

Ui (A >ug (B)= N S-(§x) — Fe(B)
£EN(X)

= AN (AG@(©) = Fe(0) — Fe(B)

eN(X) zeC

> N (7(B) = F¢(B)) — Fe(B) = 7(B).

EEN(X)
Hence Z/{gf >Uyz. 0O

Proposition 11 If f: (X,71) — (Y, 72) is continuous, then so is f : (X, S, ) — (Y, S.,).
Proof For all (¢,2) € N(X) x X,
$n(f(€) F@) =\ m(B) = Fye)(B)

B> f(z)

> N\ nUB) - F((B))

B> f(x)
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> A\ ni(A) = Fe(A) = 5, (€ 2). O
Adzx
By Propositions 10 and 11, we obtain a concrete functor St from L-FYS to L-FYGConv
transferring an L-fuzzifying topology 7 to S;.

Proposition 12 Let 7 be an L-fuzzifying topology and S be an L-fuzzifying generalized con-
vergence space. Then S;, > S, 75, > T.

Proof (1) For all (§,2) € N(X) x X,

Sre(€x) = N 7s(4) = Fe(A) = N\ (S(6.2) = Fe(A)) — Fe(4) = S(€ ).

r€A T€EA
(2) Forall AC X,
75.(A) = N\ UE (A) > \ UF(A) = 7(A). O
TEA z€A

Theorem 2 The category L-FYS can be embedded in L-FYGConv as a reflective subcategory.

4. L-FYGConv is a cartesian-closed topological category

A construct C over Set (U is the forgetful functor) is called topological [8] if for any U-source
(fi — (Xi,&))ier, there exists a unique initial U-lift (X, &), that is for any C-object (Y,7), a
map ¢ : (Y,n) — (X, €) is a C-morphism if and only if for any ¢ € I, fiog: (Y,n) — (X;,&)
is a C-morphism.

A category with finite products is called cartesian-closed [8] if for each pair (A, B) of objects
there exists an object [A — B] and an evaluation morphism ev : [A — B] x A — B with the

following universal property: for each morphism f : C'x A — B there exists a unique morphism
f:C — [A— B] such that evo (f x id) = f.

Theorem 3 L-FYGConv is a topological category.

Proof Let U : L-FYGConv— Set be the forgetful functor and (X, f;, (X;, Si))icr be a U-
source. Define S : N(X) x X — L by S(&,z) = A, Si(fi(€), fi(x)). It is routine to show that
(X,S) is an L-fuzzifying generalized convergence space.

Suppose that (Y, Sy) is an L-fuzzifying generalized convergence space. A map g : (Y, Sy) —
(X,S) is an L-FYGconv-morphism if and only if V(§,y) € N(Y) x Y, Sy (&, y) < S(g(§), (9(y)))
if and only if ¥(¢,y) € N(Y) x Y, Vi € I, Sy (€, ) < Si((f:9)(€), ((fig)(»))) if and only if Vi € I,
fig + (Y, Sy) — (X;, ;) is an L-FYGConv-morphism. Hence (X,S) is a unique initial U-lift
for the given U-source (the uniqueness is obvious). O

Since L-FYGConv is topological, there exist products in L-FYGConv [8]. By Theorem 3,
let {(X;,Si)| ¢ € I} be a nonempty family of L-fuzzifying generalized convergence spaces and
X = [Liex Xi. Forall (§,z) € N(X) x X, let S(§,z) = A,;c; Si(pi(§), (pi(x))). Then (X, S) is
the product of {(X;,S;)| ¢ € I'} in L-FYGConv. For an L-fuzzifying net £ = (p,v) : A — X =
1, Xi, we have p; o & = (p; op,v) : A — X, is an L-fuzzifying net for any i € I.
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Proposition 13 (Product of two L-fuzzifying nets) Let & = (p1,v1) : D — X X Lo, n =
(p2,v2) : E — Y x Lo be two L-fuzzifying nets. Define ¢ xn: D x E — (X xY) x Lo by

(5 X n)(dv e) = ((pl(d)7p2(e))7vl(d) AU?(G))v V(d, e) €D xE.

Then £ x n is an L-fuzzifying net of X x Y.

Proof Since L is 0-A-inaccessible, for any (d,e) € D x E, h1(d) Aha(e) € Lo, vi1(d)Ava(e) € Lg.

(LN1) \/(d,e)erEvl(d> Avz(e) = Vgepvi(d) AV epra(e) =1A1=1

(LN2) For all (di,e1),(da,e2) € D x E, there exists an upper bound d of dy,ds such that
v1(d1) Avi(dz) < v1(d) and an upper bound e of ey, e5 such that va(e1) A va(e2) < va(e). Then
(d,e) is an upper bound of (di,e1), (d2,e2) such that (vi(di) A va(er)) A (vi(de) A va(ez2)) <
v1(d) Ava(e). O

Let (X,Sx) and (Y, Sy) be two L-fuzzifying generalized convergence spaces and [X — Y]
the set of all continuous maps from (X, Sx) to (Y, Sy). For any (£, f) e N([X = Y]) x [X — Y],
define

Sx—v1& = N Sx(nz)— Sy(ev(§ xn), f(x)).

(n,z)eEN(X)x X
Lemma 2 For all f € [X — Y],n € N(X),a € Ly, ev(f x n) is a subnet of f(n), where f is a

constant net on [X — Y.

Proof Let f: D — [X — Y] x Lo, n= (p,v) : E — X x Lo be two L-fuzzifying nets. Then
the net ev(f x 1) : D x E — Y x Lg is defined by (d,e) — (f(n(e)),v(e)) and [f(n)] : E — Y
by e — (f(n(e)),v(e)). Define j: D x E — E by (d,e) — e. Then ev(f x n) is a subnet of
[f(m)]. O

Lemma 3 If &,& are two L-fuzzifying nets on X and & is a subnet of {;. Then for any L-
fuzzifying net n on' Y and any map f : X XY — Z & X is a subnet of & x ) and consequently

f(& x n) is a subnet of f(& x 7).

Proof Straightforward. O
Proposition 14 Sx_.y) is an L-fuzzifying convergence structure on [X — Y.

Proof (LC2) can be easily derived by Lemma 3.
(LC1) By Lemma 2,
Sx—vi(F.H= " N Sx(nz)— Sy(ev(f xn), f(z))

(m,z)eEN(X)x X

> /\ SX(nv {E) - SY(f(n)v f(i[:))

(m,z)eEN(X)x X

= A Sx(ma) = Sy(f(n), f(z) = 1. O

(m,z)eEN(X)x X
Proposition 15 The evaluation ev : ([X — Y], S;x_y]) x (X, Sx) — (Y, Sy) is a continuous

map.
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Proof For any (¢, f) € N([X — Y]) x [X — Y] and any (n,z) € N(X) x X,

Sx-vi& = N Sx(B,2) = Sy(ev(é x ), f(x))

(B,x)eEN(X)x X
< Sx(n,z) — Sy (ev(€ x n), f(x)).

Then
S[XHY]XX((gun% (f7 .’II)) = S[XHY] (gaf) A Sx(T],!E) S S’y(ev(§ X 77)7 f(ZC))

That is, ev is continuous. O
Now let us consider the following situation. Let f : X XY — Z be a map. Define for z € X
the map f, : Y — Z,y — f(z,y) and with this the map f*: X — Z¥,x +— f,. The map

0 ZXXY — (ZYV)X | f — f* is called the exponential map.

Lemma 4 Let f: X XY — Z be a map, £ = (p,v) : D — Y X Lo an L-fuzzifying net and
T:FE — X x Ly a constant L-fuzzifying net on X. Then f,(£) is a subnet of f(T X &).

Proof We suppose that E has a top element ¢. Otherwise, we first do a transformation for . Put
E; = EU{t} such that ¢ is the top of E, then E, is also a direct set. Define (Z)* : B} — X x Lg
by e+ (z,1) for all e € E,. Thus (Z)* is also a constant net on X, which has hardly difference
from T. Now we consider (T)*
The net f(Tx &) : Ex D — Z x Ly is defined by f(Z x &)(e,d) = (f(x, p(d)),v(d)) and the
net fz(&) : D — Z x Ly is defined by f,(&)(d) = (f(x,p(d)),v(d)). Define j : D — E x D by
j(d) = (t,d). Then we have f,(£) = f(T x £) 0 j, and for any (e,d) € E X D, vy, (ey(d) = v(d) =
Vi@xe) and j(di) = (t,d1) > (e,d) for any dy > d. Hence f;(§) is a subnet of f(Z x §). O

and T are the same, that is, F has a top element ¢.

Lemma 5 Let f: (X,Sx) x (Y,Sy) — (Z,Sz) be a continuous map. Then for each x € X,
fo: (Y, Sy) — (Z,Sz) is also continuous.

Proof For any (£,y) e N(Y) x Y,

Sz(f2(8), fa(y)) = Sz(f(T x &), f(2,y)) = Sxxv (T x & (2,9))
= SX(Tv x) A SY(&) y) = SY(&,CU)
Thus f; is continuous. O

Lemma 6 For all{ e N(X), n e N(Y), f: X XY — Z, we have ev(o(f)(§) xn) = f(€ xn).

Proof Let £ = (p1,v1) : D — X X Lg and n = (pa,v2) : E — Y X Lg be two L-fuzzifying
nets. The net o(f)(&) : D — Z¥ x Ly is defined by d — (fp, (a), v1(d)). And ev(e(f)(§) x n) :
DxE — Zx Lg is defined by (d, e) — (ev(fp, (ay, p2(e)),v1(d)Av2(e))) = (f(p1(d), p2(e)), vi(d)A
vs(e)). Therefore, ev(p(f)(€) x 1) = F(€ x 7). O

Proposition 16 If the map f: X xY — Z is continuous, then so is o(f) : X — [Y — Z].

Proof If f: X xY — Z is continuous, then by Lemma 5, for any © € X, ¢o(f)(z) = fo :
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Y — Z is continuous and then ¢(f) is a well-defined map. For any (£, z) € N(X) x X,

Sy—z1(e(£)(€), () (@)
= N\ Sv(my) = Szev(@(£)(E) x ), f(y)

(my)EN(Y) XY

= /\ SY(va) - SZ(f(g X n)vf(‘rvy))

(my)EN(Y) XY

> A Sv(ny) = Sxxv (€ x,(2,y)
(ny)EN(Y) XY

Z /\ SY(nay) - (SX(é-?x) A SY(%Q))

(n,9)EN(Y)xY
> Sx(§,2).

Hence Spy —z1(2(f)(&), o(f)(x)) > Sx(§,x). Therefore, p(f) is continuous. O
By Propositions 14, 15 and 16, we have

Theorem 4 L-FYGConv is cartesian-closed.
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