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1. Introduction

Let R be a commutative ring with identity, n a positive integer. We denote by R∗ the set of

nonzero elements in R. By Mn(R) we denote the set of all n×n matrices over R, and by Rn we

mean the set of all 1×n matrices over R. We denote by Nn(R) (resp., Dn(R)) the set consisting

of all n×n strictly upper triangular matrices (resp., diagonal matrices) over R. Let E denote the

n× n identity matrix and Eij (1 ≤ i, j ≤ n) denote the standard matrix unit whose (i, j)-entry

is 1 and whose other entries are 0. By definition, an algebra over R (or simply an R-algebra), is

a set A with a ring structure and an R-module structure that share the same addition operation

with the additional property that (rA)B = r(AB) = A(rB) for any r ∈ R and A,B ∈ A. Recall

that an R-linear map φ : A → A is called a derivation if φ(A1A2) = φ(A1)A2 + A1φ(A2) for

any A1, A2 ∈ A. An R-linear map φ : A → A is said to be a local derivation if for every A ∈ A

there exists a derivation φA, depending on A, such that φ(A) = φA(A). It is natural that

derivations ⇒ local derivations.

Larson [1] initially considered local maps in his examination of reflexivity and interpolation

for subspaces of B(H), where H is a Hilbert space. The notion local derivation was originally

introduced by Larson and Sourour. A proper local derivation (means a local derivation which

fails to be a derivation) on an operator algebra was found by Crist in [3]. Kadison [4] constructed

an example of an algebra which has proper local derivations. Other work on the description of
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the local derivations on operator algebras can be found in [5–10]. In these articles all local

derivations are actually global derivations. Concerning reports on derivations of matrix algebras

and those of classic Lie algebras we refer to [11–15].

Certain special maps on Nn(R) have been studied by several authors. For example, Cao

[16–18] characterized all its automorphisms and Lie automorphisms and Ou [11] determined all

its Lie derivations. In this article, we consider the local derivations of the matrix algebra Nn(R)

when 2 ≤ n ≤ 4. Although, as stated in [2], it is somewhat difficult to construct proper local

maps for an algebra system, yet three types of proper local derivations on N4(R) are constructed

by us (see Section 2). We organize this article as follows. In Section 2, six types of standard local

derivations of Nn(R) (n ≤ 4) are constructed, for R an arbitrary commutative ring with identity.

In Section 3, we characterize any local derivations of Nn(R) (n ≤ 4) when R is a domain. The

idea is to decompose each derivation into the sum of those standard derivations. Thus we can

express all local derivations of Nn(R) (n ≤ 4) in an explicit form.

Remark 1.1 We are regretful for leaving the general case that n ≥ 5 unsolved. We suffer from

the difficulty in verifying whether the standard maps are local derivations.

2. Construction of standard local derivations of Nn(R) (n ≤ 4)

We now construct several types of standard local derivations on Nn(R), which will be used

to generate all local derivations when n ≤ 4.

(1) Inner derivations

Let X ∈ Nn(R). Then the map adX : Nn(R) → Nn(R), defined by Y 7→ XY − Y X , is a

derivation of Nn(R), called an inner derivation of Nn(R) induced by X .

(2) Diagonal derivations

Let H ∈ Dn(R). Then the map ηH : Nn(R) → Nn(R), defined by Y 7→ HY − Y H , is a

derivation of Nn(R), called a diagonal derivation of Nn(R) induced by H .

(3) Central derivations

Assume that n ≥ 3. For α = (c2, c3, . . . , cn−2) ∈ Rn−3, the map µα : Nn(R) → Nn(R),

defined by
∑

1≤i<j≤n aijEij 7→ (
∑n−2

k=2 ak,k+1ck)E1n is a derivation of Nn(R), called a central

derivation of Nn(R) induced by α.

In [11] we have known these types of Lie derivations for Nn(R) and a description for any Lie

derivation of Nn(R). Since any derivation on Nn(R) is a Lie derivation on Nn(R), and another

two types of standard Lie derivation on Nn(R) (defined in [11]) are not derivations of Nn(R), we

can easily get any derivation on Nn(R).

Lemma 2.1 (following from the main theorem of [11]) Let ρ be a derivation of Nn(R).

(i) When n = 2, then ρ = ηH with H ∈ Dn(R).

(ii) When n = 3, then ρ = ηH + adX with H ∈ Dn(R), X ∈ Nn(R).

(iii) When n > 3, then ρ = ηH + adX + µα with H ∈ Dn(R), α ∈ Rn−3, X ∈ Nn(R).

(4) Extensible local derivations of Nn(R) (n = 3 or n = 4).
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Definition 2.2 Let v ∈ R. If any nonzero r ∈ R is a factor of v, that is v = ra for a ∈ R, then

v is called divisible in R. The set of all divisible elements in R is denoted by V (R).

Let v ∈ V (R) be divisible. We define ψv : Nn(R) → Nn(R), by

∑

1≤i<j≤n

aijEij 7→ va1nE1n.

Then ψv is an R-linear map of Nn(R) to itself.

Lemma 2.3 Suppose n = 3 or n = 4. Then ψv is a local derivation of Nn(R). It is a derivation

of Nn(R) if and only if v = 0.

Proof We only consider the case when n = 4. Since the proof is very easy, we here omit

the proof when n = 3. For a given A =
∑

1≤i<j≤4 aijEij ∈ N4(R), we intend to show that

the action of ψv on A exactly agrees with that of a derivation on it. If a12 6= 0, suppose that

v = a12b12 for b12 ∈ R (by assumption on v). Then ψv(A) = [−ad(b12a14E24)](A), as desired.

Similarly, if a34 6= 0, we suppose that v = a34b34 for b34 ∈ R, then ψv(A) = [ad(b34a14E13)](A).

If a23 6= 0, suppose that v = a23b23 for b23 ∈ R, then ψv(A) = µb23a14
(A). Now we suppose that

a12 = a23 = a34 = 0, then ψv(A) = ηH(A), where H = diag{v, 0, v, 0}. It has been shown that

ψv is a local derivation of N4(R). If ψv is a derivation of N4(R), then ψv must be the zero map

(note that ψv maps E12, E23, E34 to zero, respectively), which leads to v = 0. On the contrary,

if v = 0, then ψv is the zero map and is naturally a derivation of N4(R). 2

ψv is called an extensible local derivation of Nn(R) induced by v ∈ V (R).

(5) Contractible local derivations of N4(R)

Definition 2.4 Let V (R) be as above. s ∈ V (R) is said to be strongly divisible, if for any

given a12, a23, a34 ∈ R∗ and a13, a24 ∈ R, the system of linear equations










a23x12 − a12x23 = sa13,

a34x23 − a23x34 = sa24,

a24x12 + a34x13 − a13x34 − a12x24 + a23x14 = 0,

(2.1)

on variables: {x12, x23, x34, x13, x24, x14} has at least one solution in R6. The set of all strongly

divisible elements in R is denoted by S(R).

Let s ∈ S(R) be strongly divisible. We define θs : N4(R) → N4(R), by

∑

1≤i<j≤4

aijEij 7→ sa13E13 + sa24E24.

Then θs is an R-linear map of N4(R) to itself.

Lemma 2.5 θs is a local derivation of N4(R). It is a derivation of N4(R) if and only if s = 0.

Proof For any given A =
∑

1≤i<j≤4 aijEij ∈ N4(R), we intend to show that the action of θs

on A exactly agrees with that of a derivation on it.

Case 1 a23 = 0.
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In this case, if a34 6= 0, assume that s = a34b34 (by assumption on s), then

θs(A) = [−ad(b34a14E13) + ηH ](A), where H = diag{s, s, 0, 0} ∈ D4(R).

Similarly, if a12 6= 0, assume that s = a12b12, then

θs(A) = [ad(b12a14E24) + ηH ](A), where H = diag{s, s, 0, 0} ∈ D4(R).

If a12 = a34 = 0, then

θs(A) = ηH1
(A), where H1 = diag{s, 2s, 0, s} ∈ D4(R).

Case 2 a23 6= 0.

If a12 = a34 = 0, assume that −2s = a23b23 (note that −2s ∈ V (R)). Then

θs(A) = [µa14b23 + ηH ](A), where H = diag{s, 0, 0,−s} ∈ D4(R).

If a12 = 0 but a34 6= 0, assume that s = a34b34 and −s = a23b23. Then

θs(A) = [µa14b23 + ηH1
+ ad(b34a24E23)](A), where H1 = diag{s, 0, 0, 0} ∈ D4(R).

If a12 6= 0 but a34 = 0, assume that s = a12b12 and −s = a23b23. Then

θs(A) = [µa14b23 + ηH2
− ad(b12a13E23)](A), where H2 = diag{0, 0, 0,−s} ∈ D4(R).

If a12, a23, a34 are all nonzero, since Equation (2.1) has at least one solution in R6. Say










x12 = r12; x13 = r13;

x23 = r23; x24 = r24;

x34 = r34; x14 = r14

is a solution. Set Y =
∑

1≤i<j≤4 rijEij . Then one can verify that

θs(A) = [µr14
+ adY ](A).

These show that θs is a local derivation of N4(R). If s = 0, then obviously θs = 0. If s 6= 0, since

θs(E12E23) = θs(E13) = sE13 6= θs(E12)E23 + E12θs(E23) = 0,

we see that θs is not a derivation of N4(R). 2

θs is called a contractible local derivation of N4(R) induced by s ∈ S(R).

(6) Local central derivations of N4(R)

Definition 2.6 Let w ∈ R. If for any a ∈ R∗ there exist b, c ∈ R such that w = ab + c and

ac = 0, then w is said to be generalized divisible.

It is obvious that all such (generalized divisible) elements in R form an ideal of R. We denote

it by W (R). It is clear that V (R) and S(R) also are ideals of R and S(R) ⊆ V (R) ⊆W (R). Let

w1, w2 ∈ W (R) both be generalized divisible. Define φw1,w2
: N4(R) → N4(R), by

∑

1≤i<j≤4

aijEij 7→ (w1a13 + w2a24)E14.

Then φw1,w2
is an R-linear map of N4(R) to itself.
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Lemma 2.7 φw1,w2
is a local derivation of N4(R). It is a derivation of N4(R) if and only if

w1 = w2 = 0.

Proof We start by proving that φw1,0 is a local derivation. For a given A =
∑

1≤i<j≤4 aijEij ∈

N4(R), if a23 = 0, then the action of φw1,0 on A agrees with that of the inner derivation

−ad(w1E34). If a23 6= 0, then by assumption on w, there exist q, r ∈ R such that w1 = a23q + r

and ra23 = 0. Then it is not difficult to verify that

φw1,0(A) = [µa13q − ad(rE34)](A).

So φw1,0 is a local derivation of N4(R). Similarly, φ0,w2
is a local derivation of N4(R). Then so

is φw1,w2
, since φw1,w2

= φw1,0, + φ0,w2
. If w1 = w2 = 0, φw1,w2

is the zero map. If w1, w2 are

not both zero, say w1 6= 0. Since each of the generators {E12, E23, E34} of N4(R) is mapped to

zero by φw1,w2
, we see that φw1,w2

fails to be a derivation of N4(R). Otherwise φw1,w2
should

map each element in N4(R) to zero, in contradiction with φw1,w2
(E13) = w1E14. 2

φw1,w2
is called a local central derivation of N4(R) induced by (w1, w2) ∈W (R)

⊕

W (R).

3. Local derivations of Nn(R)

We start this section by giving several lemmas, then we make use of them to prove the main

theorem.

Lemma 3.1 Let φ be a local derivation of an R-algebra A to itself. If A2 = 0, then Aφ(A) +

φ(A)A = 0.

Proof If A2 = 0, then

Aφ(A) + φ(A)A = AφA(A) + φA(A)A = φA(A2) = φA(0) = 0,

where φA is a derivation of A corresponding to A. 2

Let Pn−1(R) =
∑

j−i≥2 REij , Pn−2(R) =
∑

j−i≥3 REij , . . . , P3(R) =
∑

j−i≥n−2 REij =

RE1,n−1 +RE2,n +RE1,n, P2(R) =
∑

j−i≥n−1 REij = RE1,n. By definition of local derivations

one easily sees that:

Lemma 3.2 If φ is a local derivation of Pn(R), then Pn−1(R), Pn−2(R), . . . , P3(R), P2(R) all

are stable under φ.

Lemma 3.3 Let φ be a local derivation of Nn(R). Then there exists a derivation ρ of Nn(R)

such that ρ+ φ maps each of the generators {E12, E23, . . . , En−1,n} of Nn(R) to zero.

Proof For our purpose, we only need to prove that if φ maps E01, E12, E23, . . . , Ek−1,k (1 ≤ k <

n, by E01 we mean 0) to zero, respectively, then we can choose a derivation ψ of Nn(R) such that

ψ+φmaps E01, E12, E23, . . . , Ek−1,k and Ek,k+1 to zero, respectively. Assume that φ(Ei−1,i) = 0,

i = 1, 2, . . . , k, and consider the action of φ on Ek,k+1. By definition of local derivations, the

action of φ on Ek,k+1 agrees with that of a derivation on it. So there exist a diagonal matrix

H = diag{d1, d2, . . . , dn} ∈ Dn(R), an upper triangular matrix X =
∑

1≤i<j≤n aijEij and
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α = (c2, c3, . . . , cn−2) ∈ Rn−3 such that

φ(Ek,k+1) = [adX + ηH + µα](Ek,k+1), when 1 < k < n− 1;

φ(Ek,k+1) = [adX + ηH ](Ek,k+1), when k = 1 or n− 1.

When the first case occurs,

φ(Ek,k+1) = (dk − dk+1)Ek,k+1 + (XEk,k+1 − Ek,k+1X) + ckE1n.

Choose αk = (0, 0, . . . , 0,−ck, 0, . . . , 0) ∈ Rn−3 with −ck in the (k − 1)-th position. Set

Hk = diag{0, . . . , 0, dk − dk+1, 0, . . . , 0}

with dk − dk+1 in the (k + 1)-th position. Let ψ1 = µαk
+ ηHk

. Then ψ1 + φ, denoted by φ1,

maps Ek,k+1 to XEk,k+1 − Ek,k+1X , and φ1(Ei,i+1) = 0 for i = 1, 2, . . . , k − 1.

Rewrite X as a block matrix: X =

(

X1 X2

0 X3

)

, where X1 ∈ Nk(R), X3 ∈ Nn−k(R).

Denote by E
(k)
ik the k × k matrix unit; by E(k) the k × k identity matrix. Then

φ1(Ek,k+1) = XEk,k+1 − Ek,k+1X =

(

X1E
(k)
kk 0

0 0

)

Ek,k+1 − Ek,k+1

(

0 0

0 E
(n−k)
11 X3

)

.

For 1 ≤ i ≤ k− 2, since Ei,i+1 +Ek,k+1 and Ek,k+1 are square nilpotent, by Lemma 3.1 we have

φ1(Ek,k+1)Ei,i+1 + Ei,i+1φ1(Ek,k+1) = 0.

This shows that ai+1,k = 0 for i = 1, 2, . . . , k − 2. Set Y1 =
∑k−1

i=1 ai,kE
(k)
i,k and set Y =

(

Y1 0

0 X3

)

. It can be verified that

φ1(Ek,k+1) =

(

Y1E
(k)
kk 0

0 0

)

Ek,k+1 − Ek,k+1

(

0 0

0 E
(n−k)
11 X3

)

= Y Ek,k+1 − Ek,k+1Y.

Let ψ2 = −adY . Then ψ2 +φ1 maps Ek,k+1 to zero. Simultaneously, ψ2 +φ1 maps E12, E23, . . . ,

Ek−1,k to zero, respectively (recall that ai,k = 0 for i = 2, 3, . . . , k − 1). This means that if we

choose ψ = −adY + µαk
+ ηHk

, then ψ + φ maps E12, E23, . . . , Ek,k+1 to zero, respectively, as

desired.

When the latter occurs, Y,Hk are selected as above, and let ψ = ηHk
− adY . Then the

assertion also holds. 2

Lemma 3.4 Let φ be a local derivation of N4(R). Suppose φ(E13) =
∑

1≤i<j≤4 aijEij and

φ(E24) =
∑

1≤i<j≤4 bijEij . If φ(Ei,i+1) = 0 for i = 1, 2, 3, then

(i) ai,i+1 = a24 = bi,i+1 = b13 = 0 for i = 1, 2, 3;

(ii) a13 = b24, and a13 is divisible when R is a domain;

(iii) Both a14 and b14 are generalized divisible.

Proof By Lemma 3.2, we know that ai,i+1 = bi,i+1 = 0 for i = 1, 2, 3. Since E12 +E13 and E13
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are square nilpotent, by Lemma 3.1 we have

E12φ(E13) + φ(E13)E12 = 0.

This results in a24 = 0. Similarly, b13 = 0. This completes (i).

Now we consider the action of φ on E12 + E13 − E34 + E24. On the one hand, the result

is a13E13 + b24E24 (modRE14). On the other hand, this action agrees with a derivation of

N4(R) on it. Thus by Lemma 2.1, there exist D = diag{d1, d2, d3, d4} ∈ D4(R) and X =
∑

1≤i<j≤4 rijEij ∈ N4(R) such that

φ(E12 + E13 − E34 + E24)

= (D +X)(E12 + E13 − E34 + E24) − (E12 + E13 − E34 + E24)(D +X)

≡ (d1 − d2)E12 + (d1 − d3 − r23)E13 − (d3 − d4)E34 + (d2 − d4 − r23)E24 (modRE14).

By comparing the two results, we have that d1 = d2, d3 = d4. Then we further get

a13 = d1 − d3 − r23 = d2 − d4 − r23 = b24.

Now we go on proving that a13 is divisible. For any a ∈ R∗, consider the action of φ on

aE12 + aE23 + E34 + E13. On the one hand,

φ(aE12 + aE23 + E34 + E13) ≡ a13E13 (modRE24 +RE14).

On the other hand, by Lemma 2.1, there exist

C = diag{c1, c2, c3, c4} ∈ D4(R), Y =
∑

1≤i<j≤4

sijEij ∈ N4(R)

such that

φ(aE12 + aE23 + E34 + E13) ≡(C + Y )(aE12 + aE23 + E34 + E13)−

(aE12 + aE23 + E34 + E13)(C + Y ) (modRE24 +RE14)

≡a(c1 − c2)E12 + a(c2 − c3)E23 + (c3 − c4)E34+

(c1 − c3 + as12 − as23)E13(modRE24 +RE14).

By comparing the two results, we have that c1 = c2 = c3 = c4 and a13 = a(s12 − s23). This

means that any nonzero element a in R is a factor of a13, forcing a13 ∈ V (R). This completes

(ii).

The left task of this lemma is to show that a14 and b14 are generalized divisible. For any

a ∈ R∗, consider the action of φ on E13 + aE23. On the one hand, the result is a13E13 + a14E14.

On the other hand, there exist certain H = diag{h1, h2, h3, h4} ∈ D4(R), c ∈ R and Z =
∑

1≤i<j≤4 tijEij ∈ N4(R) such that

φ(E13 + aE23) = (H + Z)(E13 + aE23) − (E13 + aE23)(H + Z) + acE14

= (h1 − h3 + at12)E13 + a(h2 − h3)E23 − at34E24 + (ac− t34)E14.

By comparing, we have that at34 = 0 and a14 = ac − t34. Set q = c and r = −t34, we see that

a14 = aq + r and ar = 0. Therefore, a14 is generalized divisible. Similarly, b14 ∈ W (R). This
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completes (iii). 2

Lemma 3.5 Let R be a domain and φ a local derivation of N4(R) satisfying φ(Ei,i+1) = 0 for

i = 1, 2, 3. If φ(E13) = sE13, φ(E24) = sE24 with s ∈ R, then s is strongly divisible.

Proof By Lemma 3.4, we have known that s is divisible. We now only need to prove that, for any

given a12, a23, a34 ∈ R∗ and a13, a24 ∈ R, Equation (2.1) on variables: {x12, x23, x34, x13, x24, x14}

has at least one solution inR6. For our purpose, we consider the action of φ onA =
∑3

i=1 ai,i+1Ei,i+1

+a13E13 + a24E24. The result, by assumption on φ, is sa13E13 + sa24E24. On the other

hand, the action of φ on A agrees with that of a derivation on it, thus there exist c ∈ R,

X =
∑

1≤i<j≤4 uijEij ∈ N4(R) and H = diag{d1, d2, d3, d4} ∈ D4(R) such that φ(A) =

(ηH + ad X + µc)(A). The result of this action should also be

φ(A) =

3
∑

i=1

ai,i+1(di − di+1)Ei,i+1+

(d1a13 − d3a13 + a23u12 − a12u23)E13 + (d2a24 − d4a24 + a34u23 − a23u34)E24+

(a24u12 + a34u13 − a13u34 − a12u24 + a23c)E14.

By comparing the two results, we firstly have that d1 = d2 = d3 = d4, and then we further get










a23u12 − a12u23 = sa13,

a34u23 − a23u34 = sa24,

a24u12 + a34u13 − a13u34 − a12u24 + a23c = 0.

This shows that Equation (2.1) has a solution










x12 = u12; x13 = u13;

x23 = u23; x24 = u24;

x34 = u34; x14 = c,

which implies that s ∈ S(R). 2

The following is the main theorem of this article.

Theorem 3.6 Let R be a domain and φ an R-linear map of Nn(R) (2 ≤ n ≤ 4) to itself. Then

φ is a local derivation of Nn(R) if and only if that

(i) When n = 2, φ = ηH ;

(ii) When n = 3, φ = adX + ηH + ψv;

(iii) When n = 4, φ = adX + ηH + µc + φw1,w2
+ ψv + θs,

where adX is an inner derivation induced by X ∈ Nn(R); ηH is a diagonal derivation induced

by H ∈ Dn(R); µc is a central derivation induced by c ∈ R; ψv is an extensible local derivation

induced by v ∈ V (R); φw1,w2
is a local central derivation induced by w1, w2 ∈W (R) and θs is a

contractible local derivation induced by s ∈ S(R).

Proof The sufficiency is obvious by Section 2. For the necessity, we give the proof in three

cases.

Case 1 n = 2.
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It is clear that φ(E12) = dE12 for d ∈ R. Then we see that φ = ηH , where H = diag{d, 0}.

Case 2 n = 3.

By Lemma 3.3, we can chooseH ∈ D3(R), X ∈ N3(R) such that ηH +adX+φ maps E12, E23

to zero, respectively. Denote ηH + adX + φ by φ1 and suppose φ1(E13) = vE13 (using Lemma

3.2). For any a ∈ R∗, consider the action of φ1 on A = aE12 + aE23 + E13, we have that

φ1(A) = vE13.

On the other hand, the action of φ1 on A agrees with that of a derivation of N3(R) on it. Thus

there exist D = diag{d1, d2, d3} ∈ D3(R), Y =
∑

1≤i<j≤3 aijE
(3)
ij ∈ N3(R) such that

φ1(A) = (ηD + ad Y )(A) = a(d1 − d2)E12 + a(d2 − d3)E23 + (d1 − d3 + aa12 − aa23)E13,

By comparing, we see that d1 = d2 = d3. We further get v = a(a12 − a23). Therefore v is

divisible. Using v ∈ V (R), we construct the extensible local derivation ψv of N3(R). It is easy

to see that φ1 is exactly ψv. So φ = −adX − ηH + ψv, as desired.

Case 3 n = 4.

By Lemma 3.3, we can chooseH ∈ D4(R), X ∈ N4(R) and c ∈ R such that µc+ηH +adX+φ

maps E12, E23, E34 to zero, respectively. Denote µc + ηH + adX + φ by φ1. By Lemma 3.4, we

may assume that φ1(E13) = sE13 + cE14 and φ1(E24) = sE24 + dE14, where c, d ∈ W (R). Set

w1 = −c, w2 = −d. Then w1, w2 also are generalized divisible. Using w1, w2, we construct the

local central derivation φw1,w2
of N4(R). Denote φw1,w2

+ φ1 by φ2. Then one can verify that

φ2(E13) = sE13 and φ2(E24) = sE24. Suppose that φ2(E14) = vE14. As in case 2 we can prove

that v ∈ V (R) (the similar process is omitted). Using v ∈ V (R), we construct the extensible

local derivation ψv of N4(R), and denote −ψv + φ2 by φ3. Then φ3(Ei,i+1) = 0 for i = 1, 2, 3,

φ3(E14) = 0 and φ3 maps E13 to sE13, maps E24 to sE24, respectively. By Lemma 3.5, we know

that s is strongly divisible. We use s to construct the contractible local derivation θs of N4(R).

It is easy to check that φ3 is exactly θs. In the end we obtain

φ = −ad X − ηH − µc − φw1,w2
+ ψv + θs.

This completes the proof. 2

Remark 3.7 It is easy to see that the decomposition of a local derivation φ on Nn(R) (n ≤ 4)

into the sum of those standard ones (as in Theorem 3.6) is unique. In Theorem 3.6, R is assumed

to be a domain. We conjecture that Theorem 3.6 also holds when this assumption is removed.
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