Nonlinear Maps Satisfying Derivability on the Parabolic Subalgebras of the Full Matrix Algebras

Zheng Xin CHEN ${ }^{1, *}$, Yu E ZHAO ${ }^{2}$
1. School of Mathematics and Computer Science, Fujian Normal University, Fujian 350007, P. R. China;
2. School of Mathematics Science, Qingdao University, Shandong 266071, P. R. China

Abstract

Let \mathbb{F} be a field of characteristic $0, M_{n}(\mathbb{F})$ the full matrix algebra over \mathbb{F}, \mathbf{t} the subalgebra of $M_{n}(\mathbb{F})$ consisting of all upper triangular matrices. Any subalgebra of $M_{n}(\mathbb{F})$ containing \mathbf{t} is called a parabolic subalgebra of $M_{n}(\mathbb{F})$. Let \mathbf{P} be a parabolic subalgebra of $M_{n}(\mathbb{F})$. A map φ on \mathbf{P} is said to satisfy derivability if $\varphi(x \cdot y)=\varphi(x) \cdot y+x \cdot \varphi(y)$ for all $x, y \in \mathbf{P}$, where φ is not necessarily linear. Note that a map satisfying derivability on \mathbf{P} is not necessarily a derivation on \mathbf{P}. In this paper, we prove that a $\operatorname{map} \varphi$ on \mathbf{P} satisfies derivability if and only if φ is a sum of an inner derivation and an additive quasi-derivation on \mathbf{P}. In particular, any derivation of parabolic subalgebras of $M_{n}(\mathbb{F})$ is an inner derivation.

Keywords maps satisfying derivability; parabolic subalgebras; inner derivations; quasi-derivations.
Document code A
MR(2010) Subject Classification 15A04
Chinese Library Classification O151.2; O153.3

1. Introduction

Significant research has been done in studying automorphisms and derivations of matrix algebras and their subalgebras $[1-4,6-9]$. Let $M_{n}(\mathbb{F})$ be the associative algebra consisting of all $n \times n$ matrices over a field \mathbb{F} and with the matrix multiplication, \mathbf{t} the subalgebra of $M_{n}(\mathbb{F})$ consisting of all upper triangular matrices. It is well-known that any derivation of $M_{n}(\mathbb{F})$ or \mathbf{t} over a field \mathbb{F} is an inner derivation. However, we could not find any reference about derivations of non-trivial parabolic subalgebras of $M_{n}(\mathbb{F})$, or about nonlinear maps on parabolic subalgebras of $M_{n}(\mathbb{F})$. In this paper, we determine the parabolic subalgebras of the full matrix algebras over a commutative ring, then prove that any map satisfying derivability on the parabolic subalgebras of the full matrix algebras over a field is a sum of an inner derivation and an additive quasiderivation (see Theorem 3.2). In particular, we obtain a corollary that any derivation of the parabolic subalgebras of the full matrix algebras is an inner derivation (see Corollary 3.3).

[^0]Let us give an explicit description of the parabolic algebras of $M_{n}(R)$ over a commutative ring R. For the associative ring $M_{n}(R)$, there is a corresponding general linear Lie algebra $\operatorname{gl}(n, R)$ also consisting of the $n \times n$ matrices over R and with the bracket operation

$$
[x, y]=x \cdot y-y \cdot x
$$

Any subalgebra of $\mathrm{gl}(n, R)$ containing \mathbf{t} is also called a parabolic subalgebra of $\mathrm{gl}(n, R)$. We will prove that the set of the parabolic subalgebras of the full matrix algebra $M_{n}(R)$ coincides with the set of the parabolic subalgebras of the general linear Lie algebra $\operatorname{gl}(n, R)$.

At first we recall some results in [10] about the parabolic subalgebras of the general linear Lie algebra $\operatorname{gl}(n, R)$ over a commutative ring R. We denote by E the identity matrix in $M_{n}(R)$ and by $E_{i j}$ the matrix in $M_{n}(R)$ whose sole nonzero entry 1 is in the (i, j)-position. Let \mathcal{D} be the set of all diagonal matrices in $M_{n}(R)$. Let $I(R)$ be the set consisting of all ideals of R,

$$
\Phi=\left\{A_{j i} \in I(R) \mid 1 \leq i<j \leq n\right\}
$$

a subset of $I(R)$ consisting of $n(n-1) / 2$ ideals of R. If

$$
A_{j k} A_{k i} \subseteq A_{j i} \subseteq A_{j k} \cap A_{k i}
$$

for any $1 \leq i<j \leq n$ and any k (if exists) for which $i<k<j$, then Φ is called a flag of ideals of R. By [10, Theorem 2.5], \mathbf{P} is a parabolic subalgebra of $\operatorname{gl}(n, R)$ if and only if there exists a flag $\Phi=\left\{A_{j i} \mid 1 \leq i<j \leq n\right\}$ of ideals of R such that

$$
\mathbf{P}=\mathbf{t}+\sum_{1 \leq i<j \leq n} A_{j i} E_{j i}
$$

Taking a proof similar to that in [10, Theorem 2.5], we can prove that the parabolic subalgebras of $M_{n}(R)$ also have the form of the above \mathbf{P}. See the following lemma:

Lemma 1.1 \mathbf{P} is a parabolic subalgebra of $M_{n}(R)$ if and only if there exists a flag $\Phi=\left\{A_{j i} \mid 1 \leq\right.$ $i<j \leq n\}$ of ideals of R such that $\mathbf{P}=\mathbf{t}+\sum_{1 \leq i<j \leq n} A_{j i} E_{j i}$.

If $R=\mathbb{F}$ is a field, then there are only two different ideals of \mathbb{F}, i.e., 0 and \mathbb{F}. For any $1 \leq i<k<j \leq n$, it is easily checked that

$$
A_{j k} A_{k i}=A_{j k} \cap A_{k i}
$$

for any $A_{k i}$ and $A_{j k}$ in the flag Φ, and so $A_{j i}=A_{j k} \cap A_{k i}$ is determined by $A_{j k}$ and $A_{k i}$ in the flag Φ. Thus a flag Φ is determined by $A_{i+1, i}, i=1,2, \ldots, n-1$. Let

$$
S=\left\{i \mid 1 \leq i \leq n-1, A_{i+1, i}=\mathbb{F}\right\}
$$

Then the subalgebra $\sum_{1 \leq i<j \leq n} A_{j i} E_{j i}$ of \mathbf{P} is generated by $\left\{E_{i+1, i} \mid i \in S\right\}$. Let S_{k} be a subset of $\mathcal{I}=\{1,2, \ldots, n\}, l_{k}$ (resp., s_{k}) the largest (resp. smallest) number in $S_{k} . S_{k}$ is called a piecewise subset if S_{k} consists of the continuous natural numbers between s_{k} and l_{k}, i.e.,

$$
S_{k}=\left\{m \in \mathbb{N} \mid s_{k} \leq m \leq l_{k}\right\}
$$

For any piecewise subset S_{k}, there is a subalgebra \mathbf{p}_{k} associated with S_{k}, spanned by all elements
$E_{r t}, s_{k} \leq t<r \leq l_{k}$. Or equivalently,

$$
\mathbf{p}_{k}=\sum_{s_{k} \leq t<r \leq l_{k}} \mathbb{F} E_{r t}
$$

The following corollary is easily obtained from Lemma 1.1.
Corollary 1.2 \mathbf{P} is a parabolic subalgebra of $M_{n}(\mathbb{F})$ if and only if there are some pairwise disjoint piecewise subsets of $S_{1}, S_{2}, \ldots, S_{l}$ of $\mathcal{I}=\{1,2, \ldots, n\}$ such that

$$
\mathbf{P}=\mathbf{t}+\sum_{j=1}^{l} \mathbf{p}_{j}
$$

where \mathbf{p}_{j} is the subalgebra associated with the piecewise subset S_{j}.
Remark If $\sum_{j=1}^{l} \mathbf{p}_{j}$ is the set of all strictly low triangular matrices, then \mathbf{P} is the full matrix algebra $M_{n}(\mathbb{F})$. If $\sum_{j=1}^{l} \mathbf{p}_{j}=0$, then \mathbf{P} is the upper triangular matrix algebra \mathbf{t}.

Let us give an example for parabolic subalgebras. For $n=10$, in the parabolic subalgebra \mathbf{P} as above, if $A_{i+1, i}=0$ for $i=2,5,6$, and $A_{i+1, i}=\mathbb{F}$ for any $i \neq 2,5,6$. Let $S_{1}=\{1,2\}$, $S_{2}=\{3,4,5\}, S_{3}=\{7,8,9,10\}$. Then

$$
\mathbf{P}=\mathbf{t}+\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}
$$

where \mathbf{p}_{j} is the subalgebra of \mathbf{P} associated with the piecewise subset $S_{j}, j=1,2,3$. More explicitly, $\mathbf{p}_{1}=\left\{a E_{21} \mid a \in \mathbb{F}\right\}, \mathbf{p}_{2}=\left\{a E_{43}+b E_{54}+c E_{53} \mid a, b, c \in \mathbb{F}\right\}, \mathbf{p}_{3}=\left\{a E_{87}+b E_{98}+\right.$ $\left.c E_{10,9}+d E_{97}+e E_{10,8}+f E_{10,7} \mid a, b, c, d, e, f \in \mathbb{F}\right\}$.

2. Certain maps satisfying derivability on parabolic subalgebras

A map φ on an associative \mathbb{F}-algebra A is said to satisfy derivability if

$$
\varphi(x \cdot y)=\varphi(x) \cdot y+x \cdot \varphi(y)
$$

for all $x, y \in A$. The map φ is not necessarily linear. If φ is linear, then φ is a usual derivation on the associative algebra A. For any map φ satisfying derivability on A, it is easy to see that

$$
\varphi(0)=0
$$

and

$$
\varphi(x \cdot y \cdot z)=\varphi(x) \cdot y \cdot z+x \cdot \varphi(y) \cdot z+x \cdot y \cdot \varphi(z)
$$

for any $x, y, z \in A$. In this section, we construct certain standard maps satisfying derivability on a parabolic subalgebra \mathbf{P} of the full matrix algebra $M_{n}(\mathbb{F})$, which will be used to describe arbitrary maps satisfying derivability on \mathbf{P}.
(A) Inner derivations:

For any $A=\left(a_{i j}\right)_{n \times n} \in \mathbf{P}$, the map

$$
\operatorname{ad} A: \mathbf{P} \rightarrow \mathbf{P}, B \mapsto A \cdot B-B \cdot A
$$

is called an inner derivation of \mathbf{P}. Obviously, any inner derivation is a usual derivation, and so satisfies derivability on \mathbf{P}.
(B) Additive quasi-derivations:

Let f be a map on a field \mathbb{F} satisfying the following two conditions:
(i) $f(a+b)=f(a)+f(b)$ for any $a, b \in \mathbb{F}$;
(ii) $f(a b)=f(a) b+a f(b)$ for any $a, b \in \mathbb{F}$.

We call such a map f an additive quasi-derivation of \mathbb{F}.
Let f be an additive quasi-derivation of \mathbb{F}. Define $\operatorname{arap} \varphi_{f}$ on \mathbf{P} in the way that

$$
A=\left(a_{i j}\right)_{n \times n} \mapsto A_{f}=\left(f\left(a_{i j}\right)\right)_{n \times n} .
$$

Then it is easy to verify that φ_{f} satisfies derivability. We call such a map φ_{f} an additive quasi-derivation on \mathbf{P}.

It should be pointed out that if f is not a zero map, then φ_{f} fails to preserve \mathbb{F}-scalar multiplication, and so φ_{f} is not linear, i.e., φ_{f} is not a derivation on \mathbf{P}. Here we give an example of an additive quasi-derivation which is not a derivation. Let $\mathbb{Q}(\pi)$ be the simple transcendental extension of the rational number field \mathbb{Q} by the circular frequency π, i.e.,

$$
\mathbb{Q}(\pi)=\left\{\left.\frac{a_{0}+a_{1} \pi+\cdots+a_{m} \pi^{m}}{b_{0}+b_{1} \pi+\cdots+b_{n} \pi^{n}} \right\rvert\, m, n \in \mathbb{Z}_{\geq 0}, a_{i}, b_{j} \in \mathbb{Q}, 0 \leq i \leq m, 0 \leq j \leq n\right\}
$$

Define an additive quasi-derivation on $\mathbb{Q}(\pi)$ by

$$
\begin{aligned}
f: \mathbb{Q}(\pi) & \rightarrow \mathbb{Q}(\pi), \\
\frac{a_{0}+a_{1} \pi+\cdots+a_{m} \pi^{m}}{b_{0}+b_{1} \pi+\cdots+b_{n} \pi^{n}} & \left.\mapsto \frac{\partial}{\partial x}\left(\frac{a_{0}+a_{1} x+\cdots+a_{m} x^{m}}{b_{0}+b_{1} x+\cdots+b_{n} x^{n}}\right)\right|_{x=\pi},
\end{aligned}
$$

where $\frac{\partial}{\partial x} g(x)$ denotes the derived function of a function $g(x)$. It is easily checked that f is a nonzero additive quasi-derivation on $\mathbb{Q}(\pi)$. So φ_{f} is an additive quasi-derivation on \mathbf{P} which is not a derivation.

3. Maps satisfying derivability on P

In this section,

$$
\mathbf{P}=\mathbf{t}+\sum_{j=1}^{l} \mathbf{p}_{j}
$$

always denotes a parabolic subalgebra of the full matrix algebra $M_{n}(\mathbb{F})$, where \mathbf{p}_{j} is the subalgebra associated with the piecewise subset S_{j} of $\mathcal{I}=\{1,2, \ldots, n\}$. Let l_{j} (resp., s_{j}) be the largest (resp., smallest) number in the piecewise subset S_{j} of \mathcal{I}. For $i, j \in \mathcal{I}$, let $\mathcal{L}_{i j}=\left\{a E_{i j} \mid a \in \mathbb{F}\right\}$ if $E_{i j} \in \mathbf{P}$, and let $\mathcal{L}_{i j}=0$ if $E_{i j} \notin \mathbf{P}$. Set

$$
\mathcal{P}=\left\{(i, j) \in \mathcal{I} \times \mathcal{I} \mid i \neq j, E_{i j} \in \mathbf{P}\right\}
$$

Lemma 3.1 Let \mathbf{P} be a parabolic subalgebra of the full matrix algebra $M_{n}(\mathbb{F})$ over a field \mathbb{F}, where $n \geq 2$, φ a map satisfying derivability on \mathbf{P}. If $\varphi\left(\mathcal{L}_{i j}\right)=0$ for any $i, j \in \mathcal{I}$ with $(i, j) \in \mathcal{P}$, and $\varphi\left(\mathcal{L}_{i i}\right)=0$ for any $i=1,2, \ldots, n$, then $\varphi=0$.

Proof For any

$$
B=\left(b_{r s}\right)_{n \times n}=\sum_{r, s=1}^{n} b_{r s} E_{r s} \in \mathbf{P}
$$

let

$$
\varphi(B)=\left(b_{r s}^{\prime}\right)_{n \times n}=\sum_{r, s=1}^{n} b_{r s}^{\prime} E_{r s} \in \mathbf{P}
$$

For any $(k, l) \in \mathbf{P}$ or $k=l \in\{1,2, \ldots, n\}$,

$$
b_{k l}^{\prime} E_{k l}=E_{k k} \cdot \varphi(B) \cdot E_{l l}=\varphi\left(E_{k k} \cdot B \cdot E_{l l}\right)=\varphi\left(b_{k l} E_{k l}\right)=0
$$

So $b_{k l}^{\prime}=0$. Thus $\varphi(B)=0$. Therefore $\varphi=0$.
Theorem 3.2 Let \mathbf{P} be a parabolic subalgebra of the full matrix algebra $M_{n}(\mathbb{F})$ over a field \mathbb{F} of characteristic 0 , where $n \geq 2$. Then a map (without linearity assumption) φ on \mathbf{P} satisfies derivability if and only if it is a sum of an inner derivation and an additive quasi-derivation.

Proof It is easy to verify that a sum of several maps satisfying derivability on \mathbf{P} still satisfies derivability. Thus the sufficient direction of the theorem is obvious. Now we prove the essential direction of the theorem.

Let φ be a map satisfying derivability on \mathbf{P}. Choose a fixed diagonal matrix

$$
D_{0}=\operatorname{diag}\{1,2, \ldots, n\}
$$

Let

$$
\varphi\left(D_{0}\right)=\left(b_{i j}\right)_{n \times n} \in \mathbf{P}
$$

For any $(i, j) \in \mathcal{P}$,

$$
\left(\operatorname{ad}\left(b_{i j}(i-j)^{-1} E_{i j}\right)\right) D_{0}=-b_{i j} E_{i j}
$$

Let

$$
\varphi_{1}=\varphi+\sum_{(i, j) \in \mathcal{P}} \operatorname{ad}\left(b_{i j}(i-j)^{-1} E_{i j}\right)
$$

Then $\varphi_{1}\left(D_{0}\right)=\operatorname{diag}\left\{b_{11}, b_{22}, \ldots, b_{n n}\right\} \in \mathcal{D}$.
For any diagonal matrix $D^{\prime}=\operatorname{diag}\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \in \mathcal{D}$,

$$
D_{0} \cdot D^{\prime}=D^{\prime} \cdot D_{0}
$$

then

$$
\varphi_{1}\left(D_{0} \cdot D^{\prime}\right)=\varphi_{1}\left(D^{\prime} \cdot D_{0}\right)
$$

i.e.,

$$
\varphi_{1}\left(D_{0}\right) \cdot D^{\prime}+D_{0} \cdot \varphi_{1}\left(D^{\prime}\right)=\varphi_{1}\left(D^{\prime}\right) \cdot D_{0}+D^{\prime} \cdot \varphi_{1}\left(D_{0}\right)
$$

Since $\varphi_{1}\left(D_{0}\right), D^{\prime}$ are diagonal matrices, we have

$$
\varphi_{1}\left(D_{0}\right) \cdot D^{\prime}=D^{\prime} \cdot \varphi_{1}\left(D_{0}\right)
$$

and so

$$
\begin{equation*}
D_{0} \cdot \varphi_{1}\left(D^{\prime}\right)=\varphi_{1}\left(D^{\prime}\right) \cdot D_{0} \tag{1}
\end{equation*}
$$

Set

$$
\varphi_{1}\left(D^{\prime}\right)=\left(c_{s t}\right)_{n \times n} \in \mathbf{P}
$$

By the equality (1), we have

$$
c_{s t}(s-t) E_{s t}=0
$$

for any s, t. If $s \neq t$ with $(s, t) \in \mathcal{P}$, then $c_{s t}=0$. Thus $\varphi_{1}\left(D^{\prime}\right)=\operatorname{diag}\left\{c_{11}, c_{22}, \ldots, c_{n n}\right\}$ is a diagonal matrix. Therefore,

$$
\varphi_{1}(\mathcal{D}) \subseteq \mathcal{D}
$$

For any $a \in \mathbb{F},(i, j) \in \mathcal{P}$, we write $a E_{i j}$ in the form that

$$
\begin{equation*}
a E_{i j}=E_{i i} \cdot\left(a E_{i j}\right) \tag{2}
\end{equation*}
$$

Applying φ_{1} on the both sides of the equality (2), we have

$$
\begin{equation*}
\varphi_{1}\left(a E_{i j}\right)=\varphi_{1}\left(E_{i i}\right) \cdot a E_{i j}+E_{i i} \cdot \varphi_{1}\left(a E_{i j}\right) \tag{3}
\end{equation*}
$$

Let

$$
\varphi_{1}\left(a E_{i j}\right)=\left(c_{k l}\right)_{n \times n} \in \mathbf{P}, \varphi_{1}\left(E_{i i}\right)=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}
$$

where $d_{s} \in \mathbb{F}, s=1,2, \ldots, n$. By the equality (3), if $k \neq i$, then $c_{k l} E_{k l}=0$ for any l, and so $c_{k l}=0$ for any l. On the other hand, we write

$$
a E_{i j}=a E_{i j} \cdot E_{j j}
$$

Similarly, if $l \neq j$, then $c_{k l}=0$ for any k. Thus, for any $a \in \mathbb{F}$ and $(i, j) \in \mathcal{P}$, we have

$$
\varphi_{1}\left(a E_{i j}\right)=c_{i j} E_{i j} \in \mathcal{L}_{i j}
$$

Or equivalently, $\varphi_{1}\left(\mathcal{L}_{i j}\right) \subseteq \mathcal{L}_{i j}$.
Assume that

$$
\varphi_{1}\left(E_{i, i+1}\right)=\bar{b}_{i} E_{i, i+1}
$$

$\bar{b}_{i} \in \mathbb{F}, i=1,2, \ldots, n-1$. Choosing $b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{F}$ such that

$$
b_{i}-b_{i+1}=\bar{b}_{i}, i=1,2, \ldots, n-1,
$$

we can construct a diagonal matrix

$$
h_{0}=\operatorname{diag}\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}
$$

Then $\left(\varphi_{1}-\operatorname{ad} h_{0}\right)\left(E_{i, i+1}\right)=0$ for any $i=1,2, \ldots, n-1$. Denote

$$
\varphi_{2}=\varphi_{1}-\operatorname{ad} h_{0} .
$$

Thus

$$
\varphi_{2}\left(E_{i, i+1}\right)=0
$$

for any $i=1,2, \ldots, n-1$, and $\varphi_{2}(\mathcal{D}) \subseteq \mathcal{D}, \varphi_{2}\left(\mathcal{L}_{i j}\right) \subseteq \mathcal{L}_{i j}$ for any $(i, j) \in \mathcal{P}$.

Now for $1 \leq i \leq n-1$, we may define a map $f_{i}: \mathbb{F} \rightarrow \mathbb{F}$ in such a way that

$$
\varphi_{2}\left(a E_{i, i+1}\right)=f_{i}(a) E_{i, i+1}
$$

for any $a \in \mathbb{F}$. At first we show that all f_{i} are the same function. For any $a \in \mathbb{F}, i=1,2, \ldots, n-2$, applying φ_{2} on the equality

$$
\left(a E_{i, i+1}\right) \cdot E_{i+1, i+2}=E_{i, i+1} \cdot a E_{i+1, i+2}
$$

we have

$$
\left(f_{i}(a) E_{i, i+1}\right) \cdot E_{i+1, i+2}=E_{i, i+1} \cdot\left(f_{i+1}(a) E_{i+1, i+2}\right),
$$

which forces that $f_{i}(a)=f_{i+1}(a)$ for all $a \in \mathbb{F}$. So $f_{i}=f_{i+1}$. It follows that $f_{1}=f_{2}=\cdots=f_{n-1}$. Now we denote f_{1} by f.

Next we show that the same function f is just an additive quasi-derivation of the field \mathbb{F}. Let $a, b \in \mathbb{F}$. Since

$$
a E_{11} \cdot E_{12}=a E_{12}
$$

we have

$$
f(a) E_{12}=\varphi_{2}\left(a E_{12}\right)=\varphi_{2}\left(a E_{11}\right) \cdot E_{12}
$$

which implies that the coefficient of E_{11} in $\varphi_{2}\left(a E_{11}\right)$ is $f(a)$. Applying φ_{2} on the equality

$$
\left(a E_{11}\right) \cdot\left(b E_{11}\right)=a b E_{11}
$$

we have

$$
\begin{equation*}
\varphi_{2}\left(a E_{11}\right) \cdot\left(b E_{11}\right)+\left(a E_{11}\right) \cdot \varphi_{2}\left(b E_{11}\right)=\varphi_{2}\left(a b E_{11}\right) \tag{4}
\end{equation*}
$$

Comparing the coefficients of E_{11} on both sides of the equality (4), we have

$$
f(a b)=a f(b)+f(a) b
$$

So

$$
f(1)=f(-1)=0, f(-b)=-f(b)
$$

In particular, the coefficient of E_{11} in $\varphi_{2}\left(E_{11}\right)$ is $f(1)=0$. Applying φ_{2} on the equality

$$
E_{11} \cdot\left(a E_{12}+E_{11}\right)=a E_{12}
$$

we have

$$
\begin{equation*}
E_{11} \cdot \varphi_{2}\left(a E_{12}+E_{11}\right)+\varphi_{2}\left(E_{11}\right) \cdot\left(a E_{12}+E_{11}\right)=f(a) E_{12} \tag{5}
\end{equation*}
$$

Thus, by the equality (5), the coefficient of E_{12} in $\varphi_{2}\left(a E_{12}+E_{11}\right)$ is $f(a)$. Similarly, applying φ_{2} on the equality

$$
\left(a E_{12}+E_{11}\right) \cdot E_{12}=E_{12}
$$

we have

$$
\begin{equation*}
\varphi_{2}\left(a E_{12}+E_{11}\right) \cdot E_{12}=0 \tag{6}
\end{equation*}
$$

By the equality (6), the coefficient of E_{11} in $\varphi_{2}\left(a E_{12}+E_{11}\right)$ is 0 . By the same way, we obtain that the coefficient of E_{22} (resp., E_{12}) in $\varphi_{2}\left(E_{22}+b E_{12}\right)$ is 0 (resp., $f(b)$). Then, applying φ_{2} on the equality

$$
\left(a E_{12}+E_{11}\right) \cdot\left(E_{22}+b E_{12}\right)=(a+b) E_{12}
$$

we have

$$
\begin{align*}
& \varphi_{2}\left(a E_{12}+E_{11}\right) \cdot\left(E_{22}+b E_{12}\right)+\left(a E_{12}+E_{11}\right) \cdot \varphi_{2}\left(E_{22}+b E_{12}\right) \\
& \quad=f(a+b) E_{12} \tag{7}
\end{align*}
$$

By the preceding results, the equality (7) leads to $f(a+b)=f(a)+f(b)$. Thus the map f is an additive quasi-derivation of \mathbb{F}.

Therefore, we can construct an additive quasi-derivation φ_{f} of \mathbf{P} extended by f as in Section 2. Denote

$$
\varphi_{3}=\varphi_{2}-\varphi_{f}
$$

Thus

$$
\varphi_{3}\left(a E_{i, i+1}\right)=\varphi_{2}\left(a E_{i, i+1}\right)-\varphi_{f}\left(a E_{i, i+1}\right)=f(a) E_{i, i+1}-f(a) E_{i, i+1}=0
$$

for any $a \in \mathbb{F}$ and any $i=1,2, \ldots, n-1$, i.e., $\varphi_{3}\left(\mathcal{L}_{i, i+1}\right)=0$ for any $i=1,2, \ldots, n-1$.
For any diagonal matrix

$$
D^{\prime}=\operatorname{diag}\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}
$$

and any $i=1,2, \ldots, n-1$, applying φ_{3} on

$$
D^{\prime} \cdot E_{i, i+1}=t_{i} E_{i, i+1}
$$

we have

$$
\varphi_{3}\left(D^{\prime}\right) \cdot E_{i, i+1}=0
$$

Let

$$
\varphi_{3}\left(D^{\prime}\right)=\operatorname{diag}\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{n}^{\prime}\right\}
$$

Then $t_{i}^{\prime} E_{i, i+1}=0$, which implies that $t_{i}^{\prime}=0$ for any $i=1,2, \ldots, n-1$. Similarly, applying φ_{3} on

$$
E_{i, i+1} \cdot D^{\prime}=t_{i+1}^{\prime} E_{i, i+1}
$$

we have $t_{i+1}^{\prime}=0$ for any $i=1,2, \ldots, n-1$. Thus

$$
\varphi_{3}\left(D^{\prime}\right)=0
$$

Or equivalently, $\varphi_{3}(\mathcal{D})=0$.
For any $a \in \mathbb{F}$ and $1 \leq i<j \leq n$, applying φ_{3} on

$$
a E_{i j}=a E_{i, i+1} \cdot E_{i+1, i+2} \cdot E_{i+2, i+3} \cdots E_{j-1, j}
$$

we have

$$
\varphi_{3}\left(a E_{i j}\right)=0
$$

since $\varphi_{3}\left(\mathcal{L}_{k, k+1}\right)=0$ for any $k=1,2, \ldots, n-1$. If $(j, i) \in \mathcal{P}$, applying φ_{3} on

$$
E_{i j} \cdot\left(a E_{j i}\right)=a E_{i i}
$$

we have

$$
E_{i j} \cdot \varphi_{3}\left(a E_{j i}\right)=0
$$

By construction of φ_{3},

$$
\varphi_{3}\left(\mathcal{L}_{j i}\right) \subseteq \mathcal{L}_{j i}
$$

Let $\varphi_{3}\left(a E_{j i}\right)=a^{\prime} E_{j i}$, where $a^{\prime} \in \mathbb{F}$. Then

$$
E_{i j} \cdot \varphi_{3}\left(a E_{j i}\right)=a^{\prime} E_{i i}
$$

which implies that $a^{\prime}=0$, and so $\varphi_{3}\left(a E_{j i}\right)=0$ for any $i<j$ with $(j, i) \in \mathcal{P}, a \in \mathbb{F}$. Thus

$$
\varphi_{3}\left(a E_{j i}\right)=0
$$

for any $a \in \mathbb{F}$ and any $(i, j) \in \mathcal{P}$. Or equivalently, $\varphi_{3}\left(\mathcal{L}_{i j}\right)=0$ for any $(i, j) \in \mathcal{P}$.
By Lemma 3.1, we know that φ_{3} is a zero map on \mathbf{P}, i.e.,

$$
0=\varphi+\sum_{(i, j) \in \mathcal{P}} \operatorname{ad}\left(b_{i j}(i-j)^{-1} E_{i j}\right)-\operatorname{ad} h_{0}-\varphi_{f}
$$

Thus φ is a sum of an inner derivation

$$
-\sum_{(i, j) \in \mathcal{P}} \operatorname{ad}\left(b_{i j}(i-j)^{-1} E_{i j}\right)+\operatorname{ad} h_{0}
$$

and an additive quasi-derivation φ_{f} on \mathbf{P}.
Remark From Theorem 3.2, it is interesting to see that a map on a parabolic subalgebra of the full matrix algebra preserves the additive operation if it satisfies derivability.

It is well-known that any (usual) derivation on the full matrix algebra $M_{n}(\mathbb{F})$ or the upper triangular matrix algebra \mathbf{t} is an inner derivation. The following corollary generalizes the result to any parabolic subalgebra \mathbf{P} of the full matrix algebra $M_{n}(\mathbb{F})$.

Corollary 3.3 Let \mathbf{P} be a parabolic subalgebra of the full matrix algebra over a field \mathbb{F} of characteristic 0 , where $n \geq 2$. Then any (usual) derivation φ on \mathbf{P} is an inner derivation.

Proof For a usual derivation φ, φ is a linear map satisfying derivability. By Theorem 3.2, we can write φ as the following form

$$
\varphi=\operatorname{ad} x+\varphi_{f}
$$

where $\operatorname{ad} x$ is an inner derivation associated with some $x \in \mathbf{P}$, and φ_{f} is an additive quasiderivation on \mathbf{P} induced by an additive quasi-derivation f on the field \mathbb{F}. Since φ and ad x are linear, φ_{f} is also linear. For any $a \in \mathbb{F}, 0 \neq b \in \mathbb{F}$, then, by linearity of φ_{f},

$$
\varphi_{f}\left(a \cdot b E_{11}\right)=a \cdot \varphi_{f}\left(b E_{11}\right)=a f(b) E_{11}
$$

On the other hand,

$$
\varphi_{f}\left(a \cdot b E_{11}\right)=\varphi_{f}\left(a b E_{11}\right)=f(a b) E_{11}
$$

Since f is an additive quasi-derivation on the field \mathbb{F}, we have

$$
\varphi_{f}\left(a \cdot b E_{11}\right)=(a f(b)+f(a) b) E_{11} .
$$

Therefore,

$$
a f(b)=a f(b)+f(a) b
$$

which leads to $f(a) b=0$. Since $b \neq 0$, we have $f(a)=0$. Thus $f=0$. Or equivalently, $\varphi_{f}=0$.
It follows that $\varphi=\operatorname{ad} x$ is an inner derivation.

References

[1] BARKER G P, KEZLAN T P. The Automorphism Group of a Matrix Algebra [M]. North-Holland, New York, 1987.
[2] CAO You'an, WANG Jingtong. A note on algebra automorphisms of strictly upper triangular matrices over commutative rings [J]. Linear Algebra Appl., 2000, 311(1-3): 187-193.
[3] COELHO S P, MILIES C P. Derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1993, 187: 263-267.
[4] ISAACS I M. Automorphisms of matrix algebras over commutative rings [J]. Linear Algebra Appl., 1980, 31: 215-231.
[5] HUMPHREYS J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag, New York-Berlin, 1972.
[6] J ϕ NDRUP S. Automorphisms and derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1995, 221: 205-218.
[7] J ϕ NDRUP S. Automorphisms of upper triangular matrix rings [J]. Arch. Math. (Basel), 1987, 49(6): 497502.
[8] KEZLAN T P. A note on algebra automorphisms of triangular matrices over commutative rings [J]. Linear Algebra Appl., 1990, 135: 181-184.
[9] MATHIS P. Differential polynomial rings and Morita equivalence [J]. Comm. Algebra, 1982, 10(18): 20012017.
[10] WANG Dengyin, YU Qiu. Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring [J]. Linear Algebra Appl., 2006, 418(2-3): 763-774.

[^0]: Received March 20, 2010; Accepted November 20, 2010
 Supported by the National Natural Science Foundation of China (Grant No. 11071040) and the Natural Science Foundation of Fujian Province (Grant No. 2009J05005).

 * Corresponding author

 E-mail address: czxing@163.com (Z. X. CHEN)

