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1. Introduction

In this paper, we consider the following nonlinear singular boundary value problem (BVP for

short) 




u′′(t) + λ[f(t, u(t)) + q(t)] = 0 for a.e. t ∈ (0, 1),

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

biu(ξi),
(1.1)

where λ is a positive parameter, a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 such that ac+bc+ad > 0, ξi ∈ (0, 1), ai,

bi ∈ (0,+∞), i = 1, 2, . . . ,m−2 (m ∈ N and m ≥ 3) are all constants, f : (0, 1)× [0,∞) → [0,∞)

is continuous and may be singular at t = 0, 1, q : (0, 1) → (−∞,+∞) is Lebesgue integrable and

may have finitely many singularities in [0, 1]. The precise meaning of singularity is given at the

end of this section.

Il’in and Mosiseev [1] studied the existence of solutions for a linear multi-point boundary

value problem. Motivated by the study of Il’in and Mosiseev [1], Gupta [2] studied certain

Received November 22, 2009; Accepted May 28, 2010
Supported by the National Natural Science Foundation of China (Grant No. 10971046), the Natural Science Re-

search Project of Anhui Province (Grant No.KJ2009B093), the Natural Science Foundation of Shandong Province

(Grant No. ZR2009AM004) and the Research Project of Bozhou Teachers College (Grant No. BSKY0805).
* Corresponding author

E-mail address: jbyang1@126.com (J. B. YANG); jnwzl@yahoo.com.cn (Z. L. WEI)



802 J. B. YANG and Z. L. WEI

three-point boundary value problems for nonlinear ordinary differential equations. Since then

more general nonlinear multi-point boundary value problems have been widely studied by many

authors (see [3–10] and some references therein) because multi-point boundary value problems

describe many phenomena of applied mathematics and physics.

In recent years, many authors have studied nonlinear differential equations with Sturm-

Liouville boundary value conditions or generalized Sturm-Liouville ones [7–11]. Especially Zhang

[10] studied the following generalized Sturm–Liouville boundary value problem





u′′(t) + h(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

biu(ξi)

by applying the fixed point theorem due to Avery and Peterson. However the nonlinear term

f is nonsingular in [10]. As far as we know, the BVP (1.1) is seldom investigated. Inspired by

[8–10], our aim in the present paper is to establish the range of λ, for which there exists at least

one positive solution for the BVP (1.1). In particular, we shall use the fixed point theorem of

cone expansion and compression of norm type to prove our main result. In the last section, an

example is presented to illustrate the applications of our main results.

By singularity we mean that the functions f(t, u) and q(t) in (1.1) are allowed to be un-

bounded at some points. In this paper, the function q(t) is allowed to have finitely many singu-

larities in [0, 1] and to change sign and tend to negative infinity. We call u(t) ∈ C1[0, 1]∩C2(0, 1)

for a.e. t ∈ [0, 1] if u(t) ∈ C1[0, 1] and u′′(t) ∈ C(0, 1) for a.e. t ∈ (0, 1), where u(t) ∈ C1[0, 1]

means that u(t) is first-order continuously differentiable on [0, 1], and u′′(t) ∈ C(0, 1) for a.e.

t ∈ (0, 1) means that there is a subset Z(⊂ (0, 1)) of Lebesgue measure 0 such that u(t) is twice

continuously differentiable on (0, 1)\Z. A function u(t) ∈ C1[0, 1] ∩ C2(0, 1) for a.e. t ∈ [0, 1]

is called a positive solution of the BVP (1.1) if it satisfies the BVP (1.1) and u(t) ≥ 0 for any

t ∈ [0, 1].

2. Preliminaries and several important lemmas

Let E = C[0, 1] be equipped with norm ‖u‖ = maxt∈[0,1] |u(t)|. Then (E, ‖·‖) is a real Banach

space. For convenience of readers, we provide some background materials in a real Banach space

E.

Definition 2.1 (see Definition 1.1.1 in [12]) Let E be a real Banach space. A nonempty convex

closed set P ⊂ E is called a cone if it satisfies the following two conditions:

(i) x ∈ P , α ≥ 0 implies αx ∈ P ;

(ii) x ∈ P , −x ∈ P implies x = 0, where 0 denotes the zero element of E.

Definition 2.2 (see Definition 2.1.1 in [12]) An operator is said to be completely continuous if

it is continuous and compact.

In this paper, we make the following assumptions:

(H1) f : (0, 1) × [0,+∞) → [0,+∞) is continuous and there exist constants γ, µ, 0 < γ <
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µ < +∞ such that

δµf(t, u) ≤ f(t, δu) ≤ δγf(t, u) for any (t, u) ∈ (0, 1) × [0,∞) and δ ∈ [0, 1]; (2.1)

(H2) λ is a positive parameter, q : (0, 1) → (−∞,+∞) is Lebesgue integrable such that

0 <

∫ 1

0

q−(s)ds = r1 < +∞ and 0 <

∫ 1

0

G(s, s)[f(s, 1) + q+(s)]ds = r2 < +∞,

where q+(s) = max{q(s), 0}, q−(s) = max{−q(s), 0};
(H3) a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, ρ = ac + bc + ad > 0, ξi ∈ (0, 1), ai, bi ∈ (0,+∞),

i = 1, 2, . . . ,m − 2 (m ∈ N and m ≥ 3), ρ −
∑m−2

i=1 aiϕ(ξi) > 0, ρ −
∑m−2

i=1 biψ(ξi) > 0, ∆ < 0,

where

∆ =

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi) ρ−
m−2∑
i=1

aiϕ(ξi)

ρ−
m−2∑
i=1

biψ(ξi) −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

and

ψ(t) = b+ at, ϕ(t) = d+ c(1 − t), t ∈ [0, 1].

Obviously ψ is non-decreasing on [0, 1] and ϕ is non-increasing on [0, 1].

Remark 2.1 The inequality (2.1) is equivalent to the following one

δγf(t, u) ≤ f(t, δu) ≤ δµf(t, u) for any (t, u) ∈ (0, 1) × [0,∞) and δ ∈ [1,+∞). (2.2)

Remark 2.2 Typical functions that satisfy the above hypothesis of (H1) are those taking the

form

f(t, u) =

n∑

i=1

pi(t)u
li ,

where pi(t) ∈ C(0, 1), pi(t) > 0 for t ∈ (0, 1), 0 < li < +∞, i = 1, 2, . . . , n, n ∈ N.

Remark 2.3 It is clear that a function q satisfying the following conditions also satisfies (H2).

For given points t1, t2, . . . , tj , q(t) → ∞ (t → ti), i = 1, 2, . . . , j. Thus q can have finitely many

singularities.

Lemma 2.1 (see Lemma 2.1 in [10] or Lemma 5.5.1 in [13]) If (H3) holds, then for y ∈ C[0, 1],

the BVP 




u′′(t) + y(t) = 0, 0 < t < 1,

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

biu(ξi)
(>)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds+A(y)ψ(t) +B(y)ϕ(t),

where

G(t, s) =
1

ρ





ψ(s)ϕ(t), 0 ≤ s ≤ t ≤ 1,

ψ(t)ϕ(s), 0 ≤ t ≤ s ≤ 1,
(2.3)
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A(y) =
1

∆

∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)y(s)ds ρ−
m−2∑
i=1

aiϕ(ξi)

m−2∑
i=1

bi

∫ 1

0

G(ξi, s)y(s)ds −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

, (2.4)

B(y) =
1

∆

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi)
m−2∑
i=1

ai

∫ 1

0

G(ξi, s)y(s)ds

ρ−
m−2∑
i=1

biψ(ξi)
m−2∑
i=1

bi

∫ 1

0

G(ξi, s)y(s)ds

∣∣∣∣∣∣∣∣∣

. (2.5)

Remark 2.4 Obviously A(y) and B(y) are nonnegative and nondecreasing in y if y(t) ≥ 0 for

t ∈ [0, 1] and (H3) holds. Thus the unique solution of the BVP (>) is nonnegative if y(t) ≥ 0 for

t ∈ [0, 1] in Lemma 2.1.

For convenience, throughout this paper, we set

β = min

{
ψ(θ)

ψ(1)
,
ϕ(ϑ)

ϕ(0)

}
, V = max{G(t, s)| 0 ≤ t ≤ 1, 0 ≤ s ≤ 1},

I =

∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai ρ−
m−2∑
i=1

aiϕ(ξi)

m−2∑
i=1

bi −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

, J =

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi)
m−2∑
i=1

ai

ρ−
m−2∑
i=1

biψ(ξi)
m−2∑
i=1

bi

∣∣∣∣∣∣∣∣∣

,

M = V r1 +
ψ(1)r1V I

∆
+
ϕ(0)r1V J

∆
,

where 0 < θ < ϑ < 1 are given constants, r1 is defined in (H2). It is obvious that I < 0, J < 0

and M > 0 if (H3) holds.

Let

P = {u ∈ E | u(t) ≥ 0, min
t∈[θ,ϑ]

u(t) ≥ β‖u‖}.

Then it is clear that P is a cone of E.

Proposition 2.1 For t, s ∈ [0, 1], we have

0 ≤ G(t, s) ≤ G(s, s). (2.6)

Proof By the monotonicity of ϕ and ψ, it is evident that (2.6) holds. 2

Proposition 2.2 For t ∈ [θ, ϑ], we have

G(t, s) ≥ βG(s, s), s ∈ [0, 1]. (2.7)

Proof For t ∈ [θ, ϑ] and s ∈ (0, 1), by (2.3), we obtain

G(t, s)

G(s, s)
≥ min

{ψ(θ)

ψ(s)
,
ϕ(ϑ)

ϕ(s)

}
≥ min

{ψ(θ)

ψ(1)
,
ϕ(ϑ)

ϕ(0)

}
= β.

If s = 0 and t ∈ [θ, ϑ], by (2.3), we have

G(t, 0) =
ψ(0)ϕ(t)

ρ
≥ 1

ρ
· ϕ(ϑ)

ϕ(0)
· ψ(0)ϕ(0) =

ϕ(ϑ)

ϕ(0)
·G(0, 0).
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If s = 1 and t ∈ [θ, ϑ], by (2.3), we get

G(t, 1) =
ψ(t)ϕ(1)

ρ
≥ 1

ρ
· ψ(θ)

ψ(1)
· ψ(1)ϕ(1) =

ψ(θ)

ψ(1)
·G(1, 1).

Therefore, (2.7) holds. This completes the proof. 2

Let

w(t) =

∫ 1

0

λG(t, s)q−(s)ds + λ[A(q−)ψ(t) + B(q−)ϕ(t)],

where G(t, s), A(q−) and B(q−) are defined by (2.3)–(2.5), respectively. Obviously w(t) is con-

tinuous on [0, 1]. According to (H2), we obtain

w(t) =

∫ 1

0

λG(t, s)q−(s)ds+ λ[A(q−)ψ(t) +B(q−)ϕ(t)]

≤ λ

∫ 1

0

V q−(s)ds+
λψ(1)

∆

∣∣∣∣∣∣∣∣∣

V r1
m−2∑
i=1

ai ρ−
m−2∑
i=1

aiϕ(ξi)

V r1
m−2∑
i=1

bi −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

+

λϕ(0)

∆

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi) V r1
m−2∑
i=1

ai

ρ−
m−2∑
i=1

biψ(ξi) V r1
m−2∑
i=1

bi

∣∣∣∣∣∣∣∣∣

= λV r1 +
λψ(1)r1V I

∆
+
λϕ(0)r1V J

∆
= λM < +∞,

(2.8)

so w(t) is well defined in E. By direct computation, we have






w′′(t) + λq−(t) = 0 for a.e. t ∈ (0, 1),

aw(0) − bw′(0) =
m−2∑
i=1

aiw(ξi), cw(1) + dw′(1) =
m−2∑
i=1

biw(ξi),

which implies that w(t) is a positive solution of the following boundary value problem






u′′(t) + λq−(t) = 0 for a.e. t ∈ (0, 1),

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

biu(ξi).

For any u(t) ∈ C[0, 1], let us define a function [·]∗ by

[u(t)]∗ =





u(t), u(t) ≥ 0,

0, u(t) < 0.

Now we consider the following BVP





u′′(t) + λ[f(t, [u(t) − w(t)]∗) + q+(t)] = 0 for a.e. t ∈ (0, 1),

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

biu(ξi).
(2.9)
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By Lemma 2.1, a function u(t) ∈ C1[0, 1] ∩ C2(0, 1) for a.e. t ∈ [0, 1] is a solution of the BVP

(2.9) if and only if u(t) is a solution of the following nonlinear integral equation

u(t) =

∫ 1

0

λG(t, s)[f(s, [u(s)−w(s)]∗)+ q+(s)]ds+λ[A(f̂ + q+)ψ(t)+B(f̂ + q+)ϕ(t)], t ∈ [0, 1],

where f̂ denotes f(s, [u(s)−w(s)]∗), G(t, s), A(f̂ + q+) and B(f̂ + q+) are defined by (2.3)–(2.5),

respectively.

Let

(Tu)(t) =

∫ 1

0

λG(t, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+

λ[A(f̂ + q+)ψ(t) +B(f̂ + q+)ϕ(t)], t ∈ [0, 1]. (2.10)

Obviously the existence of solutions of the BVP (2.9) is equivalent to the existence of fixed points

of the operator T in the real Banach space E.

Lemma 2.2 Suppose that (H1) holds, then f(t, u) is nondecreasing on u ∈ [0,+∞) for any

fixed t ∈ (0, 1).

Proof For any fixed t ∈ (0, 1) and any u1, u2 ∈ [0,+∞), without loss of generality, let 0 ≤ u1 ≤
u2. If u2 = 0, obviously equations f(t, u1) = f(t, u2) = f(t, 0) hold. If u2 6= 0, let δ0 = u1

u2

. Then

we obtain 0 ≤ δ0 ≤ 1. It follows from (2.1) that

f(t, u1) = f(t, δ0u2) ≤ δγ
0f(t, u2) ≤ f(t, u2),

i.e., f(t, u) is nondecreasing on u ∈ [0,+∞) for any fixed t ∈ (0, 1). This proves Lemma 2.2. 2

Lemma 2.3 Assume that (H2) and (H3) hold. If x(t) with x(t) ≥ w(t) is a positive solution of

the BVP (2.9), then x(t) − w(t) is a positive solution of the BVP (1.1).

Proof Suppose that x(t) is a positive solution of the BVP (2.9) such that x(t) ≥ w(t), then

from (2.9) and the definition of [·]∗, we have





x′′(t) + λ{f(t, [x(t) − w(t)]) + q+(t)} = 0 for a.e. t ∈ (0, 1),

ax(0) − bx′(0) =
m−2∑
i=1

aix(ξi), cx(1) + dx′(1) =
m−2∑
i=1

bix(ξi).
(2.11)

Let u(t) = x(t) − w(t). Then u′′(t) = x′′(t) − w′′(t) for a.e. t ∈ (0, 1), which implies that

x′′(t) = u′′(t) − λq−(t) for a.e. t ∈ (0, 1).

Thus (2.11) becomes





u′′(t) + λ[f(t, u(t)) + q+(t) − q−(t)] = 0 for a.e. t ∈ (0, 1),

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

biu(ξi).
(2.12)

Noticing q(t) = q+(t) − q−(t) and (2.12), we know that u(t) is a positive solution of the BVP

(1.1), i.e., x(t) − w(t) is a positive solution of the BVP (1.1). This proves Lemma 2.3. 2

Lemma 2.4 Assume that (H1)–(H3) hold. Then the operator T : P → P is well defined and
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T : P → P is a completely continuous operator.

Proof For any fixed u ∈ P, choose 0 < η < 1 such that η‖u‖ < 1, then we obtain η[u(t)−w(t)]∗ ≤
ηu(t) ≤ η‖u‖ < 1. Thus by (2.1)–(2.2) and Lemma 2.2, we have

f(t, [u(t) − w(t)]∗) ≤ (
1

η
)µf(t, η[u(t) − w(t)]∗) ≤ η−µf(t, η‖u‖) ≤ ηγ−µ‖u‖γf(t, 1). (2.13)

Hence for any t ∈ [0, 1], by (2.6), (2.10), (2.13) and Lemma 2.2, we get

(Tu)(t) =

∫ 1

0

λG(t, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+ λ[A(f̂ + q+)ψ(t) +B(f̂ + q+)ϕ(t)]

≤ λ

∫ 1

0

G(s, s)[ηγ−µ‖u‖γf(s, 1) + q+(s)]ds+ λψ(1) · A(f̂ + q+) + λϕ(0) ·B(f̂ + q+)

≤ λK

∫ 1

0

G(s, s)[f(s, 1) + q+(s)]ds + λψ(1) ·A(f̂ + q+) + λϕ(0) ·B(f̂ + q+)

≤ λKr2 +
λψ(1)

∆

∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)[η
γ−µ‖u‖γf(s, 1) + q+(s)]ds ρ−

m−2∑
i=1

aiϕ(ξi)

m−2∑
i=1

bi

∫ 1

0

G(ξi, s)[η
γ−µ‖u‖γf(s, 1) + q+(s)]ds −

m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

+

λϕ(0)

∆

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi)
m−2∑
i=1

ai

∫ 1

0

G(ξi, s)[η
γ−µ‖u‖γf(s, 1) + q+(s)]ds

ρ−
m−2∑
i=1

biψ(ξi)
m−2∑
i=1

bi

∫ 1

0

G(ξi, s)[η
γ−µ‖u‖γf(s, 1) + q+(s)]ds

∣∣∣∣∣∣∣∣∣

≤ λKr2 +
λψ(1)

∆

∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai

∫ 1

0

KG(s, s)[f(s, 1) + q+(s)]ds ρ−
m−2∑
i=1

aiϕ(ξi)

m−2∑
i=1

bi

∫ 1

0

KG(s, s)[f(s, 1) + q+(s)]ds −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

+

λϕ(0)

∆

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi)
m−2∑
i=1

ai

∫ 1

0

KG(s, s)[f(s, 1) + q+(s)]ds

ρ−
m−2∑
i=1

biψ(ξi)
m−2∑
i=1

bi

∫ 1

0

KG(s, s)[f(s, 1) + q+(s)]ds

∣∣∣∣∣∣∣∣∣

= λKr2 +
λψ(1)

∆

∣∣∣∣∣∣∣∣∣

Kr2
m−2∑
i=1

ai ρ−
m−2∑
i=1

aiϕ(ξi)

Kr2
m−2∑
i=1

bi −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

+

λϕ(0)

∆

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi) Kr2
m−2∑
i=1

ai

ρ−
m−2∑
i=1

biψ(ξi) Kr2
m−2∑
i=1

bi

∣∣∣∣∣∣∣∣∣

= λKr2 +
λψ(1)r2KI

∆
+
λϕ(0)r2KJ

∆
< +∞,

(2.14)
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where K = ηγ−µ‖u‖γ + 1. Thus T : P → E is well defined. Next for any u ∈ P and t ∈ [0, 1], by

(2.6) and (2.10), we obtain

(Tu)(t) =

∫ 1

0

λG(t, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+ λ[A(f̂ + q+)ψ(t) +B(f̂ + q+)ϕ(t)]

≤
∫ 1

0

λG(s, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+ λψ(1) · A(f̂ + q+) + λϕ(0) ·B(f̂ + q+).

Then we have

‖Tu‖ ≤
∫ 1

0

λG(s, s)[f(s, [u(s)−w(s)]∗)+q+(s)]ds+λψ(1)·A(f̂+q+)+λϕ(0)·B(f̂+q+). (2.15)

Thus for any u ∈ P and t ∈ [θ, ϑ], by (2.7), (2.10) and (2.15), we get

(Tu)(t)

=

∫ 1

0

λG(t, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+ λ[A(f̂ + q+)ψ(t) +B(f̂ + q+)ϕ(t)]

≥
∫ 1

0

βλG(s, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+ λψ(θ) · A(f̂ + q+) + λϕ(ϑ) · B(f̂ + q+)

=

∫ 1

0

βλG(s, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+
ψ(θ)

ψ(1)
· λψ(1)A(f̂ + q+)+

ϕ(ϑ)

ϕ(0)
· λϕ(0)B(f̂ + q+)

≥ β
{∫ 1

0

λG(s, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+ λψ(1) ·A(f̂ + q+) + λϕ(0) · B(f̂ + q+)
}

≥ β‖Tu‖.

This implies that T : P → P is well defined.

Let D ⊂ P be any bounded set. Then there exists a constant L > 0 such that ‖x‖ ≤ L for

any x ∈ D. Thus for any x ∈ D and s ∈ [0, 1], we have

[x(s) − w(s)]∗ ≤ x(s) ≤ ‖x‖ ≤ L ≤ L+ 1. (2.16)

By (2.2), (2.16) and Lemma 2.2, for any x ∈ D and s ∈ [0, 1], we obtain that

f(s, [x(s) − w(s)]∗) ≤ f(s, L+ 1) ≤ (L+ 1)µf(s, 1). (2.17)

From (2.6), (2.10), (2.17), (H2) and Lemma 2.2, proceeding similarly to the above (2.14), we can

have

(Tx)(t) =

∫ 1

0

λG(t, s)[f(s, [x(s) − w(s)]∗) + q+(s)]ds+ λ[A(f̂ + q+)ψ(t) +B(f̂ + q+)ϕ(t)]

≤ λr2[(L + 1)µ + 1]
(
1 +

ψ(1)I

∆
+
ϕ(0)J

∆

)
< +∞ for any x ∈ D.

Therefore, T (D) is uniformly bounded.

Next we shall show that T (D) is equicontinuous on [0, 1]. For any x ∈ D and t ∈ (0, 1), by

(2.10), (2.17) and Lemma 2.2, we obtain
∣∣∣
d

dt
(Tx)(t)

∣∣∣
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= λ
∣∣∣ − c

ρ

∫ t

0

(b + as)[f(s, [x(s) − w(s)]∗) + q+(s)]ds+

a

ρ

∫ 1

t

[d+ c(1 − s)][f(s, [x(s) − w(s)]∗) + q+(s)]ds+ a · A(f̂ + q+) − c · B(f̂ + q+)
∣∣∣

≤ λ[(L + 1)µ + 1]
{∫ t

0

c

ρ
(b + as)[f(s, 1) + q+(s)]ds+

∫ 1

t

a

ρ
[d+ c(1 − s)][f(s, 1) + q+(s)]ds

}
+ a · λ · A(f̂ + q+) + c · λ · B(f̂ + q+). (2.18)

Exchanging the integral order and combining with (H2), we have
∫ 1

0

{∫ t

0

c

ρ
(b + as)[f(s, 1) + q+(s)]ds+

∫ 1

t

a

ρ
[d+ c(1 − s)][f(s, 1) + q+(s)]ds

}
dt

=

∫ 1

0

ds

∫ 1

s

c

ρ
(b + as)[f(s, 1) + q+(s)]dt+

∫ 1

0

ds

∫ s

0

a

ρ
[d+ c(1 − s)][f(s, 1) + q+(s)]dt

=

∫ 1

0

c(1 − s)(b+ as)

ρ
· [f(s, 1) + q+(s)]ds+

∫ 1

0

as[d+ c(1 − s)]

ρ
· [f(s, 1) + q+(s)]ds

≤
∫ 1

0

[d+ c(1 − s)](b + as)

ρ
· [f(s, 1) + q+(s)]ds+

∫ 1

0

(b + as)[d+ c(1 − s)]

ρ
· [f(s, 1) + q+(s)]ds

= 2

∫ 1

0

G(s, s)[f(s, 1) + q+(s)]ds = 2r2 < +∞. (2.19)

Thus for any x ∈ D, by (2.18) and (2.19), we obtain that
∫ 1

0

∣∣∣
d

dt
(Tx)(t)

∣∣∣dt

≤ 2λ[(L+ 1)µ + 1]

∫ 1

0

G(s, s)[f(s, 1) + q+(s)]ds+ a · λA(f̂ + q+) + c · λB(f̂ + q+)

≤ 2λr2[(L+ 1)µ + 1]
(
1 +

aI

2∆
+
cJ

2∆

)
< +∞.

From the absolute continuity of integral, we know T (D) is equicontinuous on [0, 1]. Thus accord-

ing to the Ascoli-Arzela Theorem, T (D) is a relatively compact set.

At the end, from the continuity of f , it is easy to check that T : P → P is continuous.

Therefore, T : P → P is a completely continuous operator. This completes the proof of Lemma

2.4. 2

The following theorem plays an important role in proving our main results.

Theorem 2.1 (see Theorem 2.3.4 in [12]) Let K be a cone in real Banach space X . Let

Ω1 and Ω2 be two bounded open subsets in X such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let operator

A : K ∩ (Ω2 \ Ω1) → K be completely continuous. Suppose that one of two conditions

(i) ‖Au‖X ≤ ‖u‖X , ∀u ∈ K ∩ ∂Ω1 and ‖Au‖X ≥ ‖u‖X , ∀u ∈ K ∩ ∂Ω2;

(ii) ‖Au‖X ≥ ‖u‖X, ∀u ∈ K ∩ ∂Ω1 and ‖Au‖X ≤ ‖u‖X , ∀u ∈ K ∩ ∂Ω2

is satisfied. Then A has at least one fixed point in K∩(Ω2 \Ω1). Here 0 denotes the zero element

of X , and ‖v‖X denotes the norm of element v in X.
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3. Main results

In this section, we give our main results and an example to demonstrate their applications.

Theorem 3.1 Suppose that (H1)–(H3) are satisfied. Assume that there exists a constant Υ

satisfying

Υ ≥
[βλ(2 − λ)

2

∫ ϑ

θ

G(θ, s)ds
]−1

such that

min
t∈[θ,ϑ]

f(t, u)

u
≥ Υ for u ≥M. (3.1)

Then there exists λ0 > 0 such that for any λ ∈ (0, λ0], the BVP (1.1) has at least one positive

solution u∗ ∈ P , where λ0 satisfies

λ0 = min
{
1,

V r1
β · r2 · [(max{M/β, 1})µ + 1]

}
,

here r1 and r2 are defined in (H2).

Proof For any l > 0, we set

Ωl := {u ∈ P : ‖u‖ < l}, ∂Ωl := {u ∈ P : ‖u‖ = l}.

Let

r =
M

β
, λ0 = min

{
1,

V r1
β · r2 · [(max{M/β, 1})µ + 1]

}
,

where r1 and r2 are defined in (H2). Since u(t) ≥ β‖u‖ = βr for any u ∈ ∂Ωr, by (2.8), we have

u(t) − w(t) ≥ βr − λM = M − λM ≥M(1 − λ0) ≥ 0 for any u ∈ ∂Ωr and λ ∈ (0, λ0].

Noting that 0 ≤ u(s) − w(s) ≤ u(s) ≤ ‖u‖ = r ≤ max{r, 1}, by (2.2) and Lemma 2.2, we get

f(s, [u(s) − w(s)]∗) ≤ f(s,max{r, 1}) ≤ (max{r, 1})µf(s, 1) for any u ∈ ∂Ωr. (3.2)

Hence for any t ∈ [0, 1], u ∈ ∂Ωr and λ ∈ (0, λ0], by (2.6), (3.2) and Lemma 2.2, we obtain

(Tu)(t)

=

∫ 1

0

λG(t, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+ λ[A(f̂ + q+)ψ(t) +B(f̂ + q+)ϕ(t)]

≤ λ0

∫ 1

0

G(s, s)[(max{r, 1})µf(s, 1) + q+(s)]ds+ λ0ψ(1) ·A(f̂ + q+) + λ0ϕ(0) · B(f̂ + q+)

≤ λ0K0

∫ 1

0

G(s, s)[f(s, 1) + q+(s)]ds+ λ0ψ(1) · A(f̂ + q+) + λ0ϕ(0) ·B(f̂ + q+)
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≤ λ0K0r2 +
λ0ψ(1)

∆

∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)[(max{r, 1})µf(s, 1) + q+(s)]ds ρ−
m−2∑
i=1

aiϕ(ξi)

m−2∑
i=1

bi

∫ 1

0

G(ξi, s)[(max{r, 1})µf(s, 1) + q+(s)]ds −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

+

λ0ϕ(0)

∆

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi)
m−2∑
i=1

ai

∫ 1

0

G(ξi, s)[(max{r, 1})µf(s, 1) + q+(s)]ds

ρ−
m−2∑
i=1

biψ(ξi)
m−2∑
i=1

bi

∫ 1

0

G(ξi, s)[(max{r, 1})µf(s, 1) + q+(s)]ds

∣∣∣∣∣∣∣∣∣

≤ λ0K0r2 +
λ0ψ(1)

∆

∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai

∫ 1

0

K0G(s, s)[f(s, 1) + q+(s)]ds ρ−
m−2∑
i=1

aiϕ(ξi)

m−2∑
i=1

bi

∫ 1

0

K0G(s, s)[f(s, 1) + q+(s)]ds −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

+

λ0ϕ(0)

∆

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi)
m−2∑
i=1

ai

∫ 1

0

K0G(s, s)[f(s, 1) + q+(s)]ds

ρ−
m−2∑
i=1

biψ(ξi)
m−2∑
i=1

bi

∫ 1

0

K0G(s, s)[f(s, 1) + q+(s)]ds

∣∣∣∣∣∣∣∣∣

= λ0K0r2 +
λ0ψ(1)

∆

∣∣∣∣∣∣∣∣∣

K0r2
m−2∑
i=1

ai ρ−
m−2∑
i=1

aiϕ(ξi)

K0r2
m−2∑
i=1

bi −
m−2∑
i=1

biϕ(ξi)

∣∣∣∣∣∣∣∣∣

+

λ0ϕ(0)

∆

∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aiψ(ξi) K0r2
m−2∑
i=1

ai

ρ−
m−2∑
i=1

biψ(ξi) K0r2
m−2∑
i=1

bi

∣∣∣∣∣∣∣∣∣

= λ0K0r2 +
λ0ψ(1)r2K0I

∆
+
λ0ϕ(0)r2K0J

∆
= r2K0λ0

(
1 +

ψ(1)I

∆
+
ϕ(0)J

∆

)

≤ r2K0

(
1 +

ψ(1)I

∆
+
ϕ(0)J

∆

)
· V r1
β · r2 · [(max{M/β, 1})µ + 1]

=
1

β
·
(
V r1 +

V r1ψ(1)I

∆
+
V r1ϕ(0)J

∆

)
=
M

β
= r = ‖u‖,

where K0 = (max{M/β, 1})µ + 1. Thus for any λ ∈ (0, λ0], we have

‖Tu‖ ≤ ‖u‖ for any u ∈ ∂Ωr. (3.3)

Let R > 2r. Then R > 2M
β and M < βR

2 . For any s ∈ [θ, ϑ], u ∈ ∂ΩR and λ ∈ (0, λ0], by

(2.8), we have

u(s) − w(s) ≥ βR − λM > 2M − λM = (2 − λ)M > M (3.4)

and

u(s) − w(s) ≥ βR− λM ≥ βR− λβR

2
=

(2 − λ)βR

2
. (3.5)
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Hence for any u ∈ ∂ΩR and λ ∈ (0, λ0], by (3.1) and (3.4)–(3.5), we obtain

(Tu)(θ) =

∫ 1

0

λG(θ, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds+ λ[A(f̂ + q+)ψ(θ) +B(f̂ + q+)ϕ(θ)]

≥
∫ 1

0

λG(θ, s)[f(s, [u(s) − w(s)]∗) + q+(s)]ds

≥
∫ ϑ

θ

λG(θ, s)f(s, [u(s) − w(s)])ds ≥
∫ ϑ

θ

λG(θ, s) · Υ · [u(s) − w(s)] · ds

≥
∫ ϑ

θ

λG(θ, s) · Υ · (2 − λ)βR

2
· ds = R · Υ · βλ(2 − λ)

2

∫ ϑ

θ

G(θ, s)ds ≥ R = ‖u‖.

Thus for λ ∈ (0, λ0], we get

‖Tu‖ ≥ (Tu)(θ) ≥ ‖u‖ for any u ∈ ∂ΩR. (3.6)

By (3.3), (3.6) and Lemma 2.4, according to Theorem 2.1, we know that T has at least a

fixed point u∗ ∈ ΩR \ Ωr. Thus for any λ ∈ (0, λ0], by (2.8), we have

u∗(t) − w(t) ≥ β · ‖u∗‖ − λM ≥ β · r − λM = M − λM ≥ 0.

It follows from Lemma 2.3 that u∗(t)−w(t) is a positive solution of the BVP (1.1). This completes

the proof of Theorem 3.1. 2

Corollary 3.1 Suppose that (H1)–(H3) hold. Assume that there exist constants 0 < θ1 < ϑ1 < 1

such that

lim
‖u‖→+∞

min
t∈[θ1,ϑ1]

f(t, u)

u
= +∞. (3.7)

Then for λ sufficiently small, the BVP (1.1) has at least one positive solution u∗ ∈ P.

Proof Obviously (3.7) implies that (3.1) is satisfied. Thus by Theorem 3.1, we know that

Corollary 3.1 holds. This completes the proof of Corollary 3.1. 2

Example 3.1 Consider the following singular second order BVP





x′′(t) + λ
[
t2(1 − t)(x1/2 + x3/2) − 1

8

3∑

i=1

1

(t− 1/i)2/3

]
= 0 for a.e. t ∈ (0, 1),

x(0) − x′(0) = x(
1

2
), x(1) + x′(1) =

1

2
x(

1

2
),

(3.8)

where λ is a positive parameter, a = b = c = d = a1 = 1, b1 = 1/2, ξ1 = 1/2,

q(t) = −1

8

3∑

i=1

1

(t− 1/i)2/3
, f(t, x) = t2(1 − t)(x1/2 + x3/2).

Let γ = 1
2 , µ = 3

2 . Then (H1) is satisfied. By calculation, it is easy to obtain that

r1 =

∫ 1

0

q−(s)ds =
1

8

∫ 1

0

3∑

i=1

1

(s− 1/i)2/3
ds =

1

8

(
3 +

6
3
√

2
+

3 3
√

2 + 3
3
√

3

)
≈ 1.558,

r2 =

∫ 1

0

G(s, s)[f(s, 1) + q+(s)ds] =
2

3

∫ 1

0

(s+ 1)(2 − s)s2(1 − s)ds =
11

90
.
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Thus (H2) holds. By direct computation, we get

ρ = ac+ bc+ ad = 3 > 0, ρ− a1ϕ(ξ1) =
3

2
> 0, ρ− b1ψ(ξ1) =

9

4
> 0, ∆ = −9

4
< 0.

Hence (H3) is satisfied. Take θ = 1/4, ϑ = 3/4, then we obtain that

β = min{ψ(θ)

ψ(1)
,
ϕ(ϑ)

ϕ(0)
} =

5

8
, V = max{G(t, s)| 0 ≤ t ≤ 1, 0 ≤ s ≤ 1} =

3

4
,

I = −3

2
, J = −3, M = V r1 +

ψ(1)r1V I

∆
+
ϕ(0)r1V J

∆
≈ 5.8425.

So we have

r =
M

β
≈ 9.348, λ0 = min

{
1,

V r1
β · r2 · [(max{M/β, 1})µ + 1]

}
≈ 0.5171.

Since

lim
‖x‖→+∞

min
t∈[θ,ϑ]

f(t, x)

x
= +∞,

for any λ ∈ (0, λ0], by Corollary 3.1, we know that the BVP (3.8) has at least one positive

solution x∗ ∈ C[0, 1] ∩ C2(0, 1) ∩ P for a.e. t ∈ [0, 1] with ‖x∗‖ ≥ 9.348.

Remark 3.1 This paper generalizes and improves some well-known results [10–11].
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