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Abstract Let F be a field with char F 6= 2, l a maximal nilpotent subalgebra of the symplectic

algebra sp(2m,F ). In this paper, we characterize linear maps of l which preserve zero Lie

brackets in both directions. It is shown that for m ≥ 4, a map ϕ of l preserves zero Lie brackets

in both directions if and only if ϕ = ψcσT0
λαφdηf , where ψc, σT0

, λα, φd, ηf are the standard

maps preserving zero Lie brackets in both directions.

Keywords maximal nilpotent subalgebra; zero Lie brackets; symplectic algebra.

Document code A

MR(2010) Subject Classification 15A04; 15A27; 17B30

Chinese Library Classification O151

1. Introduction

One of the most active and fertile subjects in matrix theory during the past one hundred

years is the linear preserver problem (LPP). The earliest paper on such a problem dates back to

1897 (see [1]), and a great deal of effort has been devoted to the study of this type of questions

since then. One may consult the survey papers [2–4] for details. Linear preserver problem mainly

includes the following three types. The first type of this question is concerned with the study

of those linear maps preserving certain functions [5–7]. The second type is concerned with the

study of linear maps which preserve certain subsets [8–11]. The third type is concerned with the

study of linear maps preserving certain relations [12–22].

It is one of the linear preserver problems to classify commutativity preserving linear maps

on matrix spaces or algebras. A linear map ϕ on an algebra or a matrix space A is said to be

commutativity preserving in both directions when the condition ab = ba holds if and only if
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ϕ(a)ϕ(b) = ϕ(b)ϕ(a). Commutativity preserving linear maps on spaces of matrices or operators

have been considered by several authors [12–18]. There are several motivations to study this kind

of maps. Problems concerning commutativity preserving maps are closely related to the study

of Lie homomorphisms. Every algebra A becomes a Lie algebra if we introduce the Lie bracket

[a, b] by [a, b] = ab − ba for a, b ∈ A. A linear map φ : A → B is called Lie homomorphism

if φ([a, b]) = [φ(a), φ(b)] for every pair a, b ∈ A. It is clear that every Lie homomorphism

preserves commutativity. The assumption of preserving commutativity can be reformulated as

the assumption of preserving zero Lie brackets. Let L be a Lie algebra over a field, ϕ a linear

map of L. We say that ϕ preserves zero Lie brackets in both directions if for every pair x, y ∈ L,

we have [x, y] = 0 if and only if [ϕ(x), ϕ(y)] = 0. In this paper, we obtain three types of linear

maps which preserve zero Lie brackets in both directions, but fail to preserve all Lie brackets.

Let F be a field with char F6= 2 and F ∗ the group consisting of all non-zero elements of F .

Let Fm×n denote the set of all m × n matrices over F , E(n) the n × n identity matrix (E(m)

is abbreviated to E), gl(n, F ) the general linear Lie algebra consisting of all n × n matrices

over F with bracket: [X,Y ] = XY − Y X for X,Y ∈ gl(n, F ). For A ∈ Fn×n, A′ denotes

the transpose of A. Let T (n, F ) (resp., S(n, F )) be the subalgebra of gl(n, F ) consisting of all

upper triangular (resp., strictly upper triangular) matrices, T ∗(n, F ) the group consisting of all

invertible elements in T (n, F ). Set I =

(

0 E

−E 0

)

. The symplectic algebra sp(2m,F ) is

defined to be the subalgebra of gl(2m,F ) consisting of all X ∈ gl(2m,R) satisfying X ′I = −IX .

The conditions for

(

A B

C D

)

(A,B,C,D ∈ Fm×m) to be symplectic are that B′ = B, C′ = C

and D′ = −A. Let

l =
{

(

A B

0 −A′

)

|A ∈ S(m,F ), B ∈ Fm×m, B′ = B
}

.

It is a maximal nilpotent subalgebra of sp(2m,F ). In this paper, by using the main theorem of

[15], we shall describe all the linear maps of l which preserve zero Lie brackets in both directions

for m ≥ 4. The main idea of this paper is to reduce the problem on l to that on S(m,F ).

2. Preliminaries

For 1 ≤ i ≤ j ≤ m, let Eij denote the 2m× 2m matrix whose (i, j)-entry is 1 and all other

entries are 0; Ei,−j the 2m × 2m matrix whose (i, j +m)-entry is 1 and all other entries are 0;

E−j,−i the 2m×2m matrix whose (j+m, i+m)-entry is 1 and all other entries are 0. For a ∈ F ,

1 ≤ i < j ≤ m, set

Tij(a) = a(Eij − E−j,−i), Tij = {Tij(a)|a ∈ F};

Ti,−j(a) = a(Ei,−j + Ej,−i), Ti,−j = {Ti,−j(a)|a ∈ F}.

For 1 ≤ i ≤ m, set

Tii(a) = a(Eii − E−i,−i), Tii = {Tii(a)|a ∈ F};
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Ti,−i(a) = aEi,−i, Ti,−i = {Ti,−i(a)|a ∈ F}.

Let v = {

(

A 0

0 −A′

)

| A ∈ S(m,F )}, w = {

(

0 B

0 0

)

| B ∈ Fm×m, B′ = B}. Then

l = v + w. The center of v is T1m and the center of l is T1,−1.

Denote by T the set of all linear maps of l that preserve zero Lie brackets in both directions

and by T ′ the set of all bijections in T . Denote by 1 the identity map on l. It is clear that for

ϕ ∈ T and a linear function f from l to F , the map ϕ+ f : X 7→ ϕ(X) + f(X)T1,−1(1) is in T .

Lemma 2.1

(i) If ϕ ∈ T , then Kerϕ ⊆ T1,−1.

(ii) ϕ ∈ T ′ if and only if ϕ(T1,−1(1)) 6= 0.

(iii) If ϕ ∈ T ′, then ϕ(T1,−1(1)) = T1,−1(c) for some c ∈ F ∗.

Proof (i) If X ∈ l such that ϕ(X) = 0, then for any Y ∈ l we have [ϕ(X), ϕ(Y )] = 0. So

[X,Y ] = 0, i.e., X is in the center T1,−1 of l.

(ii) Clearly, if ϕ is bijective, we have ϕ(T1,−1(1)) 6= 0. Conversely, if ϕ(T1,−1(1)) 6= 0 and

ϕ is not bijective, then there exists some non-zero X ∈ l such that ϕ(X) = 0. By (i) we have

X = T1,−1(c) with some c ∈ F ∗. It follows that ϕ(T1,−1(1)) = 0, a contradiction.

(iii) The assertion follows from the fact that T1,−1 is the center of l and (ii). 2

3. Standard maps of v

It is obvious that v is isomorphic to S(m,F ). Cao et al. [15] have described the linear maps

preserving commutativity in both directions on S(m,F ). We now transfer them to v for later

use. v has the following standard maps that preserve zero Lie brackets in both directions.

(a) ψv,c : X 7→ cX , where c is a constant in F ∗.

(b) σv,P : X 7→ P−1XP , where P =

(

A 0

0 A
′−1

)

with A ∈ T ∗(m,F ).

(c) ηv,f : X 7→ X + f(X)T1m(1), where f : v → F is a linear function from l to F .

(d) ω = 1 or ω: X =

(

A 0

0 −A′

)

7→

(

−RA′R 0

0 RAR

)

where R = E1m + E2,m−1 +

· · · + Em−1,2 + Em1.

(e) µ
(ij)
b for b ∈ F , i = 1,m and j = 1, 2, are defined by

µ
(11)
b : X = Σ1≤i<j≤mTij(aij) 7→ X + T2m(ba12);

µ
(m1)
b : X = Σ1≤i<j≤mTij(aij) 7→ X + T1,m−1(bam−1,m);

µ
(12)
b : X = Σ1≤i<j≤mTij(aij) 7→ X + T2m(ba13) + T3m(ba12);

µ
(m2)
b : X = Σ1≤i<j≤mTij(aij) 7→ X + T1,m−2(bam−1,m) + T1,m−1(bam−2,m).

We call the linear maps of types (a)–(e) defined above standard maps. By Lemmas 2.2, 2.3

and Theorem 1.1 (see [15]), we have the following theorem.

Theorem 3.1 Let m ≥ 4. Then a linear map ϕ of v preserves commutativity in both directions
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if and only if ϕ is of the form

ϕ = ψv,cσv,Tωµ
(m2)
b4

µ
(12)
b3

µ
(m1)
b2

µ
(11)
b1

ηv,f ,

where ψv,c, σv,T , ω, µ
(m2)
b4

, µ
(12)
b3

, µ
(m1)
b2

, µ
(11)
b1

, ηv,f are the standard maps of v.

4. Standard maps of l

We now define some standard maps of l which preserve zero Lie brackets in both directions,

then we use them to prove the main theorem of this paper. It is easy to check that the following

linear maps of l are all in T when m ≥ 4.

(i) ψc : X 7→ cX , where c is a constant in F ∗.

(ii) σT : X 7→ T−1XT , where T =

(

A AB

0 A
′−1

)

with A ∈ T ∗(m,F ) and B = B′.

(iii) ηf : X 7→ X + f(X)T1,−1(1), where f is a linear function from l to F .

(iv) Let α = (a1 a2 a3) ∈ F 1×3. λα : X =
∑

1≤i<j≤m Tij(aij) +
∑

1≤k≤l≤m Tk,−l(bkl) 7→

X + T2,−2(a1a12 + a2a13 + a3a23) + T2,−3(a2a12).

(v) φd : X =

(

A B

0 −A′

)

7→

(

A dB

0 −A′

)

for d ∈ F ∗.

It is clear that σT is a Lie automorphism of l, which is called the inner automorphism induced

by T . If f is a linear function satisfying the additional conditions: f([X,Y ]) = 0 for any X,Y ∈ l

and 1+f(T1,−1(1)) 6= 0, then ηf is also a Lie automorphism of l, called the center automorphism.

If d = r2 for some r ∈ F ∗, then φd is the inner automorphism of l induced by

(

r−1E 0

0 rE

)

.

If d /∈ (F ∗)2, then φd is also an automorphism but not an inner automorphism. ψc and λα are

all nonsingular linear maps preserving zero Lie brackets in both directions, but generally they

are neither Lie automorphisms nor Lie anti-automorphisms.

5. The main results and their proofs

Throughout this section, we assume without loss of generality that ϕ is bijective and m ≥ 4.

In fact, if ϕ is not bijective, we have ϕ(T1,−1(1)) = 0 by Lemma 2.1 (ii). Let f be a linear

function from l to F such that f(T1,−1(1)) 6= 0. Then ϕ + f ∈ T ′ again by Lemma 2.1 (ii).

Thus ϕ can be replaced with ϕ + f . For s ⊆ l, we denote by C(s) the centralizer of s in l, i.e.,

C(s) = {Y ∈ l | [X,Y ] = 0, ∀X ∈ s}. In order to prove the main result in this paper, we need to

give some lemmas first.

Lemma 5.1 Let ϕ ∈ T ′. Then w defined in Section 2 leaves stable under ϕ.

Proof Let p =
∑

1≤i≤j≤m
i+j≤m+1

Ti,−j . If we can prove that p leaves stable under ϕ, then w, being

the centralizer of p in l, also leaves stable under ϕ. So for our goal, it suffices to prove that p is

invariant under ϕ. It is clear that the set

B = {Ti,−j(1) | 1 ≤ i ≤ j ≤ m, i+ j ≤ m+ 1}
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is the canonical basis of p. So we only need to show that ϕ(X) ∈ p for any X ∈ B. It is not

difficult to check that dimC(X) ≥ 1
2m(m+1)+ 1

2m(m− 1)− (m− 1) for any X ∈ B. Since ϕ is

bijective and preserves zero Lie brackets in both directions, we have dimC(ϕ(X)) = dimC(X),

so

dimC(ϕ(X)) ≥
1

2
m(m+ 1) +

1

2
m(m− 1) − (m− 1) for any X ∈ B. (1)

In the following, we first prove that for any X ∈ B, ϕ(X) must be in w.

If there exists some X ∈ B such that ϕ(X) 6∈ w, then we can assume that ϕ(X) =
∑

1≤i<j≤m Tij(aij) + W with some ast 6= 0 for 1 ≤ s < t ≤ m and W ∈ w. Let i0, j0 be

such that ai0j0 6= 0 and ai0,k = 0 for all k < j0 and ak,j0 = 0 for all k > i0. Set

M1 = E(2m) −

m−j0
∑

k=1

Tj0,j0+k(a−1
i0j0

ai0,j0+k),

M2 = E(2m) +

i0−1
∑

k=1

Tk,i0(a
−1
i0j0

ak,j0),

v0 =

m−j0
∑

k=1

Tj0,j0+k +

j0
∑

l=1

Tl,−j0 +

m−j0
∑

h=1

Tj0,−(j0+h).

Then v0 is a subspace of l, and v0∩C(σM2
σM1

ϕ(X)) = {0}. Obviously, l ⊇ v0⊕C(σM2
σM1

ϕ(X))

and dim v0 ≥ m. So

dimC(ϕ(X)) = dimC(σM2
σM1

ϕ(X)) ≤
1

2
m(m+ 1) +

1

2
m(m− 1) −m. (2)

This contradicts (1). So ϕ(X) ∈ w for any X ∈ B. That is to say ϕ(p) ⊆ w.

It is easy to see C(p) = w, C(w) = w. It is not difficult to check that ϕ(C(p)) = C(ϕ(p)). So

ϕ(w) = ϕ(C(p)) = C(ϕ(p)) ⊇ C(w) = w.

Since ϕ is a bijective linear map and preserves zero Lie brackets in both directions, we have

ϕ(w) = w. 2

Let ϕ ∈ T ′. Since w is stable under ϕ, ϕ induces a linear map ϕ of l/w by ϕ(Y ) = ϕ(Y ) for

Y ∈ l. Now we prove that ϕ is a bijective linear map and preserves zero Lie brackets in both

directions by the following lemma.

Lemma 5.2 If ϕ ∈ T ′, then ϕ defined above is a bijective linear map and preserves zero Lie

brackets in both directions.

Proof It is clear that ϕ is a linear map. By Lemma 5.1, we have ϕ(w) = w. If ϕ(X) = 0, i.e.,

ϕ(X) ∈ w, thenX ∈ w. SoX = 0. This implies that ϕ is bijective. For anyX =

(

A B

0 −A′

)

∈

l and Y =

(

C D

0 −C′

)

∈ l, let X1 =

(

A 0

0 −A′

)

, W1 =

(

0 B

0 0

)

, Y1 =

(

C 0

0 −C
′

)

,

W2 =

(

0 D

0 0

)

. If [X,Y ] = 0, i.e., [X,Y ] ∈ w, then [X1, Y1] = 0. We have [ϕ(X1), ϕ(Y1)] = 0.
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So

[ϕ(X), ϕ(Y )] = [ϕ(X1 +W1), ϕ(Y1 +W2)]

= [ϕ(X1), ϕ(Y1)] + [ϕ(X1), ϕ(W2)] + [ϕ(W1), ϕ(Y1)] + [ϕ(W1), ϕ(W2)]

= [ϕ(X1), ϕ(W2)] + [ϕ(W1), ϕ(Y1)] ∈ w.

Thus

[ϕ(X), ϕ(Y )] = [ϕ(X), ϕ(Y )] = [ϕ(X), ϕ(Y )] = 0.

Conversely, ϕ−1 ∈ T ′. So ϕ−1 can also induce a linear map ϕ−1 of l/w by ϕ−1(Y ) = ϕ−1(Y ).

Similarly to the above, we can also get if [X,Y ] = 0, then [ϕ−1(X), ϕ−1(Y )] = 0. So if

[ϕ(X), ϕ(Y )] = 0, then [ϕ−1(ϕ(X)), ϕ−1(ϕ(Y ))] = [X,Y ] = 0. That is to say ϕ preserves

zero Lie brackets in both directions. 2

Now we give the main result of this paper.

Theorem 5.1 Let m ≥ 4. A linear map ϕ of l preserves zero Lie brackets in both directions if

and only if ϕ is of the form

ϕ = ψcσT0
λαφdηf ,

where ψc, σT0
, λα, φd, ηf are the standard maps preserving zero Lie brackets in both directions.

The “if” part of the theorem is clear. For the “only if” part, we will prove it for the case

m ≥ 5 and the case m = 4, respectively.

Proof Since l/w is isomorphic to v, we may directly view l/w as v. So by Theorem 3.1, ϕ can

be written in the form:

ϕ = ψv,cσv,Tωµ
(m2)
b4

µ
(12)
b3

µ
(m1)
b2

µ
(11)
b1

ηv,f ,

where ψv,c, σv,T , ω, µ
(m2)
b4

, µ
(12)
b3

, µ
(m1)
b2

, µ
(11)
b1

, ηv,f are the standard maps of v. It is easy to see

that ψv,c = ψc, σv,T = σT . So σ−1
T ψ−1

c ϕ = ωµ
(m2)
b4

µ
(12)
b3

µ
(m1)
b2

µ
(11)
b1

ηv,f . Denote σ−1
T ψ−1

c ϕ by ϕ1.

In the following, we assume that m ≥ 5 and we will give the proof step by step.

Step 1. There exist T1 = E(2m) + S1 and T2 = E(2m) + S2 with S1, S2 ∈ v such that

σT2
σT1

ϕ1(Tij(1)) ≡ Tij(1) (modw) for 1 ≤ i < j ≤ m.

It is easy to see that ϕ1(T1m(1)) = T1m(c) + W0 for some c ∈ F ∗ and W0 ∈ w. Since

T1,−m(1) ∈ p, we may write ϕ1(T1,−m(1)) as

ϕ1(T1,−m(1)) =
∑

1≤i≤j≤m
i+j≤m+1

Ti,−j(xij).

It follows from [ϕ1(T1m(1)), ϕ1(T1,−m(1))] 6= 0 that x1m 6= 0. If ω 6= 1, then ϕ1(T1,m−1(1)) =

−f(T1,m−1(1))T1m(1) − T2m(1) +W for some W ∈ w. By applying ϕ1 on [T1,m−1(1), T1,−m(1)]

= 0, we have that x1m = 0, a contradiction. So ω = 1. That is to say

ϕ1 = µ
(m2)
b4

µ
(12)
b3

µ
(m1)
b2

µ
(11)
b1

ηv,f .
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For 2 ≤ i < j ≤ m − 1, we can assume that ϕ1(Tij(1)) = Tij(1) + f(Tij(1))T1m(1) + Wij

for some Wij ∈ w. By considering the action of ϕ1 on [Tij(1), T1,−m(1)] = 0, we have that

f(Tij(1))x1m = 0 and xkj = xjl = 0 for 1 ≤ k ≤ j, j + 1 ≤ l ≤ m. That is to say

ϕ1(T1,−m(1)) = T1,−1(x11) + T1,−2(x12) + T2,−2(x22) + T1,−m(x1m),

ϕ1(Tij(1)) ≡ Tij(1) (modw) for 2 ≤ i < j ≤ m− 1.

For 4 ≤ k ≤ m − 1, by operating ϕ1 on [T1k(1), T1,−m(1)] = 0, we get that f(T1k(1))x1m = 0,

which means that f(T1k(1)) = 0. By applying ϕ1 on [T13(1), T1,−m(1)] = 0, we have that

f(T13(1))x1m = 0 and b3x1m = 0, which means that f(T13(1)) = b3 = 0.

Suppose ϕ1(T3,−m(1)) =
∑

1≤i≤j≤m Ti,−j(yij). By applying ϕ1 on [T1k(1), T3,−m(1)] = 0 for

4 ≤ k ≤ m − 1, we get ysk = ykl = 0 for 1 ≤ s ≤ k and k + 1 ≤ l ≤ m. So ϕ1(T3,−m(1)) =
∑

1≤i≤j≤3 Ti,−j(yij)+T1,−m(y1m)+T2,−m(y2m)+T3,−m(y3m)+Tm,−m(ymm). Since T3,−m(1) /∈ p

and ϕ1(p) = p, we have that y2m, y3m and ymm cannot be zero simultaneously. By considering

the action of ϕ1 on [T12(1), T3,−m(1)] = 0, we have b1y2m = b1y3m = b1ymm = 0. So b1 = 0.

By operating ϕ1 on [T1k(1), T1,−(m−1)(1)] = 0 for k = 2, 3, . . . ,m− 2,m, we know that there

exist z11, z1,m−1 ∈ F such that

ϕ1(T1,−(m−1)(1)) = T1,−1(z11) + T1,−(m−1)(z1,m−1).

It is clear that z1,m−1 6= 0. Considering the action of ϕ1 on [Tm−2,m(1), T1,−(m−1)(1)] =

0, we get b4z1,m−1 = 0, which implies that b4 = 0. By considering the action of ϕ1 on

[Tm−1,m(1), T1,−(m−1)(1)] = 0, we obtain b2z1,m−1 = 0, which means that b2 = 0.

Since [Tkm(1) − Tk,m−1(1), T1,−m(1) + T1,−(m−1)(1)] = 0 for 2 ≤ k ≤ m − 2, by applying

ϕ1 on the two sides of the above equation, we have x1m − z1,m−1 = 0 and f(Tk,m(1))x1m =

0. So f(Tkm(1)) = 0. Now considering the action of ϕ1 on [T1m(1) − T1,m−1(1), T1,−m(1) +

T1,−(m−1)(1)] = 0, we have x1m − z1,m−1 + f(T1m(1))x1m = 0. So f(T1m(1)) = 0. Let

T1 = E(2m) + f(T12(1))T2m(1),

T2 = E(2m) − f(Tm−1,m(1))T1,m−1(1).

Then

σ−1
T2
σ−1

T1
ϕ1(Tij(1)) ≡ Tij(1) (modw) for 1 ≤ i < j ≤ m.

Denote σ−1
T2
σ−1

T1
ϕ1 by ϕ2.

Step 2. There exist α = (a1 a2 a3) ∈ F 1×3 and T3 = E(2m) +W with W ∈ w such that

λ−1
α σ−1

T3
ϕ2(Tij(1)) ≡ Tij(1) (modT1,−1) for 1 ≤ i < j ≤ m.

Suppose that

ϕ2(Ti,i+1(1)) = Ti,i+1(1) +
∑

1≤k≤l≤m

Tk,−l(a
(i)
kl ), 1 ≤ i ≤ m− 1. (3)

By applying ϕ2 on [T12(1), T3t(1)] = 0, 4 ≤ t ≤ m, and [Ti,i+1(1), T1s(1)] = 0, 2 ≤ i ≤ m − 1,
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2 ≤ s ≤ m and s 6= i, we get that

ϕ2(T12(1)) = T12(1) +

m
∑

i=1

T1,−i(a
(1)
1i ) + T2,−2(a

(1)
22 ) + T2,−3(a

(1)
23 ) + T3,−3(a

(1)
33 ),

ϕ2(Ti,i+1(1)) = Ti,i+1(1) +

i
∑

k=1

Tk,−i(a
(i)
ki ) +

m
∑

l=i+1

Ti,−l(a
(i)
il ) + T1,−1(a

(i)
11 ).

For j 6= i− 1, i+ 1, by considering the action of ϕ2 on [Ti,i+1(1), Tj,j+1(1)] = 0, we get a
(i)
i,j+1 =

a
(j)
i+1,j . Choose

T3 = E(2m) +
m
∑

k=2

T1,−k(a
(k−1)
1,k−1) +

∑

2≤i≤j≤m

Ti,−j(a
(i−1)
i−1,j).

Then

σ−1
T3
ϕ2(T12(1)) =T12(1) + T1,−1(−a

(1)
11 ) + T2,−2(a

(1)
22 ) + T2,−3(a

(1)
23 ) + T3,−3(a

(1)
33 ), (4)

σ−1
T3
ϕ2(Ti,i+1(1)) =Ti,i+1(1) + T1,−1(a

(i)
11 ) + Ti,−i(a

(i)
ii − 2a

(i−1)
i−1,i+1). (5)

Denote σ−1
T3
ϕ2 by ϕ3. For 1 ≤ k < l ≤ m and l − k 6= 1, suppose that

ϕ3(Tkl(1)) = Tkl(1) +
∑

1≤s≤t≤m

Ts,−t(b
(kl)
st ).

For 1 ≤ i ≤ m − 1 and i 6= l, k − 1, by applying ϕ3 on [Tkl(1), Ti,i+1(1)] = 0, we have that the

entries in the (i+ 1)-row of ϕ3(Tkl(1)) are all zero except b
(13)
22 .

For 2 ≤ k < l ≤ m− 1, by applying ϕ3 on [Tk,l+1(1), T1l(1)] = 0 and [Tkl(1), T1,l+1(1)] = 0,

respectively, we get b
(13)
14 = b

(13)
44 = 0, b

(1l)
1,l+1 = b

(1l)
l+1,l+1 = 0 and b

(kl)
1,l+1 = b

(kl)
k,l+1 = b

(kl)
l+1,l+1 = 0.

By applying ϕ3 on [T12(1), T13(1)] = 0, we get a
(1)
33 = 0 and a

(1)
23 = b

(13)
22 . By operating ϕ3 on

[T1k(1) + T1l(1), Tk,l+1(1) − Tl,l+1(1)] = 0 for 2 ≤ k < l ≤ m − 1, we get b
(k,l+1)
1k = b

(k,l+1)
kk =

a
(l)
ll − 2a

(l−1)
l−1,l+1 = 0. So ϕ(Tkl(1)) can be rewritten as

ϕ3(T12(1)) =T12(1) + T1,−1(−a
(1)
11 ) + T2,−2(a

(1)
22 ) + T2,−3(a

(1)
23 ),

ϕ3(T23(1)) =T23(1) + T1,−1(a
(2)
11 ) + T2,−2(a

(2)
22 − 2a

(1)
13 ),

ϕ3(T13(1)) =T13(1) + T1,−1(b
(13)
11 ) + T2,−2(b

(13)
22 ),

ϕ3(Ti,i+1(1)) =Ti,i+1(1) + T1,−1(a
(i)
11 ) for 3 ≤ i ≤ m− 1,

ϕ3(Tkl(1)) =Tkl(1) + T1,−1(b
(kl)
11 ) for 2 ≤ k < l ≤ m and l 6= k + 1,

ϕ3(T1l(1)) =T1l(1) + T1,−1(b
(1l)
11 ) for 4 ≤ l ≤ m.

Set α = (a1 a2 a3) with a1 = a
(1)
22 , a2 = a

(1)
23 , a3 = a

(2)
22 − 2a

(1)
13 , then

λ−1
α ϕ3(T12(1)) = T12(1) + T1,−1(−a

(1)
11 ),

λ−1
α ϕ3(Ti,i+1(1)) = Ti,i+1(1) + T1,−1(a

(i)
11 ) for 2 ≤ i ≤ m− 1,

λ−1
α ϕ3(Tkl(1)) = Tkl(1) + T1,−1(b

(kl)
11 ) for 1 ≤ k < l ≤ m and l 6= k + 1.

That is to say

λ−1
α σ−1

T3
ϕ2(Tij(1)) ≡ Tij(1) (modT1,−1) for 1 ≤ i < j ≤ m.
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Denote λ−1
a ϕ3 by ϕ4.

Step 3. There exist some b, d ∈ F ∗, T4 = E(2m) + T1m(bd−1) and a linear function from l to

F such that

φ−1
d σT4

ϕ4 = ηf .

Suppose ϕ4(Tk,−l(1)) =
∑

1≤s≤t≤m Ts,−t(c
(kl)
st ). Since T1,−1 is the center of l, we have

ϕ4(T1,−1(1)) = T1,−1(c
(11)
11 ) with c

(11)
11 ∈ F ∗. For 2 ≤ s ≤ m, 1 ≤ k ≤ l ≤ m and s 6= k, l,

by applying ϕ4 on [T1s(1), Tk,−l(1)] = 0, we get that the entries of ϕ4(Tk,−l(1)) in the s-row and

(s+m)-column are all zero. That is to say

ϕ4(T1,−l(1)) =T1,−1(c
(1l)
11 ) + T1,−l(c

(1l)
1l ) + Tl,−l(c

(1l)
ll ) for 2 ≤ l ≤ m, (6)

ϕ4(Tk,−l(1)) =T1,−1(c
(kl)
11 ) + T1,−k(c

(kl)
1k ) + T1,−l(c

(kl)
1l ) + Tk,−l(c

(kl)
kl )+

Tk,−k(c
(kl)
kk ) + Tl,−l(c

(kl)
ll ) for 2 ≤ k < l ≤ m, (7)

ϕ4(Tk,−k(1)) =T1,−1(c
(kk)
11 ) + T1,−k(c

(kk)
1k ) + Tk,−k(c

(kk)
kk ) for 2 ≤ k ≤ m. (8)

For 3 ≤ l ≤ m, by applying ϕ4 on [T12(1)−T1l(1), T1,−2(1)+T1,−l(1)] = 0, we get c
(12)
12 = c

(1l)
1l ,

c
(12)
22 = c

(1l)
ll = 0.

For 2 ≤ k < l ≤ m−1, by operating ϕ4 on [T1k(1)−Tl,l+1(1), Tk,−l(1)+T1,−(l+1)(1)] = 0 and

[T1l(1) − Tk,l+1(1), Tk,−l(1) + T1,−(l+1)(1)] = 0, respectively, we have that c
(kl)
1k = c

(kl)
kk = c

(kl)
1l =

c
(kl)
ll = 0 and c

(kl)
kl = c

(l,l+1)
1,l+1 .

For 2 ≤ k ≤ m − 2, by applying ϕ4 on [T1m(1) − Tk.m−1(1), Tk,−m(1) + T1,−(m−1)(1)] = 0

and [T1,m−1(1) − T1k(1), Tm−1,−m(1) + Tk,−m(1)] = 0, respectively, we have c
(km)
1m = c

(km)
mm = 0,

c
(km)
km = c

(1,m−1)
1,m−1 , c

(m−1,m)
1,m−1 = c

(km)
1k ,c

(m−1,m)
m−1,m = c

(km)
km and c

(m−1,m)
m−1,−(m−1) = c

(km)
kk = 0.

By operating ϕ4 on [T1m(1) − T12(1), Tm−1,−m(1) + T2,−(m−1)(1)] = 0, we get c
(m−1,m)
1m =

c
(m−1,m)
mm = 0, c

(m−1,m)
m−1,m = c

(2,m−1)
2,m−1 .

For 2 ≤ k ≤ m − 1, by applying ϕ4 on [T1k(1) − Tk,k+1(1), Tk,−k(1) + T1,−(k+1)(1)] = 0, we

have that c
(kk)
1k = 0 and c

(kk)
kk = c

(1,k+1)
1,k+1 .

By operating ϕ4 on [T1,m(1) − T12(1)− T23(1), Tm,−m(1) + T2,−m(1) + T1,−3(1)] = 0, we get

that c
(mm)
mm = c

(2m)
2m = c

(13)
13 and c

(mm)
1m = c

(2m)
12 .

Let b = c
(2m)
12 , d = c

(12)
12 . Then

ϕ4(Tk,−l(1)) = T1,−1(c
(kl)
11 ) + Tk,−l(d) for 1 ≤ k ≤ l ≤ m− 1 and (k, l) 6= (1, 1),

ϕ4(T1,−m(1)) = T1,−1(c
(1m)
11 ) + T1,−m(d),

ϕ4(Tk,−m(1)) = T1,−1(c
(km)
11 ) + Tk,−m(d) + T1,−k(b) for 2 ≤ k ≤ m.

Let T4 = E(2m) + T1m(bd−1). Then

φ−1
d σT4

ϕ4(T1,−m(1)) = T1,−1(d
−1(c

(kl)
11 − 2b)) + T1,−m(1),

φ−1
d σT4

ϕ4(Tk,−l(1)) = T1,−1(d
−1c

(kl)
11 ) + Tk,−l(1),

where 1 ≤ k ≤ l ≤ m and (k, l) 6= (1, 1), (1,m).

Let f(T12(1)) = −d−1a
(1)
11 , f(Ti,i+1(1)) = d−1a

(i)
11 for 2 ≤ i ≤ m − 1, f(Tkl(1)) = d−1b

(kl)
11

for 1 ≤ k < l ≤ m and l 6= k + 1, f(T1,−1(1)) = d−1c
(11)
11 − 1, f(T1,−m(1)) = d−1(c

(1m)
11 − 2b),
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f(Ts,−t(1)) = d−1c
(st)
11 for 1 ≤ s ≤ t ≤ m and (s, t) 6= (1, 1), (1,m). Then φ−1

d σT4
ϕ4 = ηf .

Above discussion shows that

φ−1
d σT4

λ−1
α σ−1

T3
σ−1

T2
σ−1

T1
σ−1

T ψ−1
c ϕ = ηf .

Let T0 = TT1T2T3T
−1
4 . Then

ϕ = ψcσT0
λαφdηf .

Now we prove the theorem for the case m = 4. Suppose that

ϕ1(T1,−4(1)) =
∑

1≤i≤j≤4
i+j≤5

Ti,−j(xij),

then similarly to Step 1, we can prove that x14 6= 0. By applying ϕ1 on [T23(1), T1,−4(1)] = 0,

we have f(T23(1))x14 = 0 and x13 = x23 = 0. So f(T23(1)) = 0. If ω 6= 1, then

ϕ1(T13(1)) = −T13(b3) − T24(1) − f(T13(1))T14(1) +W for some W ∈ w.

By operating ϕ1 on [T13(1), T1,−4(1)] = 0, we get x14 = 0. This contradiction means that ω = 1.

Again by applying ϕ1 on [T13(1), T1,−4(1)] = 0, we have f(T13(1))x14 = b3x14 = 0, which implies

that f(T13(1)) = b3 = 0.

Since T1,−3(1) ∈ p, we may write

ϕ1(T1,−3(1)) =
∑

1≤i≤j≤4
i+j≤5

Ti,−j(yij).

By considering the action of ϕ1 on [T14(1), T1,−3(1)] = 0,we have that y14 = 0. Since [T13(1), T1,−3(1)]

6= 0, we have that y13 and y23 cannot be zero simultaneously. By operating ϕ1 on [T24(1), T1,−3(1)] =

0, we get that y13b4 = y23b4 = 0. So b4 = 0.

By applying ϕ1 on [T24(1) − T23(1), T1,−4(1) + T1,−3(1)] = 0, we get that y23 = 0 and

x14 − y13 = f(T24(1))x14 = 0. So f(T24(1)) = 0. By operating ϕ1 on [T14(1)− T13(1), T1,−4(1) +

T1,−3(1)] = 0, we have that x14 − y13 + f(T14(1))x14 = 0. So f(T14(1)) = 0. By applying ϕ1 on

[T34(1), T1,−3(1)] = 0, we get that y13b2 = 0. So b2 = 0.

Suppose that ϕ1(T3,−4(1)) =
∑

1≤i≤j≤4 Ti,−j(zij). Since T3,−4(1) /∈ p, we have z24, z34

and z44 cannot be zero simultaneously. By applying ϕ1 on [T12(1), T3,−4(1)] = 0, we have that

b1z24 = b1z34 = b1z44 = 0. So b1 = 0.

Let

T1 = E(8) + f(T12(1))T24(1), T2 = E(8) − f(T34(1))T13(1).

Then

σ−1
T2
σ−1

T1
ϕ1(Tij(1)) ≡ Tij(1) (mod w) for 1 ≤ i < j ≤ 4.

Denote σ−1
T2
σ−1

T1
ϕ1 by ϕ2. For this ϕ2, we can prove that there exist some α ∈ F 1×3, T3 =

E(8) + W with W ∈ w, b, d ∈ F ∗ T4 = E(8) + T14(bd
−1) and a linear function f from l to F

such that φ−1
d σT4

λ−1
α σ−1

T3
ϕ2 = ηf in the same way as Steps 2-3 in the case m ≥ 5. We omit the
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repeated arguments. Now we have proved that φ−1
d σT4

λ−1
α σ−1

T3
σ−1

T2
σ−1

T1
σ−1

T ψ−1
c ϕ = ηf . Also let

T0 = TT1T2T3T
−1
4 . Then

ϕ = ψcσT0
λαphidηf . 2
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