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1. Introduction

In their remarkable works [1, ,2], Coifman and Meyer introduced the multilinear Calderón-

Zygmund operator. Let m ≥ 1, K(x; y1, ..., ym) be a locally integrable function defined away

from the diagonal x = y1 = y2 = · · · = ym in (Rn)m+1, A > 0 and γ ∈ (0, 1] be two constants. We

say that K is a kernel in m-CZK(A, γ) if it satisfies the size condition that for all (x, y1, ..., ym) ∈

(Rn)m+1 with x 6= yj for some 1 ≤ j ≤ m,

|K(x; y1, ..., ym)| ≤
A

(|x − y1| + · · · + |x − ym|)
mn (1.1)

and satisfies the regularity conditions that

|K(x; y1, ..., ym) − K(x′; y1, ..., ym)| ≤
A|x − x′|γ

(|x − y1| + · · · + |x − ym|)
mn+γ (1.2)

whenever max1≤k≤m |x − yk| ≥ 2|x − x′|, and also that for each fixed k with 1 ≤ k ≤ m,

|K(x; y1, ..., yk, ..., ym) − K(x; y1, ..., y
′
k, ..., ym)| ≤

A|yk − y′
k|

γ

(|x − y1| + · · · + |x − ym|)
mn+γ (1.3)

whenever max1≤j≤m |x− yj | ≥ 2|yk − y′
k|. An operator T defined on m-fold product of Schwartz

spaces and taking values in the space of tempered distributions, is said to be an m-linear

Calderón-Zygmund operator with kernel K, if T is m-linear, bounded from Lq1(Rn) × · · · ×
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Lqm(Rn) to Lq(Rn) for some q1, ..., qm ∈ [1, ∞] and q ∈ (0, ∞) with 1/q =
∑m

k=1 1/qk, and for

some m-CZK(A, γ) kernel K with positive constants A and γ,

T (f1, ..., fm)(x) =

∫

(Rn)m

K(x; y1, ..., ym)

m∏

k=1

fk(yk) dy1, ..., dym, (1.4)

when f1, ..., fm ∈ L2(Rn) with compact supports and x 6∈ ∩m
k=1supp fk. It is obvious that

when m = 1, this operator is just the classical Calderón-Zygmund operator and when m ≥ 2,

this operator has intimate connection with operator theory and partial differential equations.

Grafakos and Torres [5] developed the idea used in Kenig and Stein [8], considered the behavior

on L1(Rn) × · · · × L1(Rn) for the operator T , and proved that an m-linear Calderón-Zygmund

operator is bounded from Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn) for any p1, ..., pm ∈ (1, ∞] and

p ∈ (0, ∞) with 1/p =
∑

1≤k≤m 1/pk. Fairly recently, Lerner et al. [9] introduced a new maximal

operator and a multilinear Ap(R
n) weight condition, and obtained some interesting weighted

estimates for multilinear Calderón-Zygmund operators and the corresponding commutators. For

other works about the multilinear Calderón-Zygmund operator, see [4], [6] and [7].

The purpose of this paper is to establish some multi-weight, weighted weak type norm in-

equalities for the multilinear Calderón-Zygmund operator T , in analogy with the two-weight,

weighted estimate for classical Calderón-Zygmund operator established by Cruze-Uribe, SFO

and Pérez [3]. To state our results, we first recall some notation.

By a weight w we mean that w is a nonnegative and locally integrable function. For a

measurable set E and a weight w, w(E) denotes the integral
∫

E w(x)dx. For p ∈ (0, ∞),

Lp(Rn, w) denotes the usual weighted Lp space with weight w and Lp,∞(Rn, w) denotes the

weighted weak Lp norm with respect to the weight w, that is,

Lp,∞(Rn, w) = {f : ‖f‖Lp,∞(Rn, w) < ∞},

where and in the following,

‖f‖Lp,∞(Rn, w) = sup
λ>0

λ
(
w({x ∈ R

n : |f(x)| > λ})
)1/p

.

Given a cube Q, p ≥ 1, δ ∈ R and a suitable function f , set

‖f‖L(log L)δ, Q = inf
{
λ > 0 :

1

|Q|

∫

Q

|f(x)|

λ
logδ

(
e +

|f(x)|

λ

)
dx ≤ 1

}
.

Define the maximal operator ML(log L)δ by

ML(log L)δf(x) = sup
Q∋x

‖f‖L(log L)δ, Q,

where the supremum is taken over all cubes containing x. Note that when δ = 0, ML(log L)δ is

just the standard Hardy-Littlewood maximal operator M .

Let u, v be a pair of weights on R
n. For σ ≥ 0, we say that (u, v) ∈ Ap, (log L)σ(Rn), if there

exists a positive constant C such that for any cube Q,

‖u‖L(logL)σ, Q

( 1

|Q|

∫

Q

v−p′/p(x)dx
)p−1

≤ C.
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For the case of σ = 0, we denote (u, v) ∈ Ap(R
n) (see [3]).

Our results can be stated as follows.

Theorem 1.1 Let m and ℓ be integers with 1 ≤ ℓ ≤ m, T be an m-linear Calderón-Zygmund

operator, u, v1, ..., vm be weights. Suppose that p1, ..., pℓ ∈ (1, ∞), pℓ+1, ..., pm ∈ (1, 1 + γ/n),

and for some δ > 0, (u, vk) ∈ Apk, (log L)pk−1+δ (Rn) for 1 ≤ k ≤ ℓ and (u, vk) ∈ Apk
(Rn) for

ℓ + 1 ≤ k ≤ m, then there exists a positive constant C, such that for all bounded functions

f1, ..., fm with compact supports,

‖T (f1, ..., fm)‖Lp, ∞(Rn, u) ≤ C
m∏

k=1

‖fk‖Lpk (Rn, vk). (1.5)

We mow make some conventions. Throughout this paper, we always denote by C a positive

constant which is independent of the main parameters, but it may vary from line to line. For a

measurable set E, χ
E

denotes the characteristic function of E. Given λ > 0 and a cube Q, λQ

denotes the cube with the same center as Q and whose side length is λ times that of Q. For a

locally integrable function f on R
n and bounded measurable set E, (f)E denotes the mean value

of f over E, that is, (f)E = 1
|E|

∫
E

f(x)dx. For a fixed p with p ∈ [1, ∞), p′ denotes the dual

exponent of p, namely, p′ = p/(p− 1).

2. Proof of Theorem 1.1

We begin with some preliminary lemmas.

Lemma 2.1 ([3, Theorem 1.2]) Let T be a Calderón-Zygmund operator. Given a pair of weights

(u, v) and p, 1 < p < ∞, suppose that for some δ > 0, (u, v) ∈ Ap, (log L)p−1+δ(Rn). Then T is

bounded from Lp(Rn, v) to Lp,∞(Rn, u).

Lemma 2.2 Let m ≥ 2, T be an m-linear Calderón-Zygmund operator with kernel K in m-

CZK(A, γ) for some A, γ > 0. Then for all positive integer l with 1 ≤ l < m and all bounded

functions f1, ..., fm−l with compact supports, the operator Tf1,..., fm−l
defined by

Tf1,..., fm−l
(fm−l+1, ..., fm)(x) = T (f1, ..., fm)(x)

is an l-linear Calderón-Zygmund operator with kernel K in l-CZK(A
∏m−l

k=1 ‖fk‖L∞(Rn), γ).

This lemma is a combination of Lemma 3 and Theorem 2 in [5].

Lemma 2.3 ([3, p. 424)] Let q ∈ (1, ∞), (u, v) ∈ Aq, (log L)q−1+σ (Rn) for some σ > 0. Then for

any δ ∈ [0, σ/q), there exists a positive constant C such that

‖ML(log L)δf‖Lq′(Rn, v−q′/q) ≤ C‖f‖Lq′(Rn, u−q′/q).

Proof of Theorem 1.1 First, we prove the case that ℓ = m. We will proceed by an inductive

argument on m. By Lemma 2.1 we know that (1.5) holds for the case m = 1. Let m ≥ 2 be a

positive integer. We assume that (1.5) holds if T is an l-linear Calderón-Zygmund operator with
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1 ≤ l ≤ m − 1. Let f1, ..., fm be bounded functions with compact supports and

‖f1‖Lp1(Rn, v1) = ‖f2‖Lp2(Rn, v2) = · · · = ‖fm‖Lpm(Rn, vm) = 1.

Our goal is to prove that there exists a positive constant C such that for any λ > 0,

u({x ∈ R
n : |T (f1, ..., fm)(x)| > λ}) ≤ Cλ−p. (2.1)

For each fixed λ > 0, applying the Calderón-Zygmund decomposition to |fm|pm at the level

λp, we then obtain sequences of cubes {Qj
m}j with disjoint interiors, such that

(i) For any fixed j,

λp/pm <
1

|Qj
m|

∫

Qj
m

|fm(y)| dy ≤ 2nλp/pm . (2.2)

(ii) |fm(x)| ≤ Cλp/pm a. e. x ∈ R
n\ ∪j Qj

m.

Set

gm(x) = fm(x)χ
Rn\∪jQj

m
(x) +

∑

j

(fm)Qj
m

χQj
m

(x),

and

bm(x) =
∑

j

(
fm(x) − (fm)Qj

m

)
χQj

m
(x) =

∑

j

bj
m(x).

Lemma 2.2, together with the fact that ‖gm‖L∞(Rn) ≤ Cλp/pm and the inductive hypothesis,

tells us that

u({x ∈ R
n : |T (f1, ..., fm−1, gm)(x)| > λ/2}) ≤ Cλ−p̃‖gm‖p̃

L∞(Rn)

m−1∏

k=1

‖fk‖
p̃
Lpk (Rn, vk)

≤ Cλ−p,

where p̃ ∈ (0, ∞) with 1/p̃ =
∑m−1

k=1 1/pk. For any j, a trivial computation involving the Hölder

inequality in (2.2), shows that

(∫

Qj
m

v
−p′

m/pm
m (x)dx

)1/p′

m

≤ λ−p/(pmp′

m)
(∫

Qj
m

|fm(x)|dx
)1/p′

m
( 1

|Qj
m|

∫

Qj
m

v
−p′

m/pm
m (x)dx

)1/p′

m

≤ λ−p/(pmp′

m)
(∫

Qj
m

|fm(x)|pmvm(x)dx
)1/(pmp′

m)

×

×
( 1

|Qj
m|

∫

Qj
m

v
−p′

m/pm
m (x)dx

)1/p′

m
(∫

Qj
m

v
−p′

m/pm
m (x)dx

)1/(p′

mp′

m)

,

and so
(∫

Qj
m

v
−p′

m/pm
m (x)dx

)1/p′

m

≤λ−p/p′

m

( ∫

Qj
m

|fm(x)|pmvm(x)dx
)1/p′

m

×

( 1

|Qj
m|

∫

Qj
m

v
−p′

m/pm
m (x)dx

)pm/p′

m

. (2.3)
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Let Ω =
⋃

j 4nQj
m. The estimate (2.3), via the Hölder inequality, leads to that

u(Ω) ≤Cλ−p/pm

∑

j

u(4nQj
m)

|4nQj
m|

∫

Qj
m

|fm(x)|dx

≤Cλ−p/pm

∑

j

u(4nQj
m)

|4nQj
m|

(∫

Qj
m

|fm(x)|pmvm(x)dx
)1/pm

(∫

Qj
m

v
−p′

m/pm
m (x)dx

)1/p′

m

≤Cλ−p/pmλ−p/p′

m

∑

j

∫

Qj
m

|fm(x)|pmvm(x)dx×

u(4nQj
m)

|4nQj
m|

( 1

|Qj
m|

∫

Qj
m

v
−p′

m/pm
m (x)dx

)pm/p′

m

≤Cλ−p/pmλ−p/p′

m

∑

j

∫

Qj
m

|fm(x)|pmvm(x)dx ≤ Cλ−p. (2.4)

If we can prove that

u({x ∈ R
n\Ω : |T (f1, ..., fm−1, bm)(x)| > λ/2}) ≤ Cλ−p, (2.5)

the inequality (2.1) then follows from (2.2), (2.3) and (2.4) directly.

We now prove (2.5). Note that for any σ > 0,
∫

Rn

1

(|x − y1| +
∑m

k=2 |x − yk|)n+σ
|f(y1)|dy1 ≤

C

(
∑m

k=2 |x − yk|)σ
Mf(x).

By the vanishing moment of bj
m and the regularity (1.3), we see that for x ∈ R

n\Ω,

|T (f1, ..., fm−1, bm)(x)|
∑

j

∣∣∣
∫

(Rn)m

K(x; y1, ..., ym)f1(y1) · · · fm−1(ym−1)b
j
m(ym)dym

∣∣∣

≤
∑

j

∫

Rn

∫

(Rn)m−1

|ym − cj
m|γ

(
∑m

k=1 |x − yk|)mn+γ

m−1∏

k=1

|fk(yk)|dy1 · · ·dym−1|b
j
m(ym)|dym

≤ C
∑

j

m−1∏

k=1

Mfk(x)

∫

Rn

|ym − cj
m|γ

|x − ym|n+γ
|bj

m(ym)|dym

≤ C

m−1∏

k=1

Mfk(x)Mm(x), (2.6)

where for each fixed j, cj
m and l(Qj

m) are the center and side length of Qj
m and Mm is the

Marcinkiewicz function defined by

Mm(x) =
∑

j

‖bj
m‖L1(Rn)

{l(Qj
m)}γ

|x − cj
m|n+γ

χRn\Ω(x).

It is well known that if (u, v) ∈ Ar(R
n), then the Hardy-Littlewood maximal operator is bounded

from Lr(Rn, v) to Lr,∞(Rn, u). Therefore,

u({x ∈ R
n : Mfk(x) > λp/pk}) ≤ Cλ−p

∫

Rn

|fk(x)|pk vk(x)dx. (2.7)
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On the other hand, an application of the Hölder inequality shows that for any weight w,
∫

Rn\Ω

Mm(x)w(x)dx ≤
∑

j

‖bj
m‖L1(Rn){l(Q

j
m)}γ

∫

Rn\4nQj
m

w(x)

|x − cj
m|n+γ

dx

≤ C
∑

j

‖bj
m‖L1(Rn) inf

y∈Qj
m

Mw(y)

≤ C

∫

Rn

|fm(x)|Mw(x)dx

≤ C‖fm‖Lpm(Rn, vm)‖Mw‖
Lp′

m(Rn, v
−p′

m/pm
m )

.

We thus have by a standard duality argument and Lemma 2.3 that

u({x ∈ R
n\Ω : Mm(x) > λp/pm}) ≤ Cλ−p

∫

Rn\Ω

(Mm(x))pmu(x)dx

= Cλ−p
(

sup
‖w‖

L
p′

m (Rn, u
−p′

m/pm )
≤1

∫

Rn\Ω

Mm(x)w(x)dx
)pm

≤ Cλ−p‖fm‖pm

Lpm(Rn, vm). (2.8)

Combining the inequalities (2.6), (2.7) and (2.8) yields

u({x ∈ R
n\Ω : |T (f1, ..., fm−1, bm)(x)| > λ/2}) ≤

m−1∑

k=1

u({x ∈ R
n : Mfk > λp/pk})+

u({x ∈ R
n\Ω : Mm(x) > λp/pm/2})

≤Cλ−p

and then establishes (2.5).

Now, we turn our attention to the case 1 ≤ ℓ < m. Let pk ∈ (1, 1 + γ/n) with ℓ ≤ k ≤ m,

f1, ..., fm be bounded functions with compact supports and

‖f1‖Lp1(Rn, v1) = ‖f2‖Lp2(Rn, v2) = · · · = ‖fm‖Lpm(Rn, vm) = 1.

For each k with ℓ+1 ≤ k ≤ m and each fixed λ > 0, applying Calderón-Zygmund decomposition

to |fk| at the level λp/pk , we obtain sequences of cubes {Qj
k}j , gk, bk, and bj

k which are similar

to that of the case ℓ = m. Then, Lemma 2.2 and (1.5) with ℓ = m give us that

u({x ∈ R
n : |T (f1, ..., fℓ, gℓ+1, ..., gm)(x)| > λ/2})

≤ Cλ−p̃ℓ

ℓ∏

k=1

‖fk‖
p̃ℓ

Lpk(Rn, vk)

m∏

ℓ+1

‖gk‖
p̃ℓ

L∞(Rn)

≤ Cλ−p̃ℓ

m∏

ℓ+1

λp̃ℓp/pk ≤ Cλ−p,

where p̃ℓ ∈ (0, ∞) with 1/p̃ℓ =
∑ℓ

k=1 1/pk. Set E =
⋃

ℓ+1≤k≤m

⋃
j 4nQj

k. It is proved that

u(E) ≤ Cλ−p. Thus, the proof of (1.5) in this case is reduced to proving

u({x ∈ R
n\E : |T (f1, ..., fℓ, hℓ+1, ..., hm)(x)| > λ/2}) ≤ Cλ−p, (2.9)

where hk ∈ {gk, bk} for k with ℓ + 1 ≤ k ≤ m, and at least one hk = bk.
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We only prove (2.9) for the case hm = bm since the other cases can be dealt with in a similar

way. Again, we can easily obtain that for x ∈ R
n\E,

|T (f1, ..., fℓ, hℓ+1, ..., hm−1, bm)(x)| ≤ C

ℓ∏

k=1

Mfk(x)

m−1∏

k=ℓ+1

Mhk(x)Mm(x).

Note that for any fixed k with ℓ + 1 ≤ k ≤ m,

|hk(x)| ≤ |fk(x)| + C0λ
p/pk ,

with C0 a positive constant. It then follows that

u({x ∈ R
n : Mhk(x) > (C0 + 1)λp/pk}) ≤ u({x ∈ R

n : Mfk(x) > λp/pk})

≤ Cλ−p

∫

Rn

|fk(x)|pk vk(x)dx. (2.10)

On the other hand, a straightforward computation, along with the Hölder inequality and the

estimate (2.3), leads to that
∫

Rn\E

Mm(x)u(x)dx ≤
∑

j

‖bj
m‖L1(Rn)

∫

Rn\E

|Qj
m|γ/n

|x − cj
m|n+γ

u(x)dx

≤C
∑

j

∫

Qj
m

|fm(y)|dy

∞∑

l=1

|Qj
m|γ/n

|2l4nQj
m|1+γ/n

∫

2l4nQj
m

u(x)dx

≤Cλ−p/p′

m

∑

j

∫

Qj
m

|fm(y)|pmvm(y)dy×

( 1

|Qj
m|

∫

Qj
m

v
−p′

m/pm
m (x)dx

)pm/p′

m

×

∞∑

l=1

|Qj
m|γ/n

|2l4nQj
m|1+γ/n

∫

2l4nQj
m

u(x)dx

≤Cλ−p/p′

m

∑

j

∫

Qj
m

|fm(y)|pmvm(y)dy

∞∑

l=1

2nl(pm−1−γ/n)

≤Cλ−p/p′

m

∫

Rn

|fm(y)|pmvm(y)dy.

This, via (2.10), in turn implies that

u({x ∈ R
n\E : |T (f1, ..., fℓ, hℓ+1, ..., hm−1, bm)(x)| > λ/2})

≤

ℓ∑

k=1

u({x ∈ R
n : Mfk(x) > λp/pk}) +

m−1∑

k=ℓ+1

u({x ∈ R
n : Mhk(x) > λp/pk})+

u({x ∈ R
n\E : Mm(x) > (1 + C0)

ℓ+1−mλp/pm/2})

≤ Cλ−p.

The proof of Theorem 1.1 is completed. 2
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