Multi-weight, Weighted Weak Type Estimates for the Multilinear Calderón-Zygmund Operators

Yu Lan JIAO^{1,*}, Zheng Gang CHEN²

1. Zhengzhou Information Engineering University, P. O. Box 2201-160, Henan 450001, P. R. China;

2. Zhengzhou Information Engineering University, P. O. Box 1001-747, Henan 450002, P. R. China

Abstract Let *m* be an integer and *T* be an *m*-linear Calderón-Zygmund operator, $u, v_1, ..., v_m$ be weights. In this paper, the authors give some sufficient conditions on the weights (u, v_k) with $1 \le k \le m$, such that *T* is bounded from $L^{p_1}(\mathbb{R}^n, v_1) \times \cdots \times L^{p_m}(\mathbb{R}^n, v_m)$ to $L^{p,\infty}(\mathbb{R}^n, u)$.

Keywords multilinear Calderón-Zygmund operator; weighted norm inequalities; Calderón-Zygmund decomposition; maximal operators.

Document code A MR(2010) Subject Classification 42B20 Chinese Library Classification 0174.2

1. Introduction

In their remarkable works [1, 2], Coifman and Meyer introduced the multilinear Calderón-Zygmund operator. Let $m \ge 1$, $K(x; y_1, ..., y_m)$ be a locally integrable function defined away from the diagonal $x = y_1 = y_2 = \cdots = y_m$ in $(\mathbb{R}^n)^{m+1}$, A > 0 and $\gamma \in (0, 1]$ be two constants. We say that K is a kernel in m-CZK (A, γ) if it satisfies the size condition that for all $(x, y_1, ..., y_m) \in$ $(\mathbb{R}^n)^{m+1}$ with $x \neq y_j$ for some $1 \le j \le m$,

$$|K(x; y_1, ..., y_m)| \le \frac{A}{(|x - y_1| + \dots + |x - y_m|)^{mn}}$$
(1.1)

and satisfies the regularity conditions that

$$|K(x; y_1, ..., y_m) - K(x'; y_1, ..., y_m)| \le \frac{A|x - x'|^{\gamma}}{(|x - y_1| + \dots + |x - y_m|)^{mn + \gamma}}$$
(1.2)

whenever $\max_{1 \le k \le m} |x - y_k| \ge 2|x - x'|$, and also that for each fixed k with $1 \le k \le m$,

$$|K(x; y_1, ..., y_k, ..., y_m) - K(x; y_1, ..., y'_k, ..., y_m)| \le \frac{A|y_k - y'_k|^{\gamma}}{(|x - y_1| + \dots + |x - y_m|)^{mn + \gamma}}$$
(1.3)

whenever $\max_{1 \leq j \leq m} |x - y_j| \geq 2|y_k - y'_k|$. An operator T defined on m-fold product of Schwartz spaces and taking values in the space of tempered distributions, is said to be an m-linear Calderón-Zygmund operator with kernel K, if T is m-linear, bounded from $L^{q_1}(\mathbb{R}^n) \times \cdots \times$

Received January 21, 2010; Accepted October 3, 2010

Supported by the National Natural Science Foundation of China (Grant No. 10971228).

E-mail address: music.tree@163.com (Y. L. JIAO); chenzhenggang@163.com (Z. G. CHEN)

 $L^{q_m}(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for some $q_1, ..., q_m \in [1, \infty]$ and $q \in (0, \infty)$ with $1/q = \sum_{k=1}^m 1/q_k$, and for some m- $CZK(A, \gamma)$ kernel K with positive constants A and γ ,

$$T(f_1, ..., f_m)(x) = \int_{(\mathbb{R}^n)^m} K(x; y_1, ..., y_m) \prod_{k=1}^m f_k(y_k) \, \mathrm{d}y_1, ..., \, \mathrm{d}y_m,$$
(1.4)

when $f_1, ..., f_m \in L^2(\mathbb{R}^n)$ with compact supports and $x \notin \bigcap_{k=1}^m \operatorname{supp} f_k$. It is obvious that when m = 1, this operator is just the classical Calderón-Zygmund operator and when $m \ge 2$, this operator has intimate connection with operator theory and partial differential equations. Grafakos and Torres [5] developed the idea used in Kenig and Stein [8], considered the behavior on $L^1(\mathbb{R}^n) \times \cdots \times L^1(\mathbb{R}^n)$ for the operator T, and proved that an m-linear Calderón-Zygmund operator is bounded from $L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_m}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ for any $p_1, ..., p_m \in (1, \infty]$ and $p \in (0, \infty)$ with $1/p = \sum_{1 \le k \le m} 1/p_k$. Fairly recently, Lerner et al. [9] introduced a new maximal operator and a multilinear $A_p(\mathbb{R}^n)$ weight condition, and obtained some interesting weighted estimates for multilinear Calderón-Zygmund operators and the corresponding commutators. For other works about the multilinear Calderón-Zygmund operator, see [4], [6] and [7].

The purpose of this paper is to establish some multi-weight, weighted weak type norm inequalities for the multilinear Calderón-Zygmund operator T, in analogy with the two-weight, weighted estimate for classical Calderón-Zygmund operator established by Cruze-Uribe, SFO and Pérez [3]. To state our results, we first recall some notation.

By a weight w we mean that w is a nonnegative and locally integrable function. For a measurable set E and a weight w, w(E) denotes the integral $\int_E w(x) dx$. For $p \in (0, \infty)$, $L^p(\mathbb{R}^n, w)$ denotes the usual weighted L^p space with weight w and $L^{p,\infty}(\mathbb{R}^n, w)$ denotes the weighted weak L^p norm with respect to the weight w, that is,

$$L^{p,\infty}(\mathbb{R}^{n}, w) = \{ f : \|f\|_{L^{p,\infty}(\mathbb{R}^{n}, w)} < \infty \},\$$

where and in the following,

$$||f||_{L^{p,\infty}(\mathbb{R}^n,w)} = \sup_{\lambda>0} \lambda \Big(w(\{x \in \mathbb{R}^n : |f(x)| > \lambda\}) \Big)^{1/p}$$

Given a cube $Q, p \ge 1, \delta \in \mathbb{R}$ and a suitable function f, set

$$\|f\|_{L(\log L)^{\delta}, Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_{Q} \frac{|f(x)|}{\lambda} \log^{\delta} \left(e + \frac{|f(x)|}{\lambda} \right) dx \le 1 \right\}.$$

Define the maximal operator $M_{L(\log L)^{\delta}}$ by

$$M_{L(\log L)^{\delta}}f(x) = \sup_{Q \ni x} \|f\|_{L(\log L)^{\delta}, Q},$$

where the supremum is taken over all cubes containing x. Note that when $\delta = 0$, $M_{L(\log L)^{\delta}}$ is just the standard Hardy-Littlewood maximal operator M.

Let u, v be a pair of weights on \mathbb{R}^n . For $\sigma \ge 0$, we say that $(u, v) \in A_{p, (\log L)^{\sigma}}(\mathbb{R}^n)$, if there exists a positive constant C such that for any cube Q,

$$||u||_{L(\log L)^{\sigma}, Q} \left(\frac{1}{|Q|} \int_{Q} v^{-p'/p}(x) \mathrm{d}x\right)^{p-1} \le C.$$

For the case of $\sigma = 0$, we denote $(u, v) \in A_p(\mathbb{R}^n)$ (see [3]).

Our results can be stated as follows.

Theorem 1.1 Let m and ℓ be integers with $1 \leq \ell \leq m$, T be an m-linear Calderón-Zygmund operator, $u, v_1, ..., v_m$ be weights. Suppose that $p_1, ..., p_\ell \in (1, \infty)$, $p_{\ell+1}, ..., p_m \in (1, 1 + \gamma/n)$, and for some $\delta > 0$, $(u, v_k) \in A_{p_k, (\log L)^{p_k-1+\delta}}(\mathbb{R}^n)$ for $1 \leq k \leq \ell$ and $(u, v_k) \in A_{p_k}(\mathbb{R}^n)$ for $\ell + 1 \leq k \leq m$, then there exists a positive constant C, such that for all bounded functions $f_1, ..., f_m$ with compact supports,

$$\|T(f_1, ..., f_m)\|_{L^{p,\infty}(\mathbb{R}^n, u)} \le C \prod_{k=1}^m \|f_k\|_{L^{p_k}(\mathbb{R}^n, v_k)}.$$
(1.5)

We mow make some conventions. Throughout this paper, we always denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. For a measurable set E, χ_E denotes the characteristic function of E. Given $\lambda > 0$ and a cube Q, λQ denotes the cube with the same center as Q and whose side length is λ times that of Q. For a locally integrable function f on \mathbb{R}^n and bounded measurable set E, $(f)_E$ denotes the mean value of f over E, that is, $(f)_E = \frac{1}{|E|} \int_E f(x) dx$. For a fixed p with $p \in [1, \infty)$, p' denotes the dual exponent of p, namely, p' = p/(p-1).

2. Proof of Theorem 1.1

We begin with some preliminary lemmas.

Lemma 2.1 ([3, Theorem 1.2]) Let T be a Calderón-Zygmund operator. Given a pair of weights (u, v) and $p, 1 , suppose that for some <math>\delta > 0$, $(u, v) \in A_{p, (\log L)^{p-1+\delta}}(\mathbb{R}^n)$. Then T is bounded from $L^p(\mathbb{R}^n, v)$ to $L^{p, \infty}(\mathbb{R}^n, u)$.

Lemma 2.2 Let $m \ge 2$, T be an m-linear Calderón-Zygmund operator with kernel K in m- $CZK(A, \gamma)$ for some $A, \gamma > 0$. Then for all positive integer l with $1 \le l < m$ and all bounded functions $f_1, ..., f_{m-l}$ with compact supports, the operator $T_{f_1,...,f_{m-l}}$ defined by

$$T_{f_1,...,f_{m-l}}(f_{m-l+1},...,f_m)(x) = T(f_1,...,f_m)(x)$$

is an *l*-linear Calderón-Zygmund operator with kernel K in l-CZK $(A \prod_{k=1}^{m-l} ||f_k||_{L^{\infty}(\mathbb{R}^n)}, \gamma)$.

This lemma is a combination of Lemma 3 and Theorem 2 in [5].

Lemma 2.3 ([3, p. 424)] Let $q \in (1, \infty)$, $(u, v) \in A_{q, (\log L)^{q-1+\sigma}}(\mathbb{R}^n)$ for some $\sigma > 0$. Then for any $\delta \in [0, \sigma/q)$, there exists a positive constant C such that

$$\|M_{L(\log L)^{\delta}}f\|_{L^{q'}(\mathbb{R}^{n}, v^{-q'/q})} \le C\|f\|_{L^{q'}(\mathbb{R}^{n}, u^{-q'/q})}.$$

Proof of Theorem 1.1 First, we prove the case that $\ell = m$. We will proceed by an inductive argument on m. By Lemma 2.1 we know that (1.5) holds for the case m = 1. Let $m \ge 2$ be a positive integer. We assume that (1.5) holds if T is an l-linear Calderón-Zygmund operator with

 $1 \leq l \leq m-1$. Let $f_1, ..., f_m$ be bounded functions with compact supports and

$$\|f_1\|_{L^{p_1}(\mathbb{R}^n, v_1)} = \|f_2\|_{L^{p_2}(\mathbb{R}^n, v_2)} = \dots = \|f_m\|_{L^{p_m}(\mathbb{R}^n, v_m)} = 1.$$

Our goal is to prove that there exists a positive constant C such that for any $\lambda > 0$,

$$u(\{x \in \mathbb{R}^n : |T(f_1, ..., f_m)(x)| > \lambda\}) \le C\lambda^{-p}.$$
(2.1)

For each fixed $\lambda > 0$, applying the Calderón-Zygmund decomposition to $|f_m|^{p_m}$ at the level λ^p , we then obtain sequences of cubes $\{Q_m^j\}_j$ with disjoint interiors, such that

(i) For any fixed j,

$$\lambda^{p/p_m} < \frac{1}{|Q_m^j|} \int_{Q_m^j} |f_m(y)| \, \mathrm{d}y \le 2^n \lambda^{p/p_m}.$$
(2.2)

(ii)
$$|f_m(x)| \le C\lambda^{p/p_m}$$
 a. e. $x \in \mathbb{R}^n \setminus \bigcup_j Q_m^j$.

 Set

$$g_m(x) = f_m(x)\chi_{\mathbb{R}^n \setminus \bigcup_j Q_m^j}(x) + \sum_j (f_m)_{Q_m^j}\chi_{Q_m^j}(x),$$

and

$$b_m(x) = \sum_j \left(f_m(x) - (f_m)_{Q_m^j} \right) \chi_{Q_m^j}(x) = \sum_j b_m^j(x).$$

Lemma 2.2, together with the fact that $\|g_m\|_{L^{\infty}(\mathbb{R}^n)} \leq C\lambda^{p/p_m}$ and the inductive hypothesis, tells us that

$$u(\{x \in \mathbb{R}^{n} : |T(f_{1}, ..., f_{m-1}, g_{m})(x)| > \lambda/2\}) \leq C\lambda^{-\tilde{p}} ||g_{m}||_{L^{\infty}(\mathbb{R}^{n})}^{\tilde{p}} \prod_{k=1}^{m-1} ||f_{k}||_{L^{p_{k}}(\mathbb{R}^{n}, v_{k})}^{\tilde{p}}$$
$$\leq C\lambda^{-p},$$

where $\tilde{p} \in (0, \infty)$ with $1/\tilde{p} = \sum_{k=1}^{m-1} 1/p_k$. For any j, a trivial computation involving the Hölder inequality in (2.2), shows that

$$\begin{split} \left(\int_{Q_m^j} v_m^{-p'_m/p_m}(x) \mathrm{d}x\right)^{1/p'_m} \\ &\leq \lambda^{-p/(p_m p'_m)} \Big(\int_{Q_m^j} |f_m(x)| \mathrm{d}x\Big)^{1/p'_m} \Big(\frac{1}{|Q_m^j|} \int_{Q_m^j} v_m^{-p'_m/p_m}(x) \mathrm{d}x\Big)^{1/p'_m} \\ &\leq \lambda^{-p/(p_m p'_m)} \Big(\int_{Q_m^j} |f_m(x)|^{p_m} v_m(x) \mathrm{d}x\Big)^{1/(p_m p'_m)} \times \\ &\quad \times \Big(\frac{1}{|Q_m^j|} \int_{Q_m^j} v_m^{-p'_m/p_m}(x) \mathrm{d}x\Big)^{1/p'_m} \Big(\int_{Q_m^j} v_m^{-p'_m/p_m}(x) \mathrm{d}x\Big)^{1/(p'_m p'_m)}, \end{split}$$

and so

$$\left(\int_{Q_m^j} v_m^{-p'_m/p_m}(x) \mathrm{d}x\right)^{1/p'_m} \leq \lambda^{-p/p'_m} \left(\int_{Q_m^j} |f_m(x)|^{p_m} v_m(x) \mathrm{d}x\right)^{1/p'_m} \times \left(\frac{1}{|Q_m^j|} \int_{Q_m^j} v_m^{-p'_m/p_m}(x) \mathrm{d}x\right)^{p_m/p'_m}.$$
(2.3)

Let $\Omega = \bigcup_j 4nQ_m^j$. The estimate (2.3), via the Hölder inequality, leads to that

$$\begin{aligned} u(\Omega) &\leq C\lambda^{-p/p_m} \sum_{j} \frac{u(4nQ_m^j)}{|4nQ_m^j|} \int_{Q_m^j} |f_m(x)| dx \\ &\leq C\lambda^{-p/p_m} \sum_{j} \frac{u(4nQ_m^j)}{|4nQ_m^j|} \Big(\int_{Q_m^j} |f_m(x)|^{p_m} v_m(x) dx \Big)^{1/p_m} \Big(\int_{Q_m^j} v_m^{-p'_m/p_m}(x) dx \Big)^{1/p'_m} \\ &\leq C\lambda^{-p/p_m} \lambda^{-p/p'_m} \sum_{j} \int_{Q_m^j} |f_m(x)|^{p_m} v_m(x) dx \times \\ & \frac{u(4nQ_m^j)}{|4nQ_m^j|} \Big(\frac{1}{|Q_m^j|} \int_{Q_m^j} v_m^{-p'_m/p_m}(x) dx \Big)^{p_m/p'_m} \\ &\leq C\lambda^{-p/p_m} \lambda^{-p/p'_m} \sum_{j} \int_{Q_m^j} |f_m(x)|^{p_m} v_m(x) dx \leq C\lambda^{-p}. \end{aligned}$$

$$(2.4)$$

If we can prove that

$$u(\{x \in \mathbb{R}^n \setminus \Omega : |T(f_1, ..., f_{m-1}, b_m)(x)| > \lambda/2\}) \le C\lambda^{-p},$$
(2.5)

the inequality (2.1) then follows from (2.2), (2.3) and (2.4) directly.

We now prove (2.5). Note that for any $\sigma > 0$,

$$\int_{\mathbb{R}^n} \frac{1}{(|x-y_1| + \sum_{k=2}^m |x-y_k|)^{n+\sigma}} |f(y_1)| \mathrm{d}y_1 \le \frac{C}{(\sum_{k=2}^m |x-y_k|)^{\sigma}} Mf(x)$$

By the vanishing moment of b_m^j and the regularity (1.3), we see that for $x \in \mathbb{R}^n \backslash \Omega$,

$$\begin{aligned} |T(f_1, ..., f_{m-1}, b_m)(x)| &\sum_j \left| \int_{(\mathbb{R}^n)^m} K(x; y_1, ..., y_m) f_1(y_1) \cdots f_{m-1}(y_{m-1}) b_m^j(y_m) dy_m \right| \\ &\leq \sum_j \int_{\mathbb{R}^n} \int_{(\mathbb{R}^n)^{m-1}} \frac{|y_m - c_m^j|^{\gamma}}{(\sum_{k=1}^m |x - y_k|)^{mn+\gamma}} \prod_{k=1}^{m-1} |f_k(y_k)| dy_1 \cdots dy_{m-1} |b_m^j(y_m)| dy_m \\ &\leq C \sum_j \prod_{k=1}^{m-1} M f_k(x) \int_{\mathbb{R}^n} \frac{|y_m - c_m^j|^{\gamma}}{|x - y_m|^{n+\gamma}} |b_m^j(y_m)| dy_m \\ &\leq C \prod_{k=1}^{m-1} M f_k(x) \mathcal{M}_m(x), \end{aligned}$$
(2.6)

where for each fixed j, c_m^j and $l(Q_m^j)$ are the center and side length of Q_m^j and \mathcal{M}_m is the Marcinkiewicz function defined by

$$\mathcal{M}_m(x) = \sum_j \|b_m^j\|_{L^1(\mathbb{R}^n)} \frac{\{l(Q_m^j)\}^{\gamma}}{|x - c_m^j|^{n+\gamma}} \chi_{\mathbb{R}^n \setminus \Omega}(x).$$

It is well known that if $(u, v) \in A_r(\mathbb{R}^n)$, then the Hardy-Littlewood maximal operator is bounded from $L^r(\mathbb{R}^n, v)$ to $L^{r,\infty}(\mathbb{R}^n, u)$. Therefore,

$$u(\{x \in \mathbb{R}^n : Mf_k(x) > \lambda^{p/p_k}\}) \le C\lambda^{-p} \int_{\mathbb{R}^n} |f_k(x)|^{p_k} v_k(x) \mathrm{d}x.$$

$$(2.7)$$

On the other hand, an application of the Hölder inequality shows that for any weight w,

$$\int_{\mathbb{R}^n \setminus \Omega} \mathcal{M}_m(x) w(x) \mathrm{d}x \leq \sum_j \|b_m^j\|_{L^1(\mathbb{R}^n)} \{l(Q_m^j)\}^\gamma \int_{\mathbb{R}^n \setminus 4nQ_m^j} \frac{w(x)}{|x - c_m^j|^{n+\gamma}} \mathrm{d}x$$
$$\leq C \sum_j \|b_m^j\|_{L^1(\mathbb{R}^n)} \inf_{y \in Q_m^j} Mw(y)$$
$$\leq C \int_{\mathbb{R}^n} |f_m(x)| Mw(x) \mathrm{d}x$$
$$\leq C \|f_m\|_{L^{p_m}(\mathbb{R}^n, v_m)} \|Mw\|_{L^{p'_m}(\mathbb{R}^n, v_m^{-p'_m/p_m})}.$$

We thus have by a standard duality argument and Lemma 2.3 that

$$u(\{x \in \mathbb{R}^{n} \setminus \Omega : \mathcal{M}_{m}(x) > \lambda^{p/p_{m}}\}) \leq C\lambda^{-p} \int_{\mathbb{R}^{n} \setminus \Omega} (\mathcal{M}_{m}(x))^{p_{m}} u(x) \mathrm{d}x$$
$$= C\lambda^{-p} \Big(\sup_{\|w\|_{L^{p'_{m}}(\mathbb{R}^{n}, u^{-p'_{m}/p_{m}})} \leq 1} \int_{\mathbb{R}^{n} \setminus \Omega} \mathcal{M}_{m}(x) w(x) \mathrm{d}x \Big)^{p_{m}}$$
$$\leq C\lambda^{-p} \|f_{m}\|_{L^{p_{m}}(\mathbb{R}^{n}, v_{m})}^{p_{m}}.$$
(2.8)

Combining the inequalities (2.6), (2.7) and (2.8) yields

$$u(\{x \in \mathbb{R}^n \setminus \Omega : |T(f_1, ..., f_{m-1}, b_m)(x)| > \lambda/2\}) \leq \sum_{k=1}^{m-1} u(\{x \in \mathbb{R}^n : Mf_k > \lambda^{p/p_k}\}) + u(\{x \in \mathbb{R}^n \setminus \Omega : \mathcal{M}_m(x) > \lambda^{p/p_m}/2\})$$
$$\leq C\lambda^{-p}$$

and then establishes (2.5).

Now, we turn our attention to the case $1 \leq \ell < m$. Let $p_k \in (1, 1 + \gamma/n)$ with $\ell \leq k \leq m$, $f_1, ..., f_m$ be bounded functions with compact supports and

$$||f_1||_{L^{p_1}(\mathbb{R}^n, v_1)} = ||f_2||_{L^{p_2}(\mathbb{R}^n, v_2)} = \dots = ||f_m||_{L^{p_m}(\mathbb{R}^n, v_m)} = 1.$$

For each k with $\ell + 1 \leq k \leq m$ and each fixed $\lambda > 0$, applying Calderón-Zygmund decomposition to $|f_k|$ at the level λ^{p/p_k} , we obtain sequences of cubes $\{Q_k^j\}_j$, g_k , b_k , and b_k^j which are similar to that of the case $\ell = m$. Then, Lemma 2.2 and (1.5) with $\ell = m$ give us that

$$u(\{x \in \mathbb{R}^{n} : |T(f_{1}, ..., f_{\ell}, g_{\ell+1}, ..., g_{m})(x)| > \lambda/2\})$$

$$\leq C\lambda^{-\widetilde{p}_{\ell}} \prod_{k=1}^{\ell} ||f_{k}||_{L^{p_{k}}(\mathbb{R}^{n}, v_{k})}^{\widetilde{p}_{\ell}} \prod_{\ell+1}^{m} ||g_{k}||_{L^{\infty}(\mathbb{R}^{n})}^{\widetilde{p}_{\ell}}$$

$$\leq C\lambda^{-\widetilde{p}_{\ell}} \prod_{\ell+1}^{m} \lambda^{\widetilde{p}_{\ell}p/p_{k}} \leq C\lambda^{-p},$$

where $\tilde{p}_{\ell} \in (0, \infty)$ with $1/\tilde{p}_{\ell} = \sum_{k=1}^{\ell} 1/p_k$. Set $E = \bigcup_{\ell+1 \leq k \leq m} \bigcup_j 4nQ_k^j$. It is proved that $u(E) \leq C\lambda^{-p}$. Thus, the proof of (1.5) in this case is reduced to proving

$$u(\{x \in \mathbb{R}^n \setminus E : |T(f_1, ..., f_\ell, h_{\ell+1}, ..., h_m)(x)| > \lambda/2\}) \le C\lambda^{-p},$$
(2.9)

where $h_k \in \{g_k, b_k\}$ for k with $\ell + 1 \le k \le m$, and at least one $h_k = b_k$.

We only prove (2.9) for the case $h_m = b_m$ since the other cases can be dealt with in a similar way. Again, we can easily obtain that for $x \in \mathbb{R}^n \setminus E$,

$$|T(f_1, ..., f_{\ell}, h_{\ell+1}, ..., h_{m-1}, b_m)(x)| \le C \prod_{k=1}^{\ell} Mf_k(x) \prod_{k=\ell+1}^{m-1} Mh_k(x)\mathcal{M}_m(x).$$

Note that for any fixed k with $\ell + 1 \le k \le m$,

$$|h_k(x)| \le |f_k(x)| + C_0 \lambda^{p/p_k},$$

with C_0 a positive constant. It then follows that

$$u(\{x \in \mathbb{R}^{n} : Mh_{k}(x) > (C_{0} + 1)\lambda^{p/p_{k}}\}) \leq u(\{x \in \mathbb{R}^{n} : Mf_{k}(x) > \lambda^{p/p_{k}}\})$$
$$\leq C\lambda^{-p} \int_{\mathbb{R}^{n}} |f_{k}(x)|^{p_{k}} v_{k}(x) \mathrm{d}x.$$
(2.10)

On the other hand, a straightforward computation, along with the Hölder inequality and the estimate (2.3), leads to that

$$\begin{split} \int_{\mathbb{R}^n \setminus E} \mathcal{M}_m(x) u(x) \mathrm{d}x &\leq \sum_j \|b_m^j\|_{L^1(\mathbb{R}^n)} \int_{\mathbb{R}^n \setminus E} \frac{|Q_m^j|^{\gamma/n}}{|x - c_m^j|^{n+\gamma}} u(x) \mathrm{d}x \\ &\leq C \sum_j \int_{Q_m^j} |f_m(y)| \mathrm{d}y \sum_{l=1}^\infty \frac{|Q_m^j|^{\gamma/n}}{|2^l 4n Q_m^j|^{1+\gamma/n}} \int_{2^l 4n Q_m^j} u(x) \mathrm{d}x \\ &\leq C \lambda^{-p/p'_m} \sum_j \int_{Q_m^j} |f_m(y)|^{p_m} v_m(y) \mathrm{d}y \times \\ & \left(\frac{1}{|Q_m^j|} \int_{Q_m^j} v_m^{-p'_m/p_m}(x) \mathrm{d}x\right)^{p_m/p'_m} \times \\ & \sum_{l=1}^\infty \frac{|Q_m^j|^{\gamma/n}}{|2^l 4n Q_m^j|^{1+\gamma/n}} \int_{2^l 4n Q_m^j} u(x) \mathrm{d}x \\ &\leq C \lambda^{-p/p'_m} \sum_j \int_{Q_m^j} |f_m(y)|^{p_m} v_m(y) \mathrm{d}y \sum_{l=1}^\infty 2^{nl(p_m-1-\gamma/n)} \\ &\leq C \lambda^{-p/p'_m} \int_{\mathbb{R}^n} |f_m(y)|^{p_m} v_m(y) \mathrm{d}y. \end{split}$$

This, via (2.10), in turn implies that

$$u(\{x \in \mathbb{R}^{n} \setminus E : |T(f_{1}, ..., f_{\ell}, h_{\ell+1}, ..., h_{m-1}, b_{m})(x)| > \lambda/2\})$$

$$\leq \sum_{k=1}^{\ell} u(\{x \in \mathbb{R}^{n} : Mf_{k}(x) > \lambda^{p/p_{k}}\}) + \sum_{k=\ell+1}^{m-1} u(\{x \in \mathbb{R}^{n} : Mh_{k}(x) > \lambda^{p/p_{k}}\}) + u(\{x \in \mathbb{R}^{n} \setminus E : \mathcal{M}_{m}(x) > (1 + C_{0})^{\ell+1-m} \lambda^{p/p_{m}}/2\})$$

$$\leq C\lambda^{-p}.$$

The proof of Theorem 1.1 is completed. \Box

Acknowledgement The authors would like to thank the referees for some valuable suggestions and corrections.

References

- COIFMAN R, MEYER Y. On commutators of singular integrals and bilinear singular integrals [J]. Trans. Amer. Math. Soc., 1975, 212: 315–331.
- [2] COIFMAN R, MEYER Y. Nonlinear Harmonic Analysis, Operator Theory and P.D.E [M]. Ann. of Math. Stud., 112, Princeton Univ. Press, Princeton, NJ, 1986.
- [3] CRUZ-Uribe D, PÉREZ C. Sharp two-weight, weak-type norm inequalities for singular integral operators [J]. Math. Res. Lett., 1999, 6(3-4): 417–427.
- [4] GRAFAKOS L, KALTON N. Multilinear Calderón-Zygmund operators on Hardy spaces [J]. Collect. Math., 2001, 52(2): 169–179.
- [5] GRAFAKOS L, TORRES R H. Multilinear Calderón-Zygmund theory [J]. Adv. Math., 2002, 165(1): 124– 164.
- [6] GRAFAKOS L, TORRES R H. Maximal operators and weighted norm inequalities for multilinear singular integrals [J]. Indiana Univ. Math. J., 2002, 51(5): 1261–1276.
- [7] GRAFAKOS L, TORRES R H. On multilinear singular integrals of Calderón-Zygmund type [J]. Publ. Mat., 2002, Vol. Extra, 57–91.
- [8] KENIG C E, STEIN E M. Multilinear estimates and fractional integration [J]. Math. Res. Lett., 1999, 6(1): 1–15.
- [9] LERNER A K, OMBROSI S, PÉREZ C, et al. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory [J]. Adv. Math., 2009, 220(4): 1222–1264.