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1. Preliminaries

In paper [1], Leonard gave some results on weakly sequentially complete set, compact set

and relatively sequentially compact set in lp(X) (1 ≤ p <∞). It is well known that substitution

spaces PBBs are more general than lp(X). In this paper, we discuss the equivalent relation

among the reflexivity, weakly sequentially complete and bounded complete in full function spaces,

and obtain some results on weakly sequential compactness of subset and the property (u) in

substitution space PBBs that are generalization and supplement of the results in [1, 4, 5, 13].

Definition 1.1 ([2]) Let S be an index set. A full function space B is a Banach space of (real

or complex) function f on S such that for each f in B, each function g satisfying |g(s)| ≤ |f(s)|

for each s ∈ S is again in B and ‖g‖ ≤ ‖f‖.

Definition 1.2 ([2]) Let B be a full function space on S, and for each s ∈ S, let Bs be a normed

linear space. Let PBBs be the space of all those functions x on S such that

(1) x(s) ∈ Bs for each s ∈ S, and

(2) if f(s) = ‖x(s)‖ for each s ∈ S, then f ∈ B.
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If for each x ∈ PBBs, define ‖x‖ = ‖f‖, then PBBs is said to be the substitution space of

Bs in B.

Definition 1.3 ([3]) Let B be a full function space on S and f ∈ B, D ⊂ S, fD(s) =
{ f(s), s ∈ D

0, s ∈ S \D
. Then fD ∈ B. If for arbitrary ε > 0, there exists a finite set D ⊂ S, such

that ‖f − fD‖ < ε, we say that f can be finitely approximated.

Remark 1.1 Let B be a full function space on S. f ∈ B can be finitely approximated, then

{s ∈ S : f(s) 6= 0} is at most countable.

Let B be a full function space on S, where each function f ∈ B can be finitely approximated.

Set

Y = {g : ∀ f ∈ B,
∑

s∈S

g(s)f(s) is absolutely convergent, sup
f∈B,‖f‖=1

|
∑

s∈S

g(s)f(s)| <∞},

then Y is a linear space. Define

‖g‖ = sup
f∈B,‖f‖=1

|
∑

s∈S

g(s)f(s)|, g ∈ Y.

Y is also a full function space.

In the following, let B be a full function space on index set S, where each function f ∈ B

can be finitely approximated, and Y is given as above.

By using the standard argument, the following representation theorems, i.e., Lemmas 1.1 and

1.2, were proved in [3].

Lemma 1.1 ([3]) Φ ∈ B∗ if and only if there is a unique g ∈ Y such that Φ(f) =
∑

s∈S g(s)f(s)

for all f ∈ B, and ‖Φ‖ = ‖g‖.

Lemma 1.2 ([3]) F ∈ (PBBs)
∗ if and only if there is a unique x∗ ∈ PY B

∗
s such that F (x) =

∑

s∈S x
∗(s)(x(s)) for all x ∈ PBBs, and ‖F‖ = ‖x∗‖.

Definition 1.4 A Banach space X is said to be weakly sequentially complete if for any weak-

Cauchy sequence (xn)n≥1 ⊂ X, there is x ∈ X such that xn
w
−→ x as n→ ∞.

Definition 1.5 A full function B is said to be bounded complete if f is a function on S with

sup{‖fD‖ : D ⊂ S, D is finite} <∞, then f ∈ B.

Definition 1.6 ([14]) A series
∑∞
n=1 xn in Banach space X is said to be a weakly unconditional

Cauchy (wuC for short) series if sup∆∈F ‖
∑

n∈∆ xn‖ <∞, where F = {∆ ⊂ N : ∆ is finite set}.

A Banach space X is said to have property (u) if there is some wuC series
∑∞
n=1 yn satisfying

xn −
∑n

i=1 yi
w

−→ 0 as n→ ∞ for any weak Cauchy sequence {xn} ⊂ X.

There is an equivalent description of property (u) as follows: for any weak Cauchy sequence

{xn} ⊂ X, there exists a subsequence {xnk
} ⊂ {xn} and a wuC series

∑∞
n=1 zn such that

xnk
−

∑k

i=1 zi
w

−→ 0 as k → ∞.

Let X be a Banach space, π(X) = {(yn) :
∑∞
n=1 yn is a wuC series in X} and β(X) = {v ∈
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X∗∗ : v is a point of w∗-limit of some sequence in X}. Then β(X) is a closed subspace of X∗∗

(see [15]), and (π(X), ‖| · |‖) is a Banach space, where ‖|(yn)|‖ = sup∆∈F ‖
∑

n∈∆ yn‖ (see [16]).

Define

T : π(X) −→ β(X), T ((yn)) = w∗ − lim
n→∞

n
∑

i=1

yi,

N(T ) = {(yn) ∈ π(X) : T ((yn)) = 0}

and

T̂ : π(X)/N(T ) −→ β(X), T̂ ([(yn)]) = T ((yn)).

Then T is a bounded linear operator and ‖T ‖ = 1. Moreover, if X has property (u), then T̂

is one-to-one onto operator with ‖T̂‖ = 1 and u = ‖T̂−1‖ is called (u)-model of X. Obviously,

u ≥ 1 (see [13]).

Lemma 1.3 ([13]) Suppose Banach space X has property (u) and u is (u)-model of X . Let

{xn} ⊂ X be a weak Cauchy sequence. Then for any ε > 0, there exists wuC series
∑∞
n=1 yn

such that

(1) xn −
∑n

i=1 yi
w

−→ 0 as n→ ∞ and

(2) sup∆∈F ‖
∑

i∈∆ yi‖ ≤ u limn→∞ ‖xn‖ + ε, where F = {∆ ⊂ N : ∆ is a finite set}.

In the following we introduce three special types of substitution spaces.

Let X be a Banach space with a basis {xn}. {xn} is called a hyperorthogonal basis of X if
∑∞

n=1 αnxn is in X , then for |βn| ≤ |αn|, n = 1, 2, . . .,
∑∞

n=1 βnxn is in X and ‖
∑∞
n=1 βnxn‖ ≤

‖
∑∞
n=1 αnxn‖. Let {Xn} be a sequence of Banach spaces. Set Y = PXXn = {y = (y1, y2, . . .) :

yn ∈ Xn, n = 1, 2, . . . ,
∑∞
n=1 ‖yn‖xn ∈ X} and ‖y‖ = ‖

∑∞
n=1 ‖yn‖xn‖. By [5], we know that

Banach space X with the hyperorthogonal basis is a full function space, Y = PXXn is a special

substitution space of Xn in X , and each element x in X can be finitely approximated.

Let {Xn} be a sequence of Banach spaces. For each p, 1 ≤ p < ∞, the direct sum of those

spaces in the sense of lp is defined as follows

lp(Xn) =
{

x = (x1, x2, . . . , xn, . . .) : xn ∈ Xn,

∞
∑

n=1

‖xn‖
p <∞

}

and

‖x‖ = (

∞
∑

n=1

‖xn‖
p)

1

p .

lp(Xn) (1 ≤ p ≤ ∞) is a special substitution space, and their full function spaces are lp. lp(X)

is a special case of the lP (Xn) when Xn = X,n = 1, 2, . . . .

Recently, Saito, Takahashi, et al. [6–12] introduced and studied the ψ-direction sum of

X1, X2, . . . , Xn, while X1, X2, . . . , Xn are Banach spaces. Let ∆n be the (n − 1)-simplex:

{(s1, s2 . . . , sn−1) ∈ Rn−1
+ : s1 + s2 + · · · + sn−1 ≤ 1}. Let Ψn be a set of all continuous

convex functions on ∆n, and ψ ∈ Ψn, which satisfies the following conditions:

(a) ψ(0, 0, . . . , 0) = ψ(0, 1, . . . , 0) = · · · = ψ(0, 0, . . . , 1) = 1;

(b) ψ(s1, s2, . . . , sn−1) ≥ (s1 + s2 + · · · + sn−1) × ψ( s1
s1+s2+···+sn−1

, . . . , sn−1

s1+s2+···+sn−1

);
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(c) ψ(s1, s2, . . . , sn−1) ≥ (1 − s1) × ψ(0, s2
1−s1

, . . . , sn−1

1−s1
);

(d) ψ(s1, s2, . . . , sn−1) ≥ (1 − sn−1) × ψ( s1
1−sn−1

, . . . , sn−2

1−sn−1

, 0).

The ψ-direct sum (X1 ⊕X2 ⊕ · · · ⊕Xn)ψ is the direct sum of X1, X2, . . . , Xn equipped with the

norm

‖(x1, x2, . . . , xn)‖ψ = ‖(‖x1‖, ‖x2‖, . . . , ‖xn‖)‖ψ

with xi ∈ Xi, 1 ≤ i ≤ n. By [6–12], we know that ψ-direct sum is a very important concept

by which many important geometrical properties in Banach space were obtained, and the usual

lp-sum X ⊕p Y , 1 ≤ p <∞, is its special case. In fact, let

ψp(t) =

{

{(1 − t)p + tp}
1

p , if 1 ≤ p <∞,

max{1 − t, t}, if p = ∞.

Then ψp-direct sum X ⊕ψp
Y is just the lp-sum X ⊕p Y , namely

‖(x, y)‖ψ = ‖(x, y)‖p =

{

{‖x‖p + ‖y‖p}
1

p , if 1 ≤ p <∞,

max{‖x‖, ‖y‖}, if p = ∞,

for (x, y) ∈ X ⊕p Y . Dowling [6] pointed out that ψ-direct sum is a special substitution space

and its full function space is Cn.

2. Results and proofs

Let B be a full function space on index set S. We always assume that for every s ∈ S there is

f ∈ B such that f(s) 6= 0. Thus χD ∈ B for any finite subset D ⊂ S. Further valuation function

δs ∈ B∗ and ‖δs‖ ≤ 1
‖χ{s}‖

, where δs = f(s), ∀f ∈ B.

The following lemma has been proved in [3]. We again give its proof for the sake of com-

pleteness.

Lemma 2.1 ([3]) Let B be a full function space and each function f ∈ B can be finitely ap-

proximated, and linear spanning of valuation functionals span{δs : s ∈ S} be dense in B∗. If x

is in PBBs and {xn} is a sequence in PBBs, then xn
w
−→ x as n→ ∞ if and only if

(1) {‖xn‖} is bounded, and

(2) xn(s)
w
−→ x(s) as n→ ∞, s ∈ S.

Proof For fixed s, ps(x) = x(s), x ∈ PBBS . Then

‖ps(x)‖ = ‖x(s)‖ =
‖x(s)‖ ‖χ{s}‖

‖χ{s}‖
≤

‖x‖

‖χ{s}‖
.

Hence, “only if” part is true.

For the “if” part, let x∗ ∈ PY B
∗
S , D be a finite subset of S, and g(s) = ‖x∗(s)‖ for each

s ∈ S. Then g ∈ Y (where Y is given as Lemma 1.1) and ‖x∗ − x∗D‖ = ‖x∗S\D‖ = ‖gS\D‖,

where x∗D(s) = x∗(s), s ∈ D, and x∗D(s) = 0, s ∈ S \D. Since span {δs : s ∈ S} is dense in B∗,

equivalently span {χ{s} : s ∈ S} is dense in Y , then for g ∈ Y and any ε > 0, there is a finite set



Some properties of the full function space and the substitution space 891

Ds ⊂ S such that ‖g −
∑

s∈Ds
α(s)χ{s}‖ < ε. Also Y is a full function space, so

‖gS\Ds
‖ ≤ ‖g −

∑

s∈Ds

α(s)χ{s}‖ < ε.

Therefore, we have ‖x∗ − x∗Ds
‖ < ε.

Let D be an arbitrary finite subset of S. Evidently, x∗D =
∑

s∈Ds
α(s)χ{s}. By Lemma 1.2,

we obtain that

x∗D(x(n) − x) =
∑

s∈D

x∗(s)(x(n)(s) − x(s)).

By (2) we have x∗D(x(n) − x) → 0 as n → ∞. Since {x∗D : x∗ ∈ PYB
∗
s , D is an arbitrary finite

subset of S} is dense in PY B
∗
s , it follows from (1) that x(n) w

−−→ x . 2

Lemma 2.2 LetB be a full function space and each function f ∈ B can be finitely approximated,

and span{δs : s ∈ S} be dense in B∗. (fn)n≥1 ⊂ B is bounded. If {fn(s)} is a Cauchy number

sequence for each s ∈ S, then {fn}n≥1 is a weak-Cauchy sequence.

Proof Let Φ ∈ B∗. Since span{δs : s ∈ S} is dense in B∗, for each ε > 0, there exists
∑k

i=1 αiδsi

such that ‖Φ −
∑k

i=1 αiδsi
‖ < ε

3M , where M = supn ‖f
n‖.

Because {fn(s)}n≥1 (s ∈ S) is a Cauchy number sequence, we may take a large enough

N ∈ N such that
∣

∣

∣
(

k
∑

i=1

αiδsi
)(fm) − (

k
∑

i=1

αiδsi
)(fn)

∣

∣

∣
<
ε

3
, m, n > N.

Therefore

|Φ(fm) − Φ(fn)| ≤
∣

∣

∣
Φ(fm) − (

k
∑

i=1

αiδsi
)(fm)

∣

∣

∣
+

∣

∣

∣
(

k
∑

i=1

αiδsi
)(fm) − (

k
∑

i=1

αiδsi
)(fn)

∣

∣

∣
+

∣

∣

∣
(

k
∑

i=1

αiδsi
)(fn) − Φ(fn)

∣

∣

∣

≤‖Φ −

k
∑

i=1

αiδsi
‖ · ‖fm‖ + |

k
∑

i=1

αi(f
m(si) − fn(si))| + ‖Φ −

k
∑

i=1

αiδsi
‖ · ‖fn‖

≤
ε

3M
sup
n

‖fn‖ +
ε

3
+

ε

3M
sup
n

‖fn‖ = ε.

By the arbitrariness of ε and Φ, (fn)n≥1 is a w-Cauchy sequence. 2

Theorem 2.1 Let B be a full function space and each function f ∈ B can be finitely approxi-

mated. If B is bounded complete, then B is also weakly sequentially complete.

Proof Let {fn}n≥1 ⊂ B be a w-Cauchy sequence. Then {Φ(fn)}n≥1 is a Cauchy number

sequence for each Φ ∈ B∗. Specially, {fn(s)}n≥1 (∀s ∈ S) is convergent. Set f(s) = limn f
n(s),

∀s ∈ S. Then f ∈ B.

In fact, for any arbitrary finite set D ⊂ S, we have

‖fD‖ =‖
∑

s∈D

f(s)χ{s}‖ = ‖
∑

s∈D

lim
n
fn(s)χ{s}‖
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= lim
n

‖
∑

s∈D

fn(s)χ{s}‖ = lim
n

‖fnD‖ ≤ lim
n

‖fn‖

≤ sup
n

‖fn‖ <∞.

Since B is bounded complete, f ∈ B.

For any g ∈ B∗, then g(h) =
∑

s∈S

g(s)h(s) (h ∈ B), which is absolutely convergent. Since

each h ∈ B can be finitely approximated, we may set

∞
⋃

k=1

{s ∈ S : fk(s) 6= 0, f(s) 6= 0} = {s1, s2, . . .}.

So

g(fn) =

∞
∑

i=1

g(si)f
n(si), g(f) =

∞
∑

i=1

g(si)f(si).

Write cn = (g(s1)f
n(s1), g(s2)f

n(s2), . . .) ∈ l1. For ∀c∗ = (α1, α2, . . .) ∈ l∞, then

c∗(ck − cl) =

∞
∑

i=1

αig(si)(f
k(si) − f l(si))

=
∞
∑

i=1

αig(si)(f
k − f l)(si), k, l ∈ N.

Denote

ḡ(t) =

{

αig(si), t = si, i ∈ N,

0, t 6= si, i ∈ N.

Since g ∈ B∗ and {αi} is bounded, ḡ ∈ B∗. Thus c∗(ck − cl) = ḡ(fk − f l).

According to the hypothesis, we obtain that {cn}n≥1 is a w-Cauchy sequence in l1. Since l1

is weakly sequentially complete, cn
w
−→ c as n → ∞ for some c ∈ l1. Certainly, cni −→ ci, as

n→ ∞, ∀i ∈ N. So c = (g(s1)f(s1), g(s2)f(s2), . . .).

Take c∗ = (1, 1, . . .) ∈ l∞. Then

g(fn) =

∞
∑

i=1

g(si)f
n(si) = c∗(cn) −→ c∗(c) =

∞
∑

i=1

g(si)f(si) = g(f)

as n → ∞. By the arbitrariness of g, fn
w
−→ f as n → ∞, which shows that B is weakly

sequentially complete. 2

Now we give two main results in this paper.

Theorem 2.2 Let B be a full function space and each function f ∈ B can be finitely approxi-

mated. Then the following properties of B are equivalent:

(1) B is reflexive;

(2) B is bounded complete and span{δs : s ∈ S} = B∗;

(3) B is weakly sequentially complete and span{δs : s ∈ S} = B∗.

Proof (1) =⇒ (2). Suppose B is reflexive. Then span{δs : s ∈ S} = B∗. Indeed, if Φ ∈

B∗\span{δs : s ∈ S}, then there exists f̂ = J(f) ∈ B∗∗ = J(B) such that Φ(f) = 1, Ψ(f) = 0

for any Ψ ∈ span{δs : s ∈ S}.
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Let {s ∈ S : f(s) 6= 0} = {s1, s2, . . .}. By Lemma 1.1, there exists g ∈ Y such that

Φ(f) =
∑∞
i=1 g(si)f(si). But

∞
∑

i=1

g(si)f(si) =
∞
∑

i=1

(g(si)δsi
) (f) = 0,

i.e., Φ(f) = 0, a contradiction. This means span{δs : s ∈ S} = B∗.

Let f be a function on S with sup{‖fD‖ : D ⊂ S, D is finite set} < ∞. Define D1 � D2 ⇔

D1 ⊂ D2. Then Γ = {D : D ⊂ S, D is finite set} with partial order � is a directed set and

{fD : D ∈ Γ} is a net of B.

Since B is reflexive, there exists a subnet {fD′ : D′ ∈ Γ′} and g ∈ B such that fD′
w
−→ g,

where Γ′ is a cofinal subset of Γ. Then fD′(s) −→ g(s) (s ∈ S). Given s ∈ S, denote D = {s}.

Then there is Dα ∈ Γ′ satisfying Dα � D, i.e., s ∈ Dα. Whenever D′ � Dα, fD′(s) = f(s).

Therefore f(s) = g(s). That is f = g ∈ B. Thus B is bounded complete.

(2)=⇒ (3). It is obtained by Theorem 2.1.

(3)=⇒ (1). Assume {fk}k≥1 ⊂ U(B). Let

∞
⋃

k=1

{s ∈ S : fk(s) 6= 0} = {s1, s2, . . .}.

By the diagonal method, we can choose a subsequence {fkj
}j≥1 ⊂ {fk}k≥1 such that

lim
j→∞

fkj
(si) = αi, ∀i ∈ N.

According to the condition span{δs : s ∈ S} = B∗, {fkj
} is a weak-Cauchy sequence by Lemma

2.2. So, there is f ∈ B such that fkj

w
−→ f as j → ∞, and ‖f‖ ≤ 1, which shows B is reflexive. 2

Theorem 2.3 Let B be a full function space and each function f ∈ B can be finitely approx-

imated. If B is weakly sequentially complete and span{δs : s ∈ S} = B∗. Then K ⊂ PBBs is

relatively weakly sequentially campact if and only if

(1) K is bounded;

(2) Ts(K) is relatively weakly sequentially compact in Bs for any s ∈ S, where Ts : PBBs →

Bs, Ts(y) = y(s), ∀y ∈ PBBs.

Proof We only prove the sufficiency.

Let K ⊂ PBBs be bounded and {yk}k≥1 ⊂ K. Set

∞
⋃

k=1

{s ∈ S, yk(s) 6= 0} = {s1, s2, . . .},

then {yk(sj)}k≥1 ⊂ Bsj
(j ∈ N) is relatively weakly sequentially campact. We may assume that

yk(sj)
w
−→ ysj

∈ Bsj
as k → ∞ for any i ∈ N (otherwise, we can choose a subsequence of {yk}k≥1

by the diagonal method). Then

‖ysj
‖ ≤ lim

k

‖yk(sj)‖, j ∈ N.

Since {‖yk‖}k≥1 is bounded, there exist {yki}i≥1 ⊂ {yk}k≥1 and sequence of numbers
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(αsj
)j≥1 such that limi→∞ ‖yki(sj)‖ = αsj

for any j ∈ N. Denoting

g(t) =

{

αsj
, t = sj , j ∈ N,

0, t 6= sj , j ∈ N,

and fki(s) = ‖yki(s)‖, we have

fki(s) −→ g(s) as i→ ∞, ∀s ∈ S.

According to the hypothesis that span{δs : s ∈ S} = B∗ and the weak sequential completeness

of B, we obtain that fki
w
−→ g ∈ B as i→ ∞. Let

y(t) =

{

ysj
, t = sj , j ∈ N,

0, t 6= sj , j ∈ N,

and f(s) = ‖y(s)‖. Then |f(s)| ≤ |g(s)| by (1). So f ∈ B and y ∈ PBBs. In virtue of Lemma

2.1, yk
w
−→ y as k → ∞. 2

By Theorems 2.1 and 2.3, we have

Corollary 2.1 ([3]) Let B be a full function space and each function f ∈ B can be finitely

approximated. If B is bounded complete and span{δs : s ∈ S} = B∗. Then K ⊂ PBBs is

relatively weakly sequentially compact if and only if

(1) K is bounded;

(2) Ts(K) is relatively weakly sequentially compact in Bs for any s ∈ S.

By Theorem 2.3, we can also obtain the following result.

Theorem 2.4 Let B be a reflexive full function space and each function f ∈ B can be finitely

approximated. Then K ⊂ PBBs is relatively weakly sequentially compact if and only if

(1) K is bounded;

(2) Ts(K) is relatively weakly sequentially compact in Bs for any s ∈ S, where Ts : PBBs →

Bs, Ts(y) = y(s), ∀y ∈ PBBS .

By Theorem 2.4, we can obtain the following three corollaries.

Corollary 2.2 ([4]) Let X be a reflexive Banach space with the hyperorthogonal basis and {Xn}

be a sequence of Banach space. PXXn is the substitution space of Xn in X . Then K ⊂ PXXn

is relatively weakly sequentially compact if and only if

(1) K is bounded;

(2) Tn(K) is relatively weakly sequentially compact inXn for any n ∈ N, where Tn : PXXn →

Xn, Tn(x) = xn, ∀x = (x1, x2, . . . , xn, . . .) ∈ PXXn.

Corollary 2.3 Let Xn be a Banach space, n = 1, 2, . . . , 1 ≤ p <∞. Then a subset K ⊂ lp(Xn)

is relatively weakly sequentially compact if and only if

(1) K is bounded;

(2) Tn(K) is relatively weakly sequentially compact in Xn for any n ∈ N, where Tn :

lp(Xn) → Xn, Tn(x) = xn, ∀x = (x1, x2, . . . , xn, . . .) ∈ lp(Xn).

In particular, the subset K ⊂ lp(X) is relatively weakly sequentially compact if and only if
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(1) K is bounded;

(2) Tn(K) is relatively weakly sequentially compact in X , where Tn : lp(X) → X , Tn(x) =

xn, ∀x = (x1, x2, . . . , xn, . . .) ∈ lp(X) (see [1]).

Corollary 2.4 Let X1, X2, . . . , Xn be Banach spaces, and ψ ∈ Ψn. Then K ⊂ (X1 ⊕X2 ⊕ · ·

· ⊕ Xn)ψ , where (X1 ⊕ X2 ⊕ · · · ⊕ Xn)ψ is a ψ-direct sum, is a relatively weakly sequentially

compact set if and only if

(1) K is bounded;

(2) Ti(K) is relatively weakly sequentially compact in Xi, i = 1, 2, . . . , n, where Ti : (X1 ⊕

X2 ⊕ · · · ⊕Xn)ψ → Xi, Ti(x) = xi, ∀x ∈ (X1 ⊕X2 ⊕ · · · ⊕Xn).

Theorem 2.5 Let B be a full function space on S and each function f ∈ B can be finitely

approximated. If PBBs has property (u), then Bs also has property (u) for every s ∈ S.

Proof Let s ∈ S, {xns }n≥1 be weak Cauchy sequence in Bs. Set

xn(t) =

{

xns , t = s,

0, t 6= s,

then xn ∈ PBBs(∀n ∈ N) and {xn} is weak Cauchy sequence.

Since PBBs has property (u), there exists wuC series
∑∞
i=1 y

i in PBBs such that xn −
∑n

i=1 y
i w
−→ 0(n→ ∞). Therefore xns −

∑n

i=1 y
i(s)

w
−→ 0 as n→ ∞. Also

sup
∆∈F

‖
∑

i∈∆

yi(s)‖ = sup
∆∈F

‖
∑

i∈∆

yi(s)‖‖χ{s}‖

‖χ{s}‖
≤

1

‖χ{s}‖
sup
∆∈F

‖
∑

i∈∆

yi‖ <∞,

so
∑∞

i=1 y
i(s) is wuC series in Bs.

Under certain conditions, if every Bs has property (u), then PBBs also has property (u). 2

Theorem 2.6 Let B be a bounded complete full function space and each function f ∈ B can

be finitely approximated, and span{δs : s ∈ S} = B∗. If Bs has property (u) for each s ∈ S, and

c = sups∈S us <∞, then PBBs has property (u), where us is (u)-model of Bs.

Proof Let {xn}∞n=1 ⊂ PBBs be a weak Cauchy sequence. Then {xn} is bounded. Set

∞
⋃

k=1

{s ∈ S, xn(s) 6= 0} = {s1, s2, . . .},

then {xn(sj)}n≥1 ⊂ Bsj
(∀j ∈ N) is bounded. Take a subsequence {xnk} ⊂ {xn} by the diagonal

method such that ‖xnk(si)‖ is convergent for any i ∈ N. For any i ∈ N, since {xnk(si)}
∞
k=1 is

weak Cauchy sequence in Bsi
and Bsi

has property (u), by Lemma 1.3 there exists wuC series
∑∞

j=1 y
j
si

in Bsi
satisfying

(a) xnk(si) −
∑k

j=1 y
j
si

w
−→ 0 as k → ∞,

(b) sup∆∈F ‖
∑

j∈∆ y
j
si
‖ ≤ usi

limk→∞ ‖xnk(si)‖+ 1
i2‖χ{si}

‖ ≤ c limk→∞ ‖xnk(si)‖+ 1
i2‖χ{si}

‖ .

Set

yk(t) =

{

yksi
, t = si, i ∈ N,

0, t 6= si, i ∈ N,
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then yk ∈ PBBs (∀k ∈ N) and
∑∞
j=1 y

j is a wuC series. In fact, denote fnk(t) = ‖xnk(t)‖ (∀t ∈

S), then fnk ∈ B and ‖fnk‖ = ‖xnk‖ ≤ supn ‖x
n‖ <∞. Let D be any finite subset in S. Then

sup
∆∈F

∥

∥

∥

∑

si∈D∩{s1,s2,...}

‖
∑

j∈∆

yj(si)‖χ{si}

∥

∥

∥
≤

∥

∥

∥

∑

si∈D∩{s1,s2,...}

(

c lim
k→∞

‖xnk(si)‖ +
1

i2‖χ{si}‖

)

χ{si}

∥

∥

∥

≤ c lim
k→∞

∥

∥

∥

∑

si∈D∩{s1,s2,...}

‖xnk(si)‖χ{si}

∥

∥

∥
+

∞
∑

i=1

1

i2
= c lim

k→∞
‖fnk

D ‖ +

∞
∑

i=1

1

i2

≤ c sup
n

‖fn‖ +

∞
∑

i=1

1

i2
<∞.

Specially, for any j ∈ N, taking gj(s) = ‖yj(s)‖ (∀s ∈ S), we have

‖gjD‖ =
∥

∥

∥

∑

si∈D∩{s1,s2,...}

‖yj(si)‖χ{si}

∥

∥

∥
≤ c sup

n

‖fn‖ +

∞
∑

i=1

1

i2
<∞.

By the hypothesis that B is bounded complete and the arbitrariness ofD, gj ∈ B and yj ∈ PBBs.

Notice that for any n ∈ N,

sup
∆∈F

∥

∥

∥

n
∑

i=1

‖
∑

j∈∆

yj(si)‖χ{si}

∥

∥

∥
< c sup

n

‖fn‖ +

n
∑

i=1

1

i2
<∞,

we obtain that

sup
∆∈F

‖
∑

j∈∆

yj‖ = sup
∆∈F

∥

∥

∥

∞
∑

i=1

‖
∑

j∈∆

yj(si)‖χ{si}

∥

∥

∥
<∞.

Thus
∑

j y
j is a wuC series in PBBs.

In order to complete the proof of the theorem, we only need to show that xnk −
∑k

j=1 y
j w
−→ 0

as k → ∞. Since xnk(s) −
∑k

j=1 y
j(s)

w
−→ 0 as k → ∞ for any s ∈ S, xnk −

∑k

j=1 y
j w
−→ 0 as

k → ∞ by Lemma 2.1. 2

Remark 2.1 By Theorems 2.5 and 2.6, we can also obtain some corresponding corollaries in

the mentioned three special types of substitution spaces in Section 1.
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