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Abstract An ordered semiring is a semiring S equipped with a partial order ≤ such that the

operations are monotonic and constant 0 is the least element of S. In this paper, several notions,

for example, ordered ideal, minimal ideal, and maximal ideal of an ordered semiring, simple

ordered semirings, etc., are introduced. Some properties of them are given and characterizations

for minimal ideals are established. Also, the matrix semiring over an ordered semiring is consid-

ered. Partial results obtained in this paper are analogous to the corresponding ones on ordered

semigroups, and on the matrix semiring over a semiring.
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1. Introduction

A semiring is an algebra S = (S, +, ·, 0) equipped with binary operations + (sum or addition)

and · (product or multiplication) and constant 0 such that (S, +, 0) is a commutative monoid,

(S, ·) is a semigroup and multiplication distributes over addition from both sides. Thus,

(a + b)c = ac + bc,

c(a + b) = ca + cb,

a0 = 0a = 0

hold for all a, b, c ∈ S.

A semiring S is called an antiring if it is zerosumfree, i.e., if the condition a + b = 0 implies

that a = b = 0 for all a, b ∈ S.

A semiring S is called entire if ab = 0 implies that a = 0 or b = 0.

An ordered semiring is a semiring S equipped with a partial order ≤ such that the operations

are monotonic and the constant 0 is the least element of S.

If S is an ordered semiring and a, b ∈ S such that a + b = 0, then a = a + 0 ≤ a + b = 0 and

so a = 0. Similarly, b = 0. Therefore, any ordered semiring is an antiring.
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A morphism of semirings is a function that preserves the operations and the constant 0. A

morphism of ordered semirings also preserves the partial order.

A subsemiring of a semiring S is a nonempty subset of S which is closed under the operations

and constant 0. A left (resp. right) ideal of a semiring S is a subsemiring I of S such that s ∈ S

and x ∈ I implies sx ∈ I (resp. xs ∈ I). I is an ideal if it is both a left and a right ideal.

Let H be a nonempty subset of S. Then the set {x ∈ S : x ≤ h for some h ∈ H} is denoted

by the notation (H ]. For H = {a}, we write (a] instead of ({a}]. It is clear that H ⊆ (H ],

((H ]] = (H ] and A ⊆ B ⇒ (A] ⊆ (B] for any nonempty subset A, B of S.

We refer to [1–4] for all background information concerning semirings, semigroups, and uni-

versal algebra.

2. Ordered ideals of ordered semirings

In this section, we define our main concept, ordered ideals of ordered semirings, and establish

some of their elementary properties.

From this section to the third section, S stands for an arbitrary ordered semiring.

Definition 1 A left (resp. right) ideal I of S is called a left (resp. right) ordered ideal, if for

any a ∈ S, b ∈ I, a ≤ b implies a ∈ I (i.e., (I] ⊆ I). I is called an ordered ideal of S if it is both

a left and a right ordered ideal of S.

Remark 1 It is clear that {0} and S itself are ordered ideal of S. An ordered ideal I of S such

that I 6= {0} and I 6= S is called a proper ordered ideal.

Example 1 Let L = ([0, 1],∨, ·, 0), where [0, 1] is the unit interval, a ∨ b = max{a, b} for

a, b ∈ [0, 1] and a · b = (a + b − 1) ∨ 0 for a, b ∈ [0, 1]. It is easy to verify that L equipped with

the usual ordering ≤, is an ordered semiring. Let I = [0, 1

2
]. It is not difficult to verify that I is

an ordered ideal of L.

Proposition 1 Let f : R → S be a morphism of ordered semirings. Then K = {x ∈ R : f(x) =

0} is an ordered ideal of R.

Proof Clearly K is nonempty since 0 ∈ K. Suppose that r ∈ R and x, y ∈ K. Then we have

f(rx) = f(r)f(x) = f(r)0 = 0, f(xr) = f(x)f(r) = 0f(r) = 0,

and

f(x + y) = f(x) + f(y) = 0 + 0 = 0.

Hence rx, xr, x + y ∈ K. In addition, if a ≤ x for some x ∈ K, then f(a) ≤ f(x) = 0 since f is

a morphism. Thus f(a) = 0 as 0 is the least element of S. It follows that a ∈ K. This completes

the proof. 2

Lemma 1 Let {Iλ, λ ∈ ∧} be a family of ordered ideals of S. Then
⋂

λ∈∧
Iλ is also an ordered

ideal of S.

Proof Clearly
⋂

λ∈∧
Iλ is an ideal of S (see [2]). Suppose that a ≤ x for some x ∈

⋂
λ∈∧

Iλ.
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Since x ∈ Iλ and Iλ is an ordered ideal of S, we have a ∈ Iλ for each λ ∈ ∧. Thus a ∈
⋂

λ∈∧
Iλ.

This completes the proof. 2

The intersection of all ordered ideals of S containing a nonempty subset A of S is the ordered

ideal of S generated by A, denoted by L(A). For A = {a}, we denote by L(a) the ordered ideal

of S generated by a (a ∈ S).

Proposition 2 Let I be an ideal of S. Then (I] is an ordered ideal of S generated by I.

Proof Clearly (I] is nonempty since I ⊆ (I]. Suppose that r ∈ S and a, b ∈ (I]. Then there

exist x, y ∈ I such that a ≤ x and b ≤ y by the definition of (I]. Since S is an ordered semiring

and I is an ideal of S, we have ra ≤ rx ∈ I, ar ≤ xr ∈ I and a + b ≤ x + y ∈ I. It follows that

ra ∈ (I], ar ∈ (I] and a + b ∈ (I]. As for ((I]] ⊆ (I], it is clear. Hence (I] is an ordered ideal of S

containing I. Moreover, if J is an arbitrary ordered ideal of S containing I, then (I] ⊆ (J ] ⊆ J .

Thus (I] is the least ordered ideal of S containing I. That is to say, (I] is an ordered ideal of S

generated by I, as required. 2

Corollary 1 For any a ∈ S, L(a) = (A], where A = {
∑

fin(nia + xia + ayi + uiavi : ni are

nonnegative integers, xi, yi, ui, vi ∈ S}.

Proof It is easy to verify that A is an ideal of S generated by a (see [2]). So by Proposition 2,

we have (A] is an ordered ideal of S containing a. Thus L(a) ⊆ (A]. On the other hand, L(a) is

also an ideal of S containing a, so we have A ⊆ L(a). Thus (A] ⊆ L(a) since (A] is an ordered

ideal of S generated by A. Therefore L(a) = (A], as required. 2

Corollary 2 Let A, B be ideals of S. Then L(A ∪ B) = (A + B], where A + B = {a + b : a ∈

A, b ∈ B}.

Proof It is easy to verify that A+B is an ideal of S generated by A∪B (see [2]). So by Proposition

2, we have (A + B] is an ordered ideal of S containing A ∪ B. Thus L(A ∪ B) ⊆ (A + B]. On

the other hand, L(A ∪B) is also an ideal of S containing A ∪B, so we have A + B ⊆ L(A ∪B).

It follows that (A + B] ⊆ L(A ∪ B) since (A + B] is an ordered ideal of S generated by A + B.

Therefore L(A ∪ B) = (A + B]. 2

Corollary 3 Let A, B, C be ordered ideals of S. Then (C∩A+C∩B] ⊆ C∩(A+B]. Moreover, if

x ≤ y+z implies x ≤ y or x ≤ z for all x, y, z in the poset (S,≤), then (C∩A+C∩B] = C∩(A+B].

Proof It is easy to verify that C ∩ (A + B] is an ordered ideal of S containing C ∩ A and

C ∩ B by Lemma 1 and Proposition 2. While by Proposition 2, we have (C ∩ A + C ∩ B] =

L((C ∩ A) ∪ (C ∩ B)). So (C ∩ A + C ∩ B] ⊆ C ∩ (A + B].

As for the second claim, suppose that x ∈ C ∩ (A + B]. Then x ∈ C and x ≤ a + b for some

a ∈ A and b ∈ B. By hypothesis, we have x ≤ a or x ≤ b. Thus x ∈ C ∩ A or x ∈ C ∩ B. It

follows that x ∈ (C ∩A) ∪ (C ∩B) ⊆ ((C ∩A) + (C ∩B)]. Thus C ∩ (A + B] ⊆ (C ∩A + C ∩B]

and so (C ∩ A + C ∩ B] = C ∩ (A + B], as required. 2

Remark 2 In general, the equation (C ∩A+C∩B] = C∩ (A+B] does not hold in an arbitrary
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ordered semiring.

Example 2 Let (N5 = {0, 1, a, b, c}, ≤) be the pentagon lattice depicted in Figure 1. We

define two binary operations +(addition) and ·(multiplication) on N5 as follows, x + y = x ∨ y

and x · y = 0 for all x, y in N5. It is not difficult to verify that (N5, +, ·, 0,≤) is an ordered

semiring. Let A = {0, a}, B = {0, b}, C = {0, b, c}. Then it is easy to verify that A, B, C are

ordered ideals of N5, and (A + B] = N5. So (C ∩A + C ∩B] = (C ∩B] = B 6= C = C ∩ (A + B].

a

c

0

b

1

Figure 1 The ‘pentagon’ lattice N5

Proposition 3 Let I(S) = {J : J is an ordered ideal of S}. Then I(S), with ⊆ as the partial

ordering, is a complete lattice.

Proof It is obvious that (I(S),⊆) is a poset. In addition, for any I and J in I(S), by Lemma 1

and Corollary 2, we have I∧J = I∩J and I∨J = (I +J ]. Thus (I(S),⊆) is a lattice. Moreover,

it is clear that {0} is the smallest element and S is the largest element in the poset (I(S),⊆).

Again by Lemma 1, I(S) is closed under arbitrary intersection. Thus (I(S),⊆) is a complete

lattice. 2

3. Minimal ideals and simple ordered semirings

An ordered semiring S is called simple if it does not contain proper ordered ideals. A proper

ordered ideal I of S is called minimal if there is no proper ordered ideal J of S such that J ⊆ I.

Equivalently, if for any ordered ideal J of S such that J ⊆ I, then we have J = I or J = {0}.

Definition 2 A subsemiring K of S is called simple, if the ordered semiring (K, +, ·, 0,≤) is

simple.

Remark 3 That an ordered semiring S is simple does not imply that a subsemiring of S is

also simple.

Example 3 Let L = ([0, +∞),∨, ·, 0), where ∨ = max and · is the usual multiplication of real

numbers. Let R = [0, 1]. It is easy to verify that L equipped with the usual ordering ≤, is an

ordered semiring and simple; and R is a subsemiring of S but not an ideal. Also R is not simple

since T = [0, 1) is a proper ordered ideal of R.

Lemma 2 S is simple if and only if L(a) = S for all a ∈ S and a 6= 0.

Lemma 3 Let I be an ordered ideal of S and K be a simple subsemiring. If K ∩ I 6= {0}, then

K ⊆ I.
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Proof Let 0 6= a ∈ K ∩ I. Since K is simple and 0 6= a ∈ K, we have LK(a) = K by Lemma

2, where LK(a) denotes the ordered ideal of K generated by a, that is, LK(a) = (A], where

A = {
∑

fin(nia + xia + ayi + uiavi : ni are nonnegative integers, xi, yi, ui, vi ∈ K}. Therefore

K = LK(a) ⊆ L(a) ⊆ I since a ∈ I, as required. 2

Theorem 1 Let S be an ordered semiring and entire. Then an ordered ideal of S is minimal if

and only if it is simple.

Proof ⇒. Let I be a minimal ordered ideal of S, and J 6= {0} be an ordered ideal of I. Let

H = {h ∈ J : h ≤
∑

fin
kiaili for some ki, li ∈ I and ai ∈ J}. Then H ⊆ J ⊆ I.

In the following, we will prove that H is an ordered ideal of S and H 6= {0}. We shall prove

it in three steps.

(1) Since I 6= {0} and J 6= {0}, we can choose 0 6= a ∈ I and 0 6= b ∈ J . Thus 0 6= aba ∈ H

since S is entire. It follows that H 6= {0}.

(2) H is an ideal of S. In fact, suppose that s ∈ S and x, y ∈ H . We have x ≤
∑

fin
kiaili

and y ≤
∑

fin
ujbjvj for some ki, li, uj, vj ∈ I and ai, bj ∈ J . Then

x + y ≤
∑

fin

(kiaili + ujbjvi),

and

sx ≤ s
∑

fin

kiaili =
∑

fin

(ski)aili, xs ≤ (
∑

fin

kiaili)s =
∑

fin

kiai(lis).

We immediately have x + y ∈ H . At the same time, since sx ∈ SH ⊆ SI ⊆ I,
∑

fin
(ski)aili ∈

IJI ⊆ J and J is an ordered ideal of I, we have sx ∈ J . Moreover, since ski ∈ SI ⊆ I, ai ∈ J

and li ∈ I, we get sx ∈ H . A similar argument shows that xs ∈ H . Thus H is an ideal of S.

(3) (H ] ⊆ H . Indeed, suppose that x ≤ h for some h ∈ H . Since h ∈ H , we have h ∈ J

and h ≤
∑

fin
kiaili for some ki, li ∈ I and ai ∈ J . Thus x ≤

∑
fin

kiaili ∈ SJS ⊆ SIS ⊆ I. It

follows that x ∈ I since I is an ordered ideal of S. As x ≤
∑

fin
kiaili ∈ IJI ⊆ J , x ∈ I and J

is an ordered ideal of I, we have x ∈ J . Then since x ∈ J , x ≤
∑

fin
kiaili, ki, li ∈ I and ai ∈ J ,

we have x ∈ H .

Thus H is an ordered ideal of S and H 6= {0}. Since I is a minimal ideal of S, we have H = I

and so J = I. Therefore I is simple.

⇐. Let K be an ordered ideal of S and simple. Let J be an ordered ideal of S and J 6= {0}

such that J ⊆ K. Then J is an ordered ideal of K. Since K is simple, we have J = K. Therefore,

K is a minimal ordered ideal of S. This completes the proof. �

Theorem 2 Let S be an ordered semiring and entire. Assume that S has proper ordered ideals

and the equation (C ∩A+C ∩B] = C ∩(A+B] holds for any ordered ideals A, B, C of S. Then

every proper ordered ideal of S is minimal (simple) if and only if S contains exactly one proper

ordered ideal or S contains exactly two proper ordered ideals J, K such that S = (J + K].

Proof ⇒. Let J be a proper ordered ideal of S. By hypothesis, J is a minimal ordered ideal of

S. Then we have the following two cases:

(1) S = L(a), ∀a ∈ S\J (S\J is the complement of J in S).
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Suppose that K is also a proper ordered ideal of S and K 6= J . If K\J = ∅, then K ⊆ J

and so K ⊂ J , which is impossible (since J is minimal). If K\J 6= ∅, then S = L(a) ⊆ K, for

some a ∈ K\J ⊆ S\J and so S = K. Contradiction. Thus, in this case, J is the unique proper

ordered ideal of S.

(2) S 6= L(a), for some a ∈ S\J .

Then L(a) is a proper ideal of S. By hypothesis, L(a) is minimal. By Corollary 2, (L(a)+J ]

is an ordered ideal of S. Assume that (L(a)+J ] 6= S. Then (L(a)+J ] is a proper ordered ideal of

S. By hypothesis (L(a) + J ] is a minimal ordered ideal of S. On the other hand J ⊂ (L(a) + J ].

We get a contradiction. Thus (L(a) + J ] = S.

Let K be an arbitrary ordered ideal of S. By hypothesis, K is minimal. Since K = K ∩ S =

K ∩ (L(a) + J ] = (K ∩ L(a) + K ∩ J ], we have the following two cases:

(a) K ∩ J 6= {0}. Then K ∩ J is an ordered ideal of S by Lemma 1. Since K ∩ J ⊆ J , J is

minimal, we have K ∩ J = J , i.e., J ⊆ K. Since K is minimal, we have J = K.

(b) K ∩ L(a) 6= {0}. A similar argument shows that K = L(a).

Therefore, in this case, S contains exactly two proper ideals J and L(a) such that S =

(L(a) + J ].

⇐. If S contains exactly one proper ordered ideal J , it is obvious that J is minimal. Suppose

that S contains exactly two proper ordered ideals J and K such that S = (J +K]. Then J * K

and K * J . Otherwise S 6= (J + K]. Let I 6= {0} be an ordered ideal of S such that I ⊆ J .

Then I ⊆ J ⊂ S, and so I is a proper ordered ideal of S. Since I ⊆ J and K * J , we have

I 6= K. Since S contains exactly two proper ordered ideals J, K, we have I = J . Thus J is

minimal. A similar argument shows that K is minimal. 2

4. Matrices

Let S be a semiring with identity element 1, i.e., (S, ·, 1) is a monoid. We denote by Mm×n(S)

the set of all m×n matrices over S. Especially, we denote by Mn(S) the set of all square matrices

of order n over S.

For A ∈ Mm×n(S), we denote by aij or Aij the element of S corresponding to the (i, j)th

entry of A. For convenience, we use n to denote the set {1, 2, . . . , n} for any positive integer n.

If m = n and aij = 0 for all i, j ∈ n, then A is called the zero matrix and denoted by 0n. If

aij = 0 for all i and j provided that i 6= j and aii = 1 for all i ∈ n, then A is called the identity

matrix and denoted by In.

Given A, B ∈ Mm×n(S) and C ∈ Mn×l(S), we define:

A + B = (aij + bij)m×n; AC = (
∑

k∈n

aikckj)m×l.

It is easy to verify that (Mn(S), +, ·, 0n) is a semiring with the identity element In.

Moreover, if S is an ordered semiring, we define:

A ≤ B ⇔ (∀i ∈ m) (∀j ∈ n) aij ≤ bij .

It is easy to verify that (Mn(S), +, ·, 0n, In,≤) is also an ordered semiring.
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From now on, S stands for an arbitrary ordered semiring with identity element 1.

Proposition 4 Let I be an ordered ideal of S. Then Mn(I) is an ordered ideal of Mn(S).

Proof Since I is an ideal of S, we have Mn(I) is an ideal of Mn(S) (see [7], Proposition 2). In

the following, we will prove that (Mn(I)] ⊆ Mn(I).

Suppose that A ≤ B for some B ∈ (Mn(I)]. Then aij ≤ bij and bij ∈ I for all i, j ∈ n. Since

I is an ordered ideal of S, we have aij ∈ I. Thus A ∈ Mn(I). Therefore, (Mn(I)] ⊆ Mn(I) and

so Mn(I) is an ordered ideal of Mn(S). 2

Proposition 5 Let K be an ordered ideal of Mn(S). Then there exists a unique ordered ideal

I of S such that K = Mn(I).

Proof Let I = {a ∈ S : Aij = a for some A ∈ K}. We denote by eij the matrix in Mn(S) with

1 as the (i, j)th entry, 0 otherwise; pij the elementary matrix in Mn(S) with the ith row and the

jth row of the identity matrix In permuted. Since Aijeij = eiiAejj , ae11 = p1i(aeij)p1j for all

i, j ∈ n, it is easy to verify that I = {a ∈ S : Aij = a for some A ∈ K} = {a ∈ S : aeij ∈ K for

some i, j ∈ n} = {a ∈ S : ae11 ∈ K}.

In the following, we will prove that I is the unique ordered ideal of S such that K = Mn(I).

We shall prove it in four steps.

(1) I is an ideal of S. Suppose that a, b ∈ I and s ∈ S. Then ae11, be11 ∈ K and so

(a + b)e11 = ae11 + be11 ∈ K, (sa)e11 = (se11)(ae11) ∈ K, (as)e11 = (ae11)(se11) ∈ K. It follows

that a + b, sa, as ∈ I. Thus I is an ideal of S.

(2) (I] ⊆ I. Assume that x ≤ a for some a ∈ I. We have xe11 ≤ ae11 and ae11 ∈ K. Since

K is an ordered ideal of Mn(S), we have xe11 ∈ K. Consequently, x ∈ I.

(3) K = Mn(I). Suppose that A = (aij)n×n ∈ K. Then aij ∈ I for each i, j ∈ n. Thus

A ∈ Mn(I). It follows that K ⊆ Mn(I).

On the other hand, if B = (bij)n×n ∈ Mn(I), then bij ∈ I and so bijeij ∈ K for each i, j ∈ n.

Consequently, B = (bij)n×n =
∑

i,j∈n bijeij ∈ K. It follows that Mn(I) ⊆ K. Thus K = Mn(I).

(4) I is unique. Suppose that J is also an ordered ideal of S such that K = Mn(J). Then

K = Mn(I) = Mn(J). In the following, we will prove I = J . Indeed, if a ∈ I, then ae11 ∈ Mn(I)

and so ae11 ∈ Mn(J). Thus a ∈ J . It follows that I ⊆ J . A similar argument shows that J ⊆ I.

Therefore I = J . This completes the proof. 2

Theorem 3 Let A = {I : I is an ordered ideal of S} and B = {K : K is an ordered ideal of

Mn(S)}. Then the two lattices (A,⊆) and (B,⊆) are isomorphic.

Proof Let f : I 7→ Mn(I) be a function from A to B.

In the following, we will prove that f is an isomorphism. We shall prove it in three steps.

(1) It follows from Proposition 5 that f is onto one-to-one.

(2) f is order-preserving. Assume that I ⊆ J holds in A. It is obvious that Mn(I) ⊆ Mn(J).

That is to say f(I) ⊆ f(J).

(3) f−1 is order-preserving. Suppose that K1 ⊆ K2 holds in B. By Proposition 5, there
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exist I, J in A such that K1 = Mn(I) and K2 = Mn(J). It follows that Mn(I) ⊆ Mn(J) .

If a ∈ I, then ae11 ∈ Mn(I) and so ae11 ∈ Mn(J). Thus a ∈ J . It follows that I ⊆ J , i.e.,

f−1(K1) ⊆ f−1(K2). This completes the proof. 2

Definition 3 An ordered ideal I 6= S of S is called maximal if, for any ordered ideal J of S,

I ⊂ J implies J = S.

Corollary 4 Let I be an ordered ideal of S. Then I is maximal if and only if Mn(I) is a

maximal ordered ideal of Mn(S).

Proof Assume that I is maximal and K is an ordered ideal of Mn(S) such that Mn(I) ⊂ K.

By Proposition 5, there exists a unique ordered ideal J of S such that K = Mn(J). Thus

Mn(I) ⊂ Mn(J) ⊆ Mn(S). By Theorem 3, we have I ⊂ J ⊆ S. Since I is maximal, we get

J = S. Thus K = Mn(J) = Mn(S). Consequently, Mn(I) is a maximal ordered ideal of Mn(S).

Conversely, if Mn(I) is a maximal ordered ideal of Mn(S) and T is an ordered ideal of S

such that I ⊂ T . By Theorem 3, we have Mn(I) ⊂ Mn(T ) ⊆ Mn(S). Since Mn(I) is maximal,

we get Mn(T ) = Mn(S). Thus T = S. Consequently, I is a maximal ordered ideal of S. This

completes the proof. 2

Corollary 5 S is simple if and only if Mn(S) is simple.

Proof Assume that S is simple and K 6= {0} is an ordered ideal of Mn(S). By Proposition

5, there exists a unique ordered ideal J of S such that K = Mn(J). Thus Mn(0) ⊂ Mn(J) ⊆

Mn(S). By Theorem 3, we have {0} ⊂ J ⊆ S. Since S is simple, we get J = S. Thus

K = Mn(J) = Mn(S). Consequently, Mn(S) is simple.

Conversely, if Mn(S) is simple and T 6= {0} is an ordered ideal of S, then Mn(T ) is an

ordered ideal of Mn(S) and Mn(T ) 6= {0}. Since Mn(S) is simple, we get Mn(T ) = Mn(S).

Thus T = S. Consequently, S is simple. This completes the proof. 2
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