Modular Vector Invariants of Cyclic Groups Z_2

Ji Zhu NAN^{*}, Hui Fang ZHAO

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Let G be the finite cyclic group Z_2 and V be a vector space of dimension 2n with basis $x_1, \ldots, x_n, y_1, \ldots, y_n$ over the field F with characteristic 2. If σ denotes a generator of G, we may assume that $\sigma(x_i) = ay_i, \sigma(y_i) = a^{-1}x_i$, where $a \in F^*$. In this paper, we describe the explicit generator of the ring of modular vector invariants of $F[V]^G$. We prove that

 $F[V]^{G} = F[l_{i} = x_{i} + ay_{i}, q_{i} = x_{i}y_{i}, 1 \le i \le n, M_{I} = X_{I} + a^{|I|}Y_{I}],$

where $I \subseteq A_n = \{1, 2, ..., n\}, 2 \le |I| \le n$.

Keywords finite cyclic group; invariant ring; modular vector invariants.

Document code A MR(2010) Subject Classification 13A50 Chinese Library Classification 0152

1. Introduction

Let G be a finite group, V be a finite dimensional vector space over a field F and $G \leq GL(V)$. Let F[V] be the symmetric algebra of V^* , the dual of V. If we choose a basis, x_1, \ldots, x_n , for V^* , then we can identify F[V] with the polynomial ring $F[x_1, \ldots, x_n]$. The action of G on V induces an action on V^* which extends to an action by algebra automorphisms on the symmetric algebra F[V]. Specifically, for $g \in G$, $f \in F[V]$ and $v \in V$, $(g \cdot f)(v) = f(g^{-1} \cdot v)$. The ring of invariants of G is the subring of F[V] given by

$$F[V]^G := \{ f \in F[V] \mid g \cdot f = f \text{ for all } g \in G \}.$$

If G is a finite group and |G| is not invertible in F, then we say the representation of G on V is modular. If |G| is invertible in F, then V is called a non-modular representation. In the non-modular representation case, Noether [1,2] proved that the ring of invariants of G is generated by polynomials of degree less than or equal to |G|. The result does not hold for modular representation. In particular, the case of "vector invariants" is difficult over finite fields [3,4]. Next we explain what is meant by this term [5].

Let $\sigma: G \to GL(n; F)$ be a faithful representation of a finite group. Set $\sigma_1 = \sigma$ and define

$$\sigma_2: G \to GL(2n; F),$$

Received May 7, 2010; Accepted October 3, 2010

Supported by the National Natural Science Foundation of China (Grant No. 10771023).

^{*} Corresponding author

E-mail address: jznan@163.com (J. Z. NAN); zhf3002@163.com (H. F. ZHAO)

afforded by the block matrices

$$\sigma_2(g) = \begin{pmatrix} \sigma_1 & 0\\ 0 & \sigma_1 \end{pmatrix}.$$

Iteratively we define

$$\sigma_k : G \to \operatorname{GL}(kn; F),$$
$$g \mapsto \operatorname{diag}(\sigma_1(g), \dots, \sigma_1(g)).$$

Then σ_k is the k-fold vector representation of σ . The corresponding ring of invariants is called the ring of vector invariants.

For the rest of the paper, let F denote a field with characteristic 2, and let

$$x_1,\ldots,x_n,y_1,\ldots,y_n$$

denote commuting indeterminates. Define the representation

$$\sigma: Z_2 \to \mathrm{GL}(2; F)$$

afforded by the matrices

$$\begin{pmatrix} 0 & a \\ a^{-1} & 0 \end{pmatrix},$$

where $a \in F^*$. For a positive integer n, let $\sigma_n : Z_2 \to \operatorname{GL}(2n; F)$ be the *n*-fold direct sum $\sigma \oplus \cdots \oplus \sigma$.

In this paper, we prove that the ring of vector invariants $F[x_1, \ldots, x_n, y_1, \ldots, y_n]^{Z_2}$ is generated by

$$\{l_i = x_i + ay_i, q_i = x_i y_i, 1 \le i \le n, M_I = X_I + a^{|I|} Y_I, I \subseteq A_n, 2 \le |I| \le n\},\$$

where $A_n = \{1, 2, ..., n\}, I \subseteq A_n$, and

$$M_{I} = X_{I} + a^{|I|} Y_{I} = x_{i_{1}} x_{i_{2}} \cdots x_{i_{|I|}} + a^{|I|} y_{i_{1}} y_{i_{2}} \cdots y_{i_{|I|}}$$

For example, $M_{12} = x_1 x_2 + a^2 y_1 y_2$. If $I = \{i\}$, then $M_I = l_i$, for $1 \le i \le n$.

2. The structure of invariant ring $F[x_1, \ldots, x_k, y_1, \ldots, y_k]^{Z_2}$

We begin with the simplest case.

Example 1 For $\sigma_2 : Z_2 \to \text{GL}(4, F)$, it is easy to verify that $\{l_i = x_i + ay_i, q_i = x_iy_i, i = 1, 2\}$ is a set of invariants. Especially, the quadratic form $x_1x_2 + a^2y_1y_2$ is also an invariant. So

$$F[x_1, x_2, y_1, y_2]^{Z_2} \supseteq F[l_i = x_i + ay_i, q_i = x_i y_i, i = 1, 2, M_{12} = x_1 x_2 + a^2 y_1 y_2]$$

In fact, other invariant quadratic forms,

$$x_1y_2 + y_1x_2 = a^{-1}(l_1l_2 - M_{12})$$

and

$$x_i^2 + a^2 y_i^2 = (l_i)^2 - 2aq_i, \quad i = 1, 2$$

are all in $F[l_i = x_i + ay_i, q_i = x_iy_i, i = 1, 2, M_{12} = x_1x_2 + a^2y_1y_2].$

998

Modular vector invariants of cyclic groups Z_2

Example 2 Consider $\sigma_3: \mathbb{Z}_2 \to \mathrm{GL}(6, F)$. It is obvious that

$$F[l_i = x_i + ay_i, q_i = x_iy_i, i = 1, 2, 3, M_{ij} = x_ix_j + a^2y_iy_j, 1 \le i < j \le 3]$$

$$\subseteq F[x_1, x_2, x_3, y_1, y_2, y_3]^{Z_2}.$$

Similarly to Example 1, other invariant quadratic forms $x_i y_j + y_i x_j$ $(1 \le i < j \le 3)$ and $x_i^2 + a^2 y_i^2$ (i = 1, 2, 3) can be generated by these invariants.

Unfortunately, for cubic invariant polynomials, analogously to the example given by Neusel in [6], we find that there is a relation between the invariants, i.e.,

$$l_1 M_{23} + l_2 M_{13} + l_3 M_{12} = l_1 l_2 l_3 + 2(x_1 x_2 x_3 + a^3 y_1 y_2 y_3).$$
(1)

It follows that in the case of characteristic 2 the cubic form $x_1x_2x_3 + a^3y_1y_2y_3$ is not in

$$F[l_i = x_i + ay_i, q_i = x_i y_i, i = 1, 2, 3, M_{ij} = x_i x_j + a^2 y_i y_j, 1 \le i < j \le 3].$$

Therefore the algebra of invariants $F[x_1, x_2, x_3, y_1, y_2, y_3]^{Z_2}$ contains an indecomposable cubic form $x_1x_2x_3 + a^3y_1y_2y_3$.

Lemma 1 Let $A_n = \{1, 2, \ldots, n\}$, $I \subseteq A_n$, and $M_I = X_I + a^{|I|}Y_I$. Then we have

$$\sum_{|I|=1,I\subseteq A_n}^{\left[\frac{n}{2}\right]} M_I M_{A_n\setminus I} = l_1 l_2 \cdots l_n + (2^{n-1} - 2)(x_1 x_2 \cdots x_n + a^n y_1 y_2 \cdots y_n).$$

Proof This equation can be easily verified. \Box

For example, for n = 4, we have

$$\sum_{|I|=1,I\subseteq A_n}^{\lfloor \frac{n}{2} \rfloor} M_I M_{A_n\setminus I} = l_1 M_{234} + l_2 M_{134} + l_3 M_{124} + l_4 M_{123} + M_{12} M_{34} + M_{13} M_{24} + M_{14} M_{23}$$
$$= l_1 l_2 l_3 l_4 + 6(x_1 x_2 x_3 x_4 + a^4 y_1 y_2 y_3 y_4).$$

Theorem 1 The algebra of invariants $F[x_1, \ldots, x_n, y_1, \ldots, y_n]^{Z_2}$ contains an indecomposable form of degree n for $n \ge 3$.

Proof We show that by induction on n. For n = 3, it is obvious by Example 2. Assume that the conclusion is true for n = k - 1. By the hypothesis, suppose that we have got a formula similar to (1),

$$f_{12\cdots(k-1)} = c_1 l_1 l_2 \cdots l_{k-1} + c_2 (x_1 x_2 \cdots x_{k-1} + a^{k-1} y_1 y_2 \cdots y_{k-1}),$$
(2)

where $f_{12\cdots(k-1)}$ is the sum of the product of $l_{i_1}l_{i_2}\cdots l_{i_{|I|}}$ and $M_{A_{k-1}\setminus I}$ for $I \subset A_{k-1}$, and c_1, c_2 are two constants. Iteratively, for n = k, we also have

. . .

$$f_{1\cdots(k-2)k} = c_1 l_1 \cdots l_{k-2} l_k + c_2 (x_1 \cdots x_{k-2} x_k + a^{k-1} y_1 \cdots y_{k-2} y_k),$$
(3)

$$f_{23\cdots k} = c_1 l_2 l_3 \cdots l_k + c_2 (x_2 x_3 \cdots x_k + a^{k-1} y_2 y_3 \cdots y_k).$$
(4)

Multiplying both sides of the above equality (2) by l_k , equality (3) by l_{k-1}, \ldots , equality (4) by l_1 , and summing up both sides of these equalities, we have

$$f_{12\cdots(k-1)}l_k + f_{1\cdots(k-2)k}l_{k-1} + \cdots + f_{23\cdots k}l_1$$

= $(kc_1)l_1l_2\cdots l_k + c_2(l_1M_{23\cdots k} + l_2M_{13\cdots k} + \cdots + l_kM_{12\cdots k-1}).$

Then summing up both sides of the above equality by

$$(c_2+1)\sum_{|I|=2}^{\left[\frac{k}{2}\right]} M_I M_{A_k \setminus I} + (l_1 M_{23\cdots k} + l_2 M_{13\cdots k} + \cdots + l_k M_{12\cdots k-1}),$$

by Lemma 1 we obtain

$$\begin{split} f_{12\cdots(k-1)}l_k + f_{1\cdots(k-2)k}l_{k-1} + \cdots + f_{23\cdots k}l_1 + (c_2+1)\sum_{|I|=2}^{\left\lfloor\frac{k}{2}\right\rfloor} M_I M_{A_k\setminus I} + \\ & (l_1M_{23\cdots k} + l_2M_{13\cdots k} + \cdots + l_kM_{12\cdots k-1}) \\ & = (kc_1)l_1l_2\cdots l_k + (c_2+1)\sum_{|I|=1}^{\left\lfloor\frac{k}{2}\right\rfloor} M_I M_{A_k\setminus I} \\ & = (kc_1+c_2+1)l_1l_2\cdots l_k + (c_2+1)(2^{k-1}-2)(x_1x_2\cdots x_k+a^{k-1}y_1y_2\cdots y_k), \end{split}$$

where $(c_2+1)(2^{k-1}-2)$ is even. Therefore, in the case of characteristic 2 the algebra of invariants $F[x_1,\ldots,x_k,y_1,\ldots,y_k]^{Z_2}$ contains an indecomposable form of degree k, namely

$$x_1x_2\cdots x_k + a^k y_1y_2\cdots y_k,$$

and the result follows. \Box

Theorem 2 For $\sigma_n : Z_2 \to \operatorname{GL}(2n, F)$, $n \ge 2$, the invariants of degree $m \ge 1$ can be generated by

$$\{l_i = x_i + ay_i, 1 \le i \le n, q_i = x_i y_i, 1 \le i \le n, M_I = X_I + a^{|I|} Y_I, I \subseteq A_n, 2 \le |I| \le n\}.$$

Proof Since the action of G on F[V] sends monomials to monomials, $F[V]^{Z_2}$ has an Fbasis consisting of orbit sums of monomials [7]. If $X^A Y^B \in F[V]$ is a monomial, where $A = \{a_1, a_2, \ldots, a_n\}, B = \{b_1, b_2, \ldots, b_n\}$, then the orbit sum of its Z_2 -orbit is

$$S(X^A Y^B) = \begin{cases} X^A Y^B + a^{\sum (a_i - b_i)} X^A Y^B, & \text{if } A \neq B, \\ X^C Y^C, & \text{if } A = B = C, \end{cases}$$

where $C = \{c_1, c_2, \ldots, c_n\}$. Obviously, $X^C Y^C = \prod (x_i y_i)^{c_i}$. It suffices to show that

$$X^{A}Y^{B} + a^{\sum (a_{i} - b_{i})}Y^{A}X^{B} \in F[l_{i}, q_{i}, 1 \le i \le n, M_{I}, I \subseteq A_{n}, 2 \le |I| \le n].$$

Let

$$\begin{aligned} X^{A}Y^{B} &+ a^{\sum(a_{i}-b_{i})}Y^{A}X^{B} \\ &= x_{1}^{a_{1}}x_{2}^{a_{2}}\cdots x_{n}^{a_{n}}y_{1}^{b_{1}}y_{2}^{b_{2}}\cdots y_{n}^{b_{n}} + a^{\sum(a_{i}-b_{i})}y_{1}^{a_{1}}y_{2}^{a_{2}}\cdots y_{n}^{a_{n}}x_{1}^{b_{1}}x_{2}^{b_{2}}\cdots x_{n}^{b_{n}} \end{aligned}$$

where $\sum_{i=1}^{n} (a_i + b_i) = m$. We give the proof by induction on m. m = 1 is trivial. Suppose

1000

the conclusion is true for positive integer less than m. Denote $I = \{i \mid a_i \neq 0, 1 \leq i \leq n\}, J = \{j \mid b_j \neq 0, 1 \leq j \leq n\}$. There are several cases to consider.

(a) $I \cap J \neq \phi$, i.e., there is at least an *i* such that $a_i \neq 0, b_i \neq 0$. Suppose $a_i \geq b_i$, then

$$\begin{split} X^{A}Y^{B} + a^{\sum(a_{i}-b_{i})}Y^{A}X^{B} = & (x_{i}y_{i})^{b_{i}}(x_{1}^{a_{1}}\cdots x_{i-1}^{a_{i}-1}x_{i}^{a_{i}-b_{i}}\cdots x_{n}^{a_{n}}y_{1}^{b_{1}}\cdots y_{i-1}^{b_{i-1}}y_{i+1}^{b_{i+1}}\cdots y_{n}^{b_{n}} + \\ & a^{\sum(a_{i}-b_{i})}y_{1}^{a_{1}}\cdots y_{i-1}^{a_{i}-b_{i}}\cdots y_{n}^{a_{n}}x_{1}^{b_{1}}\cdots x_{i-1}^{b_{i-1}}x_{i+1}^{b_{i+1}}\cdots x_{n}^{b_{n}}). \end{split}$$

(b) $I \neq \phi, J \neq \phi$, but $I \cap J = \phi$. For example, $I = \{1\}, J = \{2\}$, suppose $a_1 \ge b_2$. If $a_1 = b_2 = 1$, then $x_1y_2 + y_1x_2 = l_1l_2 - M_{12}$. So we may assume $a_1 \ge 2$, then we have

$$\begin{aligned} x_1^{a_1}y_2^{b_2} + a^{a_1-b_2}y_1^{a_1}x_2^{b_2} = & (x_1 + ay_1)(x_1^{a_1-1}y_2^{b_2} + a^{a_1-b_2-1}y_1^{a_1-1}x_2^{b_2}) - \\ & (x_1y_1)(ax_1^{a_1-2}y_2^{b_2} + a^{a_1-b_2-1}y_1^{a_1-2}x_2^{b_2}). \end{aligned}$$

(c) $I \neq \phi$, $J = \phi$ (or $I = \phi$, $J \neq \phi$). If $a_i = 1$ for all $i \in I$, the case is trivial, for the invariant is just M_I . So without loss of generality we may assume that there exists an i such that $a_i \geq 2$. It follows that

$$\begin{split} X^{A}Y^{B} + a^{\sum(a_{i}-b_{i})}Y^{A}X^{B} = & x_{1}^{a_{1}}x_{2}^{a_{2}}\cdots x_{n}^{a_{n}} + a^{m}y_{1}^{a_{1}}y_{2}^{a_{2}}\cdots y_{n}^{a_{n}} \\ = & (x_{i}+ay_{i})(x_{1}^{a_{1}}\cdots x_{i}^{a_{i}-1}\cdots x_{n}^{a_{n}} + a^{m-1}y_{1}^{a_{1}}\cdots y_{i}^{a_{i}-1}\cdots y_{n}^{a_{n}}) - \\ & (x_{i}y_{i})(ax_{1}^{a_{1}}\cdots x_{i}^{a_{i}-2}\cdots x_{n}^{a_{n}} + a^{m-1}y_{1}^{a_{1}}\cdots y_{i}^{a_{i}-2}\cdots y_{n}^{a_{n}}). \end{split}$$

By the hypothesis, we prove that $X^A Y^B + a^{\sum (a_i - b_i)} Y^A X^B$ can be generated by

$$\{l_i = x_i + ay_i, 1 \le i \le n, q_i = x_i y_i, 1 \le i \le n, M_I = X_I + a^{|I|} Y_I, I \subseteq A_n, 2 \le |I| \le n\}. \quad \Box$$

This allows us to obtain the desired result.

Theorem 3 Let $\sigma_n : Z_2 \to \operatorname{GL}(2n, F)$ be the representation of cyclic group Z_2 over the field F of characteristic 2, where $n \ge 2$. Then the ring of vector invariants

$$F[x_1, \dots, x_n, y_1, \dots, y_n]^{Z_2} = F[l_i, q_i, 1 \le i \le n, M_I, I \subseteq A_n, 2 \le |I| \le n]. \quad \Box$$

In addition to the algebra of invariants $F[V]^G$, another basic object of study in invariant theory is the algebra of coinvariants.

Definition 1 ([6]) Let $\rho : G \to \operatorname{GL}(n, F)$ be a representation of a finite group G over the field F. The ring, or algebra, of coinvariants, denoted by $F[V]_G$, is the quotient of F[V] by the ideal generated by the invariant polynomials of positive degree.

Corollary 1 The algebra of coinvariants $F[x_1, \ldots, x_n, y_1, \ldots, y_n]_{Z_2} = F[x_1, \ldots, x_n]$.

Proof From Theorem 3 the result can be easily derived. \Box

Remark 1 Let a = 1. Then the representation of Z_2 is just the permutation representation. For this case we have

$$F[V]^G = F[l_i = x_i + y_i, q_i = x_i y_i, 1 \le i \le n, M_I = X_I + Y_I],$$

where $I \subseteq A_n = \{1, 2, ..., n\}, 2 \le |I| \le n$. The conclusion coincides with the result of Richman [8].

References

- NOETHER E. Der Endlichkeitssatz der Invarianten endlicher Gruppen [J]. Math. Ann., 1915, 77(1): 89–92. (in German)
- [2] NOETHER E. Der endlichkeitssatz der invarianten endlicher linearer Gruppen der characteristik p [J]. Nachr. Akad. Wiss. Göttingen, 1926, 28–35. (in German)
- [3] RICHMAN D R. On vector invariants over finite fields [J]. Adv. Math., 1990, 81(1): 30–65.
- [4] CAMPBELL H E A, HUGHES I P. Vector invariants of $U_2(\mathbf{F}_p)$: a proof of a conjecture of Richman [J]. Adv. Math., 1997, **126**(1): 1–20.
- [5] NEUSEL M D. Invariant Theory [M]. American Mathematical Society, Providence, RI, 2007.
- [6] NEUSEL M D, SMITH L. Invariant Theory of Finite Groups [M]. American Mathematical Society, Providence, RI, 2002.
- [7] SMITH L. Polynomial Invariants of Finite Groups [M]. A K Peters, Ltd., Wellesley, MA, 1995.
- [8] RICHMAN D R. Explicit generators of the invariants of finite groups [J]. Adv. Math., 1996, 124(1): 49-76.