Modular Vector Invariants of Cyclic Groups Z_{2}

Ji Zhu NAN*, Hui Fang ZHAO
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract

Let G be the finite cyclic group Z_{2} and V be a vector space of dimension $2 n$ with basis $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ over the field F with characteristic 2 . If σ denotes a generator of G, we may assume that $\sigma\left(x_{i}\right)=a y_{i}, \sigma\left(y_{i}\right)=a^{-1} x_{i}$, where $a \in F^{*}$. In this paper, we describe the explicit generator of the ring of modular vector invariants of $F[V]^{G}$. We prove that

$$
F[V]^{G}=F\left[l_{i}=x_{i}+a y_{i}, q_{i}=x_{i} y_{i}, 1 \leq i \leq n, M_{I}=X_{I}+a^{|I|} Y_{I}\right],
$$

where $I \subseteq A_{n}=\{1,2, \ldots, n\}, 2 \leq|I| \leq n$.
Keywords finite cyclic group; invariant ring; modular vector invariants.
Document code A
MR(2010) Subject Classification 13A50
Chinese Library Classification O152

1. Introduction

Let G be a finite group, V be a finite dimensional vector space over a field F and $G \leq G L(V)$. Let $F[V]$ be the symmetric algebra of V^{*}, the dual of V. If we choose a basis, x_{1}, \ldots, x_{n}, for V^{*}, then we can identify $F[V]$ with the polynomial ring $F\left[x_{1}, \ldots, x_{n}\right]$. The action of G on V induces an action on V^{*} which extends to an action by algebra automorphisms on the symmetric algebra $F[V]$. Specifically, for $g \in G, f \in F[V]$ and $v \in V,(g \cdot f)(v)=f\left(g^{-1} \cdot v\right)$. The ring of invariants of G is the subring of $F[V]$ given by

$$
F[V]^{G}:=\{f \in F[V] \mid g \cdot f=f \text { for all } g \in G\}
$$

If G is a finite group and $|G|$ is not invertible in F, then we say the representation of G on V is modular. If $|G|$ is invertible in F, then V is called a non-modular representation. In the non-modular representation case, Noether $[1,2]$ proved that the ring of invariants of G is generated by polynomials of degree less than or equal to $|G|$. The result does not hold for modular representation. In particular, the case of "vector invariants" is difficult over finite fields [3, 4]. Next we explain what is meant by this term [5].

Let $\sigma: G \rightarrow G L(n ; F)$ be a faithful representation of a finite group. Set $\sigma_{1}=\sigma$ and define

$$
\sigma_{2}: G \rightarrow G L(2 n ; F)
$$

$\overline{\text { Received May 7, 2010; Accepted October 3, } 2010}$
Supported by the National Natural Science Foundation of China (Grant No. 10771023).

* Corresponding author

E-mail address: jznan@163.com (J. Z. NAN); zhf3002@163.com (H. F. ZHAO)
afforded by the block matrices

$$
\sigma_{2}(g)=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{1}
\end{array}\right)
$$

Iteratively we define

$$
\begin{aligned}
\sigma_{k}: G & \rightarrow \operatorname{GL}(k n ; F), \\
g & \mapsto \operatorname{diag}\left(\sigma_{1}(g), \ldots, \sigma_{1}(g)\right) .
\end{aligned}
$$

Then σ_{k} is the k-fold vector representation of σ. The corresponding ring of invariants is called the ring of vector invariants.

For the rest of the paper, let F denote a field with characteristic 2 , and let

$$
x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}
$$

denote commuting indeterminates. Define the representation

$$
\sigma: Z_{2} \rightarrow \mathrm{GL}(2 ; F)
$$

afforded by the matrices

$$
\left(\begin{array}{cc}
0 & a \\
a^{-1} & 0
\end{array}\right),
$$

where $a \in F^{*}$. For a positive integer n, let $\sigma_{n}: Z_{2} \rightarrow \mathrm{GL}(2 n ; F)$ be the n-fold direct sum $\sigma \oplus \cdots \oplus \sigma$.

In this paper, we prove that the ring of vector invariants $F\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]^{Z_{2}}$ is generated by

$$
\left\{l_{i}=x_{i}+a y_{i}, q_{i}=x_{i} y_{i}, 1 \leq i \leq n, M_{I}=X_{I}+a^{|I|} Y_{I}, I \subseteq A_{n}, 2 \leq|I| \leq n\right\}
$$

where $A_{n}=\{1,2, \ldots, n\}, I \subseteq A_{n}$, and

$$
M_{I}=X_{I}+a^{|I|} Y_{I}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{|I|}}+a^{|I|} y_{i_{1}} y_{i_{2}} \cdots y_{i_{|I|}}
$$

For example, $M_{12}=x_{1} x_{2}+a^{2} y_{1} y_{2}$. If $I=\{i\}$, then $M_{I}=l_{i}$, for $1 \leq i \leq n$.

2. The structure of invariant ring $F\left[x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right]^{Z_{2}}$

We begin with the simplest case.
Example 1 For $\sigma_{2}: Z_{2} \rightarrow \operatorname{GL}(4, F)$, it is easy to verify that $\left\{l_{i}=x_{i}+a y_{i}, q_{i}=x_{i} y_{i}, i=1,2\right\}$ is a set of invariants. Especially, the quadratic form $x_{1} x_{2}+a^{2} y_{1} y_{2}$ is also an invariant. So

$$
F\left[x_{1}, x_{2}, y_{1}, y_{2}\right]^{Z_{2}} \supseteq F\left[l_{i}=x_{i}+a y_{i}, q_{i}=x_{i} y_{i}, i=1,2, M_{12}=x_{1} x_{2}+a^{2} y_{1} y_{2}\right]
$$

In fact, other invariant quadratic forms,

$$
x_{1} y_{2}+y_{1} x_{2}=a^{-1}\left(l_{1} l_{2}-M_{12}\right)
$$

and

$$
x_{i}^{2}+a^{2} y_{i}^{2}=\left(l_{i}\right)^{2}-2 a q_{i}, \quad i=1,2
$$

are all in $F\left[l_{i}=x_{i}+a y_{i}, q_{i}=x_{i} y_{i}, i=1,2, M_{12}=x_{1} x_{2}+a^{2} y_{1} y_{2}\right]$.

Example 2 Consider $\sigma_{3}: Z_{2} \rightarrow \operatorname{GL}(6, F)$. It is obvious that

$$
\begin{aligned}
& F\left[l_{i}=x_{i}+a y_{i}, q_{i}=x_{i} y_{i}, i=1,2,3, M_{i j}=x_{i} x_{j}+a^{2} y_{i} y_{j}, 1 \leq i<j \leq 3\right] \\
& \quad \subseteq F\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right]^{Z_{2}}
\end{aligned}
$$

Similarly to Example 1, other invariant quadratic forms $x_{i} y_{j}+y_{i} x_{j}(1 \leq i<j \leq 3)$ and $x_{i}^{2}+a^{2} y_{i}^{2}(i=1,2,3)$ can be generated by these invariants.

Unfortunately, for cubic invariant polynomials, analogously to the example given by Neusel in [6], we find that there is a relation between the invariants, i.e.,

$$
\begin{equation*}
l_{1} M_{23}+l_{2} M_{13}+l_{3} M_{12}=l_{1} l_{2} l_{3}+2\left(x_{1} x_{2} x_{3}+a^{3} y_{1} y_{2} y_{3}\right) \tag{1}
\end{equation*}
$$

It follows that in the case of characteristic 2 the cubic form $x_{1} x_{2} x_{3}+a^{3} y_{1} y_{2} y_{3}$ is not in

$$
F\left[l_{i}=x_{i}+a y_{i}, q_{i}=x_{i} y_{i}, i=1,2,3, M_{i j}=x_{i} x_{j}+a^{2} y_{i} y_{j}, 1 \leq i<j \leq 3\right]
$$

Therefore the algebra of invariants $F\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right]^{Z_{2}}$ contains an indecomposable cubic form $x_{1} x_{2} x_{3}+a^{3} y_{1} y_{2} y_{3}$.

Lemma 1 Let $A_{n}=\{1,2, \ldots, n\}, I \subseteq A_{n}$, and $M_{I}=X_{I}+a^{|I|} Y_{I}$. Then we have

$$
\sum_{|I|=1, I \subseteq A_{n}}^{\left[\frac{n}{2}\right]} M_{I} M_{A_{n} \backslash I}=l_{1} l_{2} \cdots l_{n}+\left(2^{n-1}-2\right)\left(x_{1} x_{2} \cdots x_{n}+a^{n} y_{1} y_{2} \cdots y_{n}\right)
$$

Proof This equation can be easily verified.
For example, for $n=4$, we have

$$
\begin{aligned}
\sum_{|I|=1, I \subseteq A_{n}}^{\left[\frac{n}{2}\right]} M_{I} M_{A_{n} \backslash I} & =l_{1} M_{234}+l_{2} M_{134}+l_{3} M_{124}+l_{4} M_{123}+M_{12} M_{34}+M_{13} M_{24}+M_{14} M_{23} \\
& =l_{1} l_{2} l_{3} l_{4}+6\left(x_{1} x_{2} x_{3} x_{4}+a^{4} y_{1} y_{2} y_{3} y_{4}\right) .
\end{aligned}
$$

Theorem 1 The algebra of invariants $F\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]^{Z_{2}}$ contains an indecomposable form of degree n for $n \geq 3$.

Proof We show that by induction on n. For $n=3$, it is obvious by Example 2. Assume that the conclusion is true for $n=k-1$. By the hypothesis, suppose that we have got a formula similar to (1),

$$
\begin{equation*}
f_{12 \cdots(k-1)}=c_{1} l_{1} l_{2} \cdots l_{k-1}+c_{2}\left(x_{1} x_{2} \cdots x_{k-1}+a^{k-1} y_{1} y_{2} \cdots y_{k-1}\right) \tag{2}
\end{equation*}
$$

where $f_{12 \cdots(k-1)}$ is the sum of the product of $l_{i_{1}} l_{i_{2}} \cdots l_{i_{|I|}}$ and $M_{A_{k-1} \backslash I}$ for $I \subset A_{k-1}$, and c_{1}, c_{2} are two constants. Iteratively, for $n=k$, we also have

$$
\begin{gather*}
f_{1 \cdots(k-2) k}=c_{1} l_{1} \cdots l_{k-2} l_{k}+c_{2}\left(x_{1} \cdots x_{k-2} x_{k}+a^{k-1} y_{1} \cdots y_{k-2} y_{k}\right) \tag{3}\\
\cdots \tag{4}\\
f_{23 \cdots k}=c_{1} l_{2} l_{3} \cdots l_{k}+c_{2}\left(x_{2} x_{3} \cdots x_{k}+a^{k-1} y_{2} y_{3} \cdots y_{k}\right)
\end{gather*}
$$

Multiplying both sides of the above equality (2) by l_{k}, equality (3) by l_{k-1}, \ldots, equality (4) by l_{1}, and summing up both sides of these equalities, we have

$$
\begin{aligned}
& f_{12 \cdots(k-1)} l_{k}+f_{1 \cdots(k-2) k} l_{k-1}+\cdots+f_{23 \cdots k} l_{1} \\
& \quad=\left(k c_{1}\right) l_{1} l_{2} \cdots l_{k}+c_{2}\left(l_{1} M_{23 \cdots k}+l_{2} M_{13 \cdots k}+\cdots+l_{k} M_{12 \cdots k-1}\right)
\end{aligned}
$$

Then summing up both sides of the above equality by

$$
\left(c_{2}+1\right) \sum_{|I|=2}^{\left[\frac{k}{2}\right]} M_{I} M_{A_{k} \backslash I}+\left(l_{1} M_{23 \cdots k}+l_{2} M_{13 \cdots k}+\cdots+l_{k} M_{12 \cdots k-1}\right),
$$

by Lemma 1 we obtain

$$
\begin{aligned}
& f_{12 \cdots(k-1)} l_{k}+f_{1 \cdots(k-2) k} l_{k-1}+\cdots+f_{23 \cdots k} l_{1}+\left(c_{2}+1\right) \sum_{|I|=2}^{\left[\frac{k}{2}\right]} M_{I} M_{A_{k} \backslash I}+ \\
&\left(l_{1} M_{23 \cdots k}+l_{2} M_{13 \cdots k}+\cdots+l_{k} M_{12 \cdots k-1}\right) \\
&=\left(k c_{1}\right) l_{1} l_{2} \cdots l_{k}+\left(c_{2}+1\right) \sum_{|I|=1}^{\left[\frac{k}{2}\right]} M_{I} M_{A_{k} \backslash I} \\
&=\left(k c_{1}+c_{2}+1\right) l_{1} l_{2} \cdots l_{k}+\left(c_{2}+1\right)\left(2^{k-1}-2\right)\left(x_{1} x_{2} \cdots x_{k}+a^{k-1} y_{1} y_{2} \cdots y_{k}\right),
\end{aligned}
$$

where $\left(c_{2}+1\right)\left(2^{k-1}-2\right)$ is even. Therefore, in the case of characteristic 2 the algebra of invariants $F\left[x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right]^{Z_{2}}$ contains an indecomposable form of degree k, namely

$$
x_{1} x_{2} \cdots x_{k}+a^{k} y_{1} y_{2} \cdots y_{k}
$$

and the result follows.
Theorem 2 For $\sigma_{n}: Z_{2} \rightarrow \operatorname{GL}(2 n, F), n \geq 2$, the invariants of degree $m(\geq 1)$ can be generated by

$$
\left\{l_{i}=x_{i}+a y_{i}, 1 \leq i \leq n, q_{i}=x_{i} y_{i}, 1 \leq i \leq n, M_{I}=X_{I}+a^{|I|} Y_{I}, I \subseteq A_{n}, 2 \leq|I| \leq n\right\}
$$

Proof Since the action of G on $F[V]$ sends monomials to monomials, $F[V]^{Z_{2}}$ has an F basis consisting of orbit sums of monomials [7]. If $X^{A} Y^{B} \in F[V]$ is a monomial, where $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, then the orbit sum of its Z_{2}-orbit is

$$
S\left(X^{A} Y^{B}\right)= \begin{cases}X^{A} Y^{B}+a^{\sum\left(a_{i}-b_{i}\right)} X^{A} Y^{B}, & \text { if } A \neq B \\ X^{C} Y^{C}, & \text { if } A=B=C\end{cases}
$$

where $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$. Obviously, $X^{C} Y^{C}=\prod\left(x_{i} y_{i}\right)^{c_{i}}$. It suffices to show that

$$
X^{A} Y^{B}+a^{\sum\left(a_{i}-b_{i}\right)} Y^{A} X^{B} \in F\left[l_{i}, q_{i}, 1 \leq i \leq n, M_{I}, I \subseteq A_{n}, 2 \leq|I| \leq n\right]
$$

Let

$$
\begin{aligned}
& X^{A} Y^{B}+a^{\sum\left(a_{i}-b_{i}\right)} Y^{A} X^{B} \\
& \quad=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} y_{1}^{b_{1}} y_{2}^{b_{2}} \cdots y_{n}^{b_{n}}+a^{\sum\left(a_{i}-b_{i}\right)} y_{1}^{a_{1}} y_{2}^{a_{2}} \cdots y_{n}^{a_{n}} x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}
\end{aligned}
$$

where $\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=m$. We give the proof by induction on m. $m=1$ is trivial. Suppose
the conclusion is true for positive integer less than m. Denote $I=\left\{i \mid a_{i} \neq 0,1 \leq i \leq n\right\}$, $J=\left\{j \mid b_{j} \neq 0,1 \leq j \leq n\right\}$. There are several cases to consider.
(a) $I \cap J \neq \phi$, i.e., there is at least an i such that $a_{i} \neq 0, b_{i} \neq 0$. Suppose $a_{i} \geq b_{i}$, then

$$
\begin{aligned}
X^{A} Y^{B}+a^{\sum\left(a_{i}-b_{i}\right)} Y^{A} X^{B}= & \left(x_{i} y_{i}\right)^{b_{i}}\left(x_{1}^{a_{1}} \cdots x_{i-1}^{a_{i-1}} x_{i}^{a_{i}-b_{i}} \cdots x_{n}^{a_{n}} y_{1}^{b_{1}} \cdots y_{i-1}^{b_{i-1}} y_{i+1}^{b_{i+1}} \cdots y_{n}^{b_{n}}+\right. \\
& \left.a^{\sum\left(a_{i}-b_{i}\right)} y_{1}^{a_{1}} \cdots y_{i-1}^{a_{i-1}} y_{i}^{a_{i}-b_{i}} \cdots y_{n}^{a_{n}} x_{1}^{b_{1}} \cdots x_{i-1}^{b_{i-1}} x_{i+1}^{b_{i+1}} \cdots x_{n}^{b_{n}}\right)
\end{aligned}
$$

(b) $I \neq \phi, J \neq \phi$, but $I \cap J=\phi$. For example, $I=\{1\}, J=\{2\}$, suppose $a_{1} \geq b_{2}$. If $a_{1}=b_{2}=1$, then $x_{1} y_{2}+y_{1} x_{2}=l_{1} l_{2}-M_{12}$. So we may assume $a_{1} \geq 2$, then we have

$$
\begin{aligned}
x_{1}^{a_{1}} y_{2}^{b_{2}}+a^{a_{1}-b_{2}} y_{1}^{a_{1}} x_{2}^{b_{2}}= & \left(x_{1}+a y_{1}\right)\left(x_{1}^{a_{1}-1} y_{2}^{b_{2}}+a^{a_{1}-b_{2}-1} y_{1}^{a_{1}-1} x_{2}^{b_{2}}\right)- \\
& \left(x_{1} y_{1}\right)\left(a x_{1}^{a_{1}-2} y_{2}^{b_{2}}+a^{a_{1}-b_{2}-1} y_{1}^{a_{1}-2} x_{2}^{b_{2}}\right)
\end{aligned}
$$

(c) $I \neq \phi, J=\phi($ or $I=\phi, J \neq \phi)$. If $a_{i}=1$ for all $i \in I$, the case is trivial, for the invariant is just M_{I}. So without loss of generality we may assume that there exists an i such that $a_{i} \geq 2$. It follows that

$$
\begin{aligned}
X^{A} Y^{B}+a^{\sum\left(a_{i}-b_{i}\right)} Y^{A} X^{B}= & x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}+a^{m} y_{1}^{a_{1}} y_{2}^{a_{2}} \cdots y_{n}^{a_{n}} \\
= & \left(x_{i}+a y_{i}\right)\left(x_{1}^{a_{1}} \cdots x_{i}^{a_{i}-1} \cdots x_{n}^{a_{n}}+a^{m-1} y_{1}^{a_{1}} \cdots y_{i}^{a_{i}-1} \cdots y_{n}^{a_{n}}\right)- \\
& \left(x_{i} y_{i}\right)\left(a x_{1}^{a_{1}} \cdots x_{i}^{a_{i}-2} \cdots x_{n}^{a_{n}}+a^{m-1} y_{1}^{a_{1}} \cdots y_{i}^{a_{i}-2} \cdots y_{n}^{a_{n}}\right) .
\end{aligned}
$$

By the hypothesis, we prove that $X^{A} Y^{B}+a^{\sum\left(a_{i}-b_{i}\right)} Y^{A} X^{B}$ can be generated by

$$
\left\{l_{i}=x_{i}+a y_{i}, 1 \leq i \leq n, q_{i}=x_{i} y_{i}, 1 \leq i \leq n, M_{I}=X_{I}+a^{|I|} Y_{I}, I \subseteq A_{n}, 2 \leq|I| \leq n\right\}
$$

This allows us to obtain the desired result.
Theorem 3 Let $\sigma_{n}: Z_{2} \rightarrow \mathrm{GL}(2 n, F)$ be the representation of cyclic group Z_{2} over the field F of characteristic 2 , where $n \geq 2$. Then the ring of vector invariants

$$
F\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]^{Z_{2}}=F\left[l_{i}, q_{i}, 1 \leq i \leq n, M_{I}, I \subseteq A_{n}, 2 \leq|I| \leq n\right]
$$

In addition to the algebra of invariants $F[V]^{G}$, another basic object of study in invariant theory is the algebra of coinvariants.

Definition 1 ([6]) Let $\rho: G \rightarrow \mathrm{GL}(n, F)$ be a representation of a finite group G over the field F. The ring, or algebra, of coinvariants, denoted by $F[V]_{G}$, is the quotient of $F[V]$ by the ideal generated by the invariant polynomials of positive degree.

Corollary 1 The algebra of coinvariants $F\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]_{Z_{2}}=F\left[x_{1}, \ldots, x_{n}\right]$.
Proof From Theorem 3 the result can be easily derived.
Remark 1 Let $a=1$. Then the representation of Z_{2} is just the permutation representation. For this case we have

$$
F[V]^{G}=F\left[l_{i}=x_{i}+y_{i}, q_{i}=x_{i} y_{i}, 1 \leq i \leq n, M_{I}=X_{I}+Y_{I}\right]
$$

where $I \subseteq A_{n}=\{1,2, \ldots, n\}, 2 \leq|I| \leq n$. The conclusion coincides with the result of Richman [8].

References

[1] NOETHER E. Der Endlichkeitssatz der Invarianten endlicher Gruppen [J]. Math. Ann., 1915, 77(1): 89-92. (in German)
[2] NOETHER E. Der endlichkeitssatz der invarianten endlicher linearer Gruppen der characteristik p [J]. Nachr. Akad. Wiss. Göttingen, 1926, 28-35. (in German)
[3] RICHMAN D R. On vector invariants over finite fields [J]. Adv. Math., 1990, 81(1): 30-65.
[4] CAMPBELL H E A, HUGHES I P. Vector invariants of $U_{2}\left(\mathbf{F}_{p}\right)$: a proof of a conjecture of Richman [J]. Adv. Math., 1997, 126(1): 1-20.
[5] NEUSEL M D. Invariant Theory [M]. American Mathematical Society, Providence, RI, 2007.
[6] NEUSEL M D, SMITH L. Invariant Theory of Finite Groups [M]. American Mathematical Society, Providence, RI, 2002.
[7] SMITH L. Polynomial Invariants of Finite Groups [M]. A K Peters, Ltd., Wellesley, MA, 1995.
[8] RICHMAN D R. Explicit generators of the invariants of finite groups [J]. Adv. Math., 1996, 124(1): 49-76.

