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Abstract In this paper, uniqueness of entire function related to shared set is studied. Let f be

a non-constant entire function and k be a positive integer, d be a finite complex number. There

exists a set S with 3 elements such that if f and its derivative f (k) satisfy E(S, f) = E(S, f (k)),

and the zeros of f(z) − d are of multiplicity ≥ k + 1, then f = f (k).
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1. Introduction and main results

In this paper, we use the symbols as given in Nevanlinna theory of meromorphic functions

[1–3].

Let f and g be two non-constant meromorphic functions, and a ∈ C = C
⋃
{∞}. We say that

f and g share the value a IM (ignoring multiplicities) if f − a and g − a have the same zeros,

and they share the value a CM (counting multiplicities) if f − a and f − b have the same zeros

with the same multiplicities. When a = ∞ the zeros of f − a means the poles of f (see [3]).

Let f be a non-constant meromorphic function in the complex plane and let S be a set of

distinct complex numbers. Put

E(s, f) =
⋃

a∈S

{z : f(z) − a = 0, CM}, E(S, f) =
⋃

a∈S

{z : f(z) − a = 0, IM}.

If E(S, f) = E(S, g), we say that f and g share the set S CM. If E(S, f) = E(S, g), we

say that f and g share the set S IM. Especially, when S = {a}, a ∈ C, E(a, f) = E(a, g) or

E(a, f) = E(a, g) means f and g share the value a CM or IM respectively.

In 2003, Fang and Zalcman [4] proved the following result.

Theorem A There exists a set S with 3 elements such that if a non-constant entire function f

and its derivative f ′ satisfy E(S, f) = E(S, g), then f = f ′.
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It is natural to ask whether Theorem A remains valid for f (k). In this paper, we use the

theory of normal families to prove

Theorem 1 Let f be a non-constant entire function and k be a positive integer, d be a finite

complex number. There exists a set S with 3 elements such that if f and its derivative f (k)

satisfy E(S, f) = E(S, f (k)), and the zeros of f(z)− d are of multiplicity ≥ k + 1, then f = f (k).

2. Some lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 ([5]) Let F be a family of functions holomorphic on the unit disc, all of whose zeros

have multiplicity at least k. Suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A whenever

f(z) = 0. If F is not normal, there exist, for each α(0 ≤ α ≤ k),

(a) points zn with |zn| < r < 1,

(b) functions fn ∈ F , and

(c) positive numbers ρn → 0+

such that ρ−α
n fn(zn +ρnξ) = gn(ξ) → g(ξ) locally uniformly with respect to the spherical metric,

where g is a non-constant entire function, all of whose zeros have multiplicity at least k, such

that g#(ξ) ≤ g#(0) = kA + 1. Here g#(ξ) = |g′(ξ)|
1+|g(ξ)|2 is the spherical derivative of g.

Lemma 2 ([3]) Let f be a non-constant meromorphic function and k be a positive integer.

Then

N(r,
1

f (k)
) < N(r,

1

f
) + kN(r, f) + S(r, f).

Lemma 3 ([6]) Let g be a meromorphic function on C. If its spherical derivative is uniformly

bounded on C. Then the order of g is at most 2. If g is an entire function, then the order of g

is at most 1.

Lemma 4 Let F be a family of holomorphic functions in D and k be a positive integer, a be

a finite complex number. There exists a set with 3 elements such that if any f ∈ F satisfies

E(S, f) = E(S, f (k)), and the zeros of f(z) − a are of multiplicity ≥ k + 1, then F is normal in

D.

Proof Without loss of generality, we may assume D = ∆, S = {a1, a2, a3}. F is not normal in

∆. We consider two cases.

Case 1 a ∈ S. We need only consider that a = a1. Set A = max
a∈S

|s| + 1, then by E(S, f) =

E(S, f (k)) and Lemma 1, there exist points zn with |zn| < r < 1, functions fn ∈ F , and positive

numbers ρn → 0+, such that ρ−k
n fn(zn + ρnζ) − ρ−k

n a = gn(ζ) → g(ζ) locally uniformly with

respect to the spherical metric, where g is a non-constant holomorphic function, all of whose

zeros have multiplicity at least k + 1, and g#(ζ) ≤ g#(0) = kA + 1.

First, we claim: E(S, g(k)) = E(0, g). Suppose that g(ζ0) = 0. Then by Hurwitz’s theorem,
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there exists a sequence {ζn} with ζn → ζ0, such that (for n sufficiently large) gn(ζn) = 0. Thus

fn(zn + ρnζn) = a1. Since E(S, f) = E(S, f (k)), we have f
(k)
n (zn + ρnζn) ∈ S, thus g

(k)
n (ζn) ∈ S,

so g(k)(ζ0) ∈ S. Therefore E(0, g) ⊆ E(S, g(k)).

Now suppose that g(k)(ζ0) = s, s ∈ S. We claim that g(k)(ζ) 6= s. If g(k)(ζ) ≡ s, then g(ζ)

is a polynomial of the degree at most k, which contradicts the fact that the zeros of g(ζ) are of

multiplicity ≥ k + 1.

By Hurwitz’s theorem, there exists a sequence ζn with ζn → ζ0, such that g
(k)
n (ζn) = f

(k)
n (zn+

ρnζn) = s, and since E(S, f) = E(S, f (k)), we have fn(zn + ρnζn) ∈ S. Hence, there exists a

subsequence of {fn}, still denoted by {fn}, such that fn(zn + ρnζn) = s′, s′ ∈ S.

If s′ 6= a1, then g(ζ0) = lim
n→∞

gn(ζn) = lim
n→∞

s′−a1

ρk
n

= ∞, which contradicts g(k)(ζ0) = s.

If s′ = a1, then g(ζ0) = lim
n→∞

gn(ζn) = lim
n→∞

fn(zn+ρnζn)−a1

ρk
n

= 0.

Namely, E(S, g(k)) ⊆ E(0, g). Hence E(S, g(k)) = E(0, g).

Now we consider the following two subcases:

Subcase 1.1 g(ζ) is transcendental entire function. By the second fundamental theorem to

g(k)(ζ), we have

2T (r, g(k)) ≤ N(r, g) +
3∑

i=1

N(r,
1

g(k) − ai

) + S(r, g(k)) ≤ N(r,
1

g
) + S(r, g(k)). (2.1)

Since the zeros of g(ζ) are of multiplicity ≥ k + 1, we get

N(r,
1

g
) ≤ N(r,

1

g(k)
) ≤ T (r, g(k)). (2.2)

Thus (2.1) and (2.2) yield T (r, g(k)) = S(r, g(k)), which is a contradiction.

Subcase 1.2 g(ζ) is a polynomial. Set

g(ζ) = c0ζ
m + c1ζ

m−1 + · · · + cm, m ≥ k + 1,

where cj (j = 0, 1, . . . , m) are finite complex numbers, and c0 6= 0.

T (r, g(k)) = (m − k) log r + O(1), as r → ∞.

N(r,
1

g
) ≤

m

k + 1
log r + O(1) ≤

m

2
+ O(1), S(r, g(k)) = O(1).

From (2.1), we obtain

2(m − k) log r ≤
m

2
log r + O(1),

thus m ≤ 4
3k. Since the zeros of g(ζ) are of multiplicity ≥ k + 1, g(ζ) has only one zero ζ0.

Then g(ζ) = c0(ζ − ζ0)
m, and g(k)(ζ0) = m(m − 1) · · · (m − k + 1)|c0|(ζ − ζ0)

m−k. Obviously,

g(k)(ζ) = aj(j = 1, 2, 3) have 3(m − k)(≥ 3) zeros, which contradicts E(0, g) = E(S, g(k)).

Case 2 a /∈ S. By Lemma 1, there exist points zn with |zn| < r < 1, functions fn ∈ F , and

positive numbers ρn → 0+, such that gn = fn(zn+ρnζ)−a → g(ζ) locally uniformly with respect
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to the spherical metric, where g is a non-constant holomorphic function, all of whose zeros have

multiplicity at least k + 1.

Using the same argument as Case 1, we have E(ai − a, g) ⊆ E(0, g(k)), i = 1, 2, 3. By the

second fundamental theorem and Lemma 2, we have

3T (r, g) ≤ N(r,
1

g
) +

3∑

i=1

N(r,
1

g − (ai − a)
) + S(r, g)

≤
1

k + 1
N(r,

1

g
) + N(r,

1

g(k)
) + S(r, g)

≤ (1 +
1

k + 1
)N(r,

1

g
) + S(r, g)

≤ (1 +
1

k + 1
)T (r, g) + S(r, g).

Since k ≥ 1, T (r, g) = S(r, g), which is a contradiction. Lemma 4 is proved. 2

3. Proof of Theorem 1

Proof Set S = {0, a, b}, where a, b are two non-zero distinct finite complex numbers satisfying

a2 6= b2, a 6= 2b, a2 − ab + b2 6= 0, 3d2 − 2(a + b)d + ab 6= 0.

First, we prove ρf ≤ 1. Set F = {f(z+ω)}, z ∈ {z : |z| < 1}. Then F is a family of holomorphic

functions in D. Obviously ∀g(z) = f(z + ω) ∈ F , we have E(S, g) = E(S, g(k)), and the zeros

of g − d are of multiplicity ≥ k + 1. By Lemma 4, F is normal in D. Thus by Marty’s criteria,

there exists M(> 0) satisfying

f#(ω) =
|f ′(ω)|

1 + |f(ω)|2
=

|g′(0)|

1 + |g(0)|2
= g#(0) ≤ M

for ω all in C. By Lemma 3, ρf ≤ 1. Set

ϕ(z) =
f (k)(z)[f (k)(z) − a][f (k)(z) − b]

f(z)[f(z)− a][f(z) − b]
. (3.1)

Then by E(S, f) = E(S, f (k)), there exists an entire function α(z) satisfying

ϕ(z) = eα(z). (3.2)

Standard computations involving the lemma on the logarithmic derivative show that

m(r, ϕ) = S(r, f), (3.3)

and hence

T (r, ϕ) = m(r, ϕ) + N(r, ϕ) = S(r, f). (3.4)

By ρf ≤ 1, T (r, f) = O(r), S(r, f) = O(logr). It then follows from (3.4) that ϕ is a polynomial,

so by (3.2) ϕ must be a non-zero constant c. Hence

f (k)(z)[f (k)(z) − a][f (k)(z) − b]

f(z)[f(z) − a][f(z) − b]
= c,
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that is,

f (k)(z)[f (k)(z) − a][f (k)(z) − b] = cf(z)[f(z)− a][f(z) − b]. (3.5)

Differentiating the two sides of (3.5), we obtain

[3(f (k))2 − 2(a + b)f (k) + ab]f (k+1) = c[3f2 − 2(a + b)f + ab]f ′. (3.6)

We claim f(z)−d 6= 0. Indeed, suppose that z0 is p(≥ k+1) zero of f(z)−d. Then the left-hand

side of (3.6) vanishes at z0 to order p − k − 1,while the right-hand side vanishes to the order at

least p − 1, a contradiction. Hence

f(z) = d + BeAz (3.7)

and

f (k)(z) = BAkeAz, (3.8)

where A 6= 0, B 6= 0, and d are constants.

T (r, f) ≤ N(r, f) + N(r,
1

f
) + N(r,

1

f − d
) + S(r, f) = N(r,

1

f
) + S(r, f),

that is

N(r,
1

f
) = T (r, f) + S(r, f). (3.9)

Similarly, we have

N(r,
1

f − a
) = T (r, f) + S(r, f), N(r,

1

f − b
) = T (r, f) + S(r, f). (3.10)

By (3.9), (3.10), E(S, f) = E(S, f (k)), and the second fundamental theorem, we have

3T (r, f) ≤ N(r,
1

f
) + N(r,

1

f − a
) + N(r,

1

f − b
) + S(r, f)

≤ N(r,
1

f (k) − a
) + N(r,

1

f (k) − b
) + S(r, f)

≤ 2T (r, f (k)) + S(r, f)

≤ 2m(r,
f (k)

f
) + 2m(r, f) + S(r, f)

≤ 2T (r, f) + S(r, f).

Hence we obtain T (r, f) = S(r, f), which contradicts (3.6). Thus d ∈ S. Now we consider the

following three cases.

Case 1 d = 0. By (3.6) and (3.7), we have

f(z) = BeAz(A 6= 0, B 6= 0), f (k)(z) = BAkeAz 6= 0. (3.11)

Suppose f(z1) = a. Then since E(S, f) = E(S, f (k)), we have either f (k)(z1) = a or f (k)(z1) = b.

If f (k)(z1) = a, then by (3.11), Ak = 1, so f ≡ f (k). If f (k)(z1) = b, then by (3.11),

Ak =
a

b
. (3.12)
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Similarly, if f(z2) = b, then either f (k)(z2) = a or f (k)(z2) = b. If f (k)(z2) = a, then by (3.11),

Ak =
a

b
. (3.13)

If f (k)(z2) = b, then f ≡ f (k). Thus either f ≡ f (k) or, by (3.12) and (3.13), a2 = b2. However,

this contradicts a2 6= b2. It follows that if d = 0, then f ≡ f (k).

Case 2 d = a. By (3.6) and (3.7), we have

f(z) = a + BeAz, f (k)(z) = BAkeAz 6= 0. (3.14)

Let f(z3) = 0. Then since E(S, f) = E(S, f (k)), either f (k)(z3) = a or f (k)(z3) = b. Assume

first that f (k)(z3) = a. Then by (3.14), Ak = −1. Thus

f(z) = a + BeAz, f (k)(z) = −BeAz. (3.15)

Let f(z4) = b. Then since E(S, f) = E(S, f (k)), either f (k)(z4) = a or f (k)(z4) = b. If f (k)(z4) =

a, (3.15) gives b = 0, which contradicts b 6= 0. If f (k)(z4) = b, we obtain a = 2b, which also

contradicts a 6= 2b. A similar argument applies in case f (k)(z4) = b. In that case, Ak = − b
a

and

f(z) = a + BeAz, f (k)(z) = −
b

a
· BeAz. (3.16)

Choosing z5 so that f(z5) = b, we have either f (k)(z5) = a or f (k)(z5) = b. If f (k)(z5) = a, (3.16)

yields a2 − ab + b2 = 0, which contradicts a2 − ab + b2 6= 0. Similarly f (k)(z5) = b leads to b = 0,

which is also ruled out. It follows that Case 2 cannot occur.

Case 3 d = b. This case is symmetric to Case 2 and can be eliminated by the same arguments.

In the above discussion we have shown that f ≡ f (k). This completes the proof of Theorem

1. 2
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