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Abstract In this paper, uniqueness of entire function related to shared set is studied. Let f be
a non-constant entire function and k be a positive integer, d be a finite complex number. There
exists a set S with 3 elements such that if f and its derivative f*) satisfy E(S, f) = E(S, f®),
and the zeros of f(z) —d are of multiplicity > k + 1, then f = f®,
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1. Introduction and main results

In this paper, we use the symbols as given in Nevanlinna theory of meromorphic functions
[1-3].

Let f and g be two non-constant meromorphic functions, and a € C = C |J{oo}. We say that
f and g share the value a IM (ignoring multiplicities) if f — a and g — a have the same zeros,
and they share the value a CM (counting multiplicities) if f — a and f — b have the same zeros
with the same multiplicities. When a = oo the zeros of f — a means the poles of f (see [3]).

Let f be a non-constant meromorphic function in the complex plane and let S be a set of

distinct complex numbers. Put

E(s, f) = U{z :f(z) —a=0,CM}, E(S,f)= U {z: f(z) —a=0,IM}.
a€s acs
If E(S,f) = E(S,g), we say that f and g share the set S CM. If E(S, f) = E(S,g), we
say that f and g share the set S IM. Especially, when S = {a}, a € C, E(a, f) = E(a,g) or
E(a, f) = E(a,g) means f and g share the value a CM or IM respectively.
In 2003, Fang and Zalcman [4] proved the following result.

Theorem A There exists a set S with 3 elements such that if a non-constant entire function f
and its derivative f' satisfy E(S, f) = E(S,g), then f = f.
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It is natural to ask whether Theorem A remains valid for f*). In this paper, we use the

theory of normal families to prove

Theorem 1 Let f be a non-constant entire function and k be a positive integer, d be a finite
complex number. There exists a set S with 3 elements such that if f and its derivative f(*)
satisfy E(S, f) = E(S, f*)), and the zeros of f(z) —d are of multiplicity > k -+ 1, then f = f(.

2. Some lemmas
In order to prove Theorem 1, we need the following lemmas.

Lemma 1 ([5]) Let .Z# be a family of functions holomorphic on the unit disc, all of whose zeros
have multiplicity at least k. Suppose that there exists A > 1 such that |f*)(z)| < A whenever
f(z) =0. If Z is not normal, there exist, for each a(0 < a < k),

(a) points z, with |z,| <r <1,

(b) functions f, € %, and

(c) positive numbers p, — 0T
such that p,,* fn(zn+ pn€) = gn(€) — g(&) locally uniformly with respect to the spherical metric,
where g is a non-constant entire function, all of whose zeros have multiplicity at least k, such

that g7 (€) < g7 (0) = kA + 1. Here g (¢) = 15;((%"2 is the spherical derivative of g.

Lemma 2 ([3]) Let f be a non-constant meromorphic function and k be a positive integer.

Then

N(r, ﬁ) < N(r, %) +kN(r, f) +S(r, f).

Lemma 3 ([6]) Let g be a meromorphic function on C. If its spherical derivative is uniformly
bounded on C. Then the order of g is at most 2. If g is an entire function, then the order of g

is at most 1.

Lemma 4 Let .% be a family of holomorphic functions in D and k be a positive integer, a be
a finite complex number. There exists a set with 3 elements such that if any f € % satisfies
E(S, f) = E(S, f®), and the zeros of f(z) — a are of multiplicity > k + 1, then .Z is normal in
D.

Proof Without loss of generality, we may assume D = A, S = {aj,a2,a3}. # is not normal in

A. We consider two cases.

Case 1 a € S. We need only consider that a = aq. Set A = rileaé(|s| + 1, then by E(S, f) =
E(S, f®)) and Lemma 1, there exist points z, with |z,| < r < 1, functions f,, € .#, and positive
numbers p,, — 0%, such that p % £, (2, + pnC) — pr%a = g.(() — g(¢) locally uniformly with
respect to the spherical metric, where g is a non-constant holomorphic function, all of whose
zeros have multiplicity at least k + 1, and g% (¢) < g7 (0) = kA + 1.

First, we claim: E(S, ¢g®*®) = E(0,g). Suppose that g(¢y) = 0. Then by Hurwitz’s theorem,
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there exists a sequence {(,} with {, — (o, such that (for n sufficiently large) ¢,,({,) = 0. Thus
fn(2n 4 pnCy) = a1. Since E(S, f) = E(S, f¥)), we have £ (zn + pnCy) € S, thus gr(Lk)(Cn) €S,
so g (¢y) € S. Therefore E(0,g) C E(S, g™).

Now suppose that g% (¢o) = s, s € §. We claim that ¢*)(¢) # s. If g®)(¢) = s, then g(¢)
is a polynomial of the degree at most k, which contradicts the fact that the zeros of g(¢) are of
multiplicity > k + 1.

By Hurwitz’s theorem, there exists a sequence ¢, with ¢(,, — (o, such that g,(zk) (Cn) = ,(Ik) (zn+
pnCn) = s, and since E(S, f) = E(S, f*)), we have f,(z, + pnCn) € S. Hence, there exists a
subsequence of {f,}, still denoted by {f,}, such that f,(z, + pn(n) =9, 5" € S.

’
S —ay

If 8" # aq, then ¢g({p) = lim ¢,(¢,) = lim i+ = 00, which contradicts g®) (&) = s.

If s = a1, then g(¢o) = lim gn((,) = lim —f”(zn-‘_ﬁ,?q”)_al =0.

Namely, E(S,g*)) C E(0,g). Hence E(S,g™*)) = E(0, g).

Now we consider the following two subcases:

Subcase 1.1 ¢(() is transcendental entire function. By the second fundamental theorem to
g™ (¢), we have

27(r,g¥)) < N(r,g) + ZN(T, —_—

i=1
Since the zeros of ¢g({) are of multiplicity > k + 1, we get
1

N(r, %) < N(r, —) < T(r, ). (2.2)
g g( )

~—

Thus (2.1) and (2.2) yield T'(r, g*¥)) = S(r, g®), which is a contradiction.
Subcase 1.2 ¢(() is a polynomial. Set

g(Q) =col™ +er ™ e, m> k41,
where ¢; (j =0,1,...,m) are finite complex numbers, and ¢y # 0.

T(r,g®) = (m —k)logr + O(1), as r — oc.

— 1 m
N(r,=) <
) <

From (2.1), we obtain

logr + O(1) < % +0(1), S(r,g™) = 0(1).

2(m — k) logr < %logr + 0O(1),

thus m < %k. Since the zeros of g(¢) are of multiplicity > k + 1, g(¢) has only one zero (p.
Then g(¢) = ¢o(¢ — o)™, and g*) (¢o) = m(m —1)---(m — k + 1)|eo|(¢ — Co)™*. Obviously,
g™ (¢) = aj(j = 1,2,3) have 3(m — k)(> 3) zeros, which contradicts E(0, g) = E(S, g®).

Case 2 a ¢ S. By Lemma 1, there exist points z, with |z,| < r < 1, functions f, € %, and
positive numbers p, — 07, such that g, = fn(2n +pnl) —a — g(¢) locally uniformly with respect
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to the spherical metric, where g is a non-constant holomorphic function, all of whose zeros have
multiplicity at least k + 1.
Using the same argument as Case 1, we have E(a; — a,g) € E(0,¢g®)), i = 1,2,3. By the

second fundamental theorem and Lemma 2, we have

3T(r,g) < N(r, ;) + ZN(T, ﬁ) +S(r,9)
1 K3

+

— 1

N(ﬁw)*'s(ﬁg)
1

r,— +ST,g
g) (r,9)

<1+ k—H)T(r, g)+ S(r,g).

Since k > 1, T'(r,g) = S(r, g), which is a contradiction. Lemma 4 is proved. O

< (T4 —/=)N(

kE+1
1

3. Proof of Theorem 1
Proof Set S ={0,a,b}, where a,b are two non-zero distinct finite complex numbers satisfying
a® # V%, a#2b, a> —ab+b* #0, 3d*> —2(a + b)d + ab # 0.

First, we prove py < 1. Set .# = {f(24w)}, z € {z : |2] < 1}. Then . is a family of holomorphic
functions in D. Obviously Vg(z) = f(z + w) € .F, we have E(S,g) = E(S,g®), and the zeros
of g — d are of multiplicity > k + 1. By Lemma 4, .% is normal in D. Thus by Marty’s criteria,
there exists M (> 0) satisfying

_ @ ol
T = Tp = oo~ O =Y

for w all in C. By Lemma 3, py < 1. Set
FPR)FP(2) - allfP(2) — b]

N BB eE &y
Then by E(S, f) = E(S, f®)), there exists an entire function a(z) satisfying
o(z) = e, (3.2)
Standard computations involving the lemma on the logarithmic derivative show that
m(r, @) = S(r, f), (3-3)
and hence
T(r,p) =m(r, @) + N(r,) = 5(r, f). (3-4)

By pr <1,T(r,f) = O(r), S(r, f) = O(logr). It then follows from (3.4) that ¢ is a polynomial,

so by (3.2) ¢ must be a non-zero constant ¢. Hence

PP () — allf P (2) — b]

FOUG) —dlifz -y
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that is,
FP P (2) = al[f P (2) — b] = cf(2)[f(2) — al[f (z) — b].

Differentiating the two sides of (3.5), we obtain

B(F5 N2 —2(a+b) f* + ab] fFHY) = ¢[3f% — 2(a + b) f + ablf'.

1019

(3.5)

(3.6)

We claim f(z) —d # 0. Indeed, suppose that z is p(> k+1) zero of f(z) —d. Then the left-hand
side of (3.6) vanishes at zp to order p — k — 1,while the right-hand side vanishes to the order at

least p — 1, a contradiction. Hence
f(z) = d+ Be?*
and
f(k) (z) = BAFeAZ,
where A # 0, B # 0, and d are constants.

T(r, f) < N, f) + (r, =) + N(r, —

that is

Similarly, we have

1
f—a’
By (3.9), (3.10), E(S, f) = E(S, f*®), and the second fundamental theorem, we have

N(r,

\
S
=
=
_|_
nn
=
=
=
=

)ZT(va)+S(Taf)'

(3.7)

(3.9)

(3.10)

Hence we obtain T'(r, f) = S(r, f), which contradicts (3.6). Thus d € S. Now we consider the

following three cases.
Case 1 d=0. By (3.6) and (3.7), we have

F(z) = Be**(A#0,B #0), f¥(z) = BAFeA* £ 0.

(3.11)

Suppose f(z1) = a. Then since E(S, f) = E(S, f(*)), we have either f*)(z;) = a or f*)(z) = b.

If f)(z1) = a, then by (3.11), A* =1,s0 f = f*). If f*)(2) = b, then by (3.11),

A= 2
b

(3.12)
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Similarly, if f(z2) = b, then either f*)(25) = a or f*)(23) = b. If f*)(25) = a, then by (3.11),
AF = — (3.13)
b
If f()(25) = b, then f = f*). Thus either f = f*) or, by (3.12) and (3.13), a> = b%. However,
this contradicts a® # b2. It follows that if d = 0, then f = f*).

Case 2 d=a. By (3.6) and (3.7), we have
f(2) = a+ Be?*, f0)(2) = BAFeA* £ 0. (3.14)

Let f(z3) = 0. Then since E(S, f) = E(S, f®), either f*)(23) = a or f(¥)(23) = b. Assume
first that f(*)(23) = a. Then by (3.14), A¥ = —1. Thus

f(2) = a+ Be?*, f®)(z) = —Be??. (3.15)

Let f(z4) = b. Then since E(S, f) = E(S, f®), either f*)(24) = a or f*)(z4) = b. If fF)(24) =
a, (3.15) gives b = 0, which contradicts b # 0. If f*)(z;) = b, we obtain a = 2b, which also

contradicts a # 2b. A similar argument applies in case f*)(z;) = b. In that case, A* = —% and
b

f(z) =a+ Be?*, f®(z2) = —=. Be?*. (3.16)
a

Choosing z5 so that f(z5) = b, we have either f(*)(25) = a or f*)(25) = b. If f*)(z5) = a, (3.16)
yields a® — ab+ b? = 0, which contradicts a® — ab + b? # 0. Similarly f)(25) = b leads to b = 0,

which is also ruled out. It follows that Case 2 cannot occur.

Case 3 d =0b. This case is symmetric to Case 2 and can be eliminated by the same arguments.
In the above discussion we have shown that f = f(*). This completes the proof of Theorem

1.0

References

[1] YANG Le. Value Distribution Theory [M]. Science Press, Beijing, 1993.

(2] HAYMAN W K. Meromorphic Functions [M]. Clarendon Press, Oxford, 1964.

[3] YANG Chongjun, YI Hongxun. Uniqueness Theory of meromorphic Functions [M]. Science Press, Beijing,
2003.

[4] FANG Mingliang, ZALCMAN L. Normal families and uniqueness theorems for entire functions [J]. J. Math.
Anal. Appl., 2003, 280(2): 273-283.

[5] PANG Xuecheng, ZALCMAN L. Normal families and shared values [J]. Bull. London. Math. Soc., 2003, 3:
325-331.

[6] CLUNIE J, HAYMAN W K. The spherical derivative of integral and meromorphic functions [J]. Comment.
Math. Helv., 1966, 40: 117-148.



