Uniqueness of Entire Function Related to Shared Set

Dong XIE^{1,*}, Qing De ZHANG²

1. Department of Science, Bozhou Teachers College, Anhui 236800, P. R. China;

2. College of Mathematics, Chengdu University of Information Technology,

Sichuan 610225, P. R. China

Abstract In this paper, uniqueness of entire function related to shared set is studied. Let f be a non-constant entire function and k be a positive integer, d be a finite complex number. There exists a set S with 3 elements such that if f and its derivative $f^{(k)}$ satisfy $E(S, f) = E(S, f^{(k)})$, and the zeros of f(z) - d are of multiplicity $\geq k + 1$, then $f = f^{(k)}$.

Keywords entire function; normality; uniqueness; shared set; derivative.

Document code A MR(2010) Subject Classification 30D35; 30D45 Chinese Library Classification 0174.52

1. Introduction and main results

In this paper, we use the symbols as given in Nevanlinna theory of meromorphic functions [1–3].

Let f and g be two non-constant meromorphic functions, and $a \in \overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$. We say that f and g share the value a IM (ignoring multiplicities) if f - a and g - a have the same zeros, and they share the value a CM (counting multiplicities) if f - a and f - b have the same zeros with the same multiplicities. When $a = \infty$ the zeros of f - a means the poles of f (see [3]).

Let f be a non-constant meromorphic function in the complex plane and let S be a set of distinct complex numbers. Put

$$E(s, f) = \bigcup_{a \in S} \{ z : f(z) - a = 0, CM \}, \quad \overline{E}(S, f) = \bigcup_{a \in S} \{ z : f(z) - a = 0, IM \}.$$

If E(S, f) = E(S, g), we say that f and g share the set S CM. If E(S, f) = E(S, g), we say that f and g share the set S IM. Especially, when $S = \{a\}, a \in \overline{\mathbb{C}}, E(a, f) = E(a, g)$ or $\overline{E}(a, f) = \overline{E}(a, g)$ means f and g share the value a CM or IM respectively.

In 2003, Fang and Zalcman [4] proved the following result.

Theorem A There exists a set S with 3 elements such that if a non-constant entire function f and its derivative f' satisfy E(S, f) = E(S, g), then f = f'.

Received May 4, 2010; Accepted July 12, 2010

Supported by the Natural Science Foundation of Anhui Province (Grant No. KJ2010B124).

* Corresponding author

E-mail address: eastxie@yahoo.com.cn (D. XIE)

It is natural to ask whether Theorem A remains valid for $f^{(k)}$. In this paper, we use the theory of normal families to prove

Theorem 1 Let f be a non-constant entire function and k be a positive integer, d be a finite complex number. There exists a set S with 3 elements such that if f and its derivative $f^{(k)}$ satisfy $E(S, f) = E(S, f^{(k)})$, and the zeros of f(z) - d are of multiplicity $\geq k + 1$, then $f = f^{(k)}$.

2. Some lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 ([5]) Let \mathscr{F} be a family of functions holomorphic on the unit disc, all of whose zeros have multiplicity at least k. Suppose that there exists $A \ge 1$ such that $|f^{(k)}(z)| \le A$ whenever f(z) = 0. If \mathscr{F} is not normal, there exist, for each $\alpha(0 \le \alpha \le k)$,

- (a) points z_n with $|z_n| < r < 1$,
- (b) functions $f_n \in \mathscr{F}$, and
- (c) positive numbers $\rho_n \to 0^+$

such that $\rho_n^{-\alpha} f_n(z_n + \rho_n \xi) = g_n(\xi) \to g(\xi)$ locally uniformly with respect to the spherical metric, where g is a non-constant entire function, all of whose zeros have multiplicity at least k, such that $g^{\#}(\xi) \leq g^{\#}(0) = kA + 1$. Here $g^{\#}(\xi) = \frac{|g'(\xi)|}{1 + |g(\xi)|^2}$ is the spherical derivative of g.

Lemma 2 ([3]) Let f be a non-constant meromorphic function and k be a positive integer. Then

$$N(r, \frac{1}{f^{(k)}}) < N(r, \frac{1}{f}) + k\overline{N}(r, f) + S(r, f).$$

Lemma 3 ([6]) Let g be a meromorphic function on \mathbb{C} . If its spherical derivative is uniformly bounded on $\overline{\mathbb{C}}$. Then the order of g is at most 2. If g is an entire function, then the order of g is at most 1.

Lemma 4 Let \mathscr{F} be a family of holomorphic functions in D and k be a positive integer, a be a finite complex number. There exists a set with 3 elements such that if any $f \in \mathscr{F}$ satisfies $\overline{E}(S, f) = \overline{E}(S, f^{(k)})$, and the zeros of f(z) - a are of multiplicity $\geq k + 1$, then \mathscr{F} is normal in D.

Proof Without loss of generality, we may assume $D = \Delta$, $S = \{a_1, a_2, a_3\}$. \mathscr{F} is not normal in Δ . We consider two cases.

Case 1 $a \in S$. We need only consider that $a = a_1$. Set $A = \max_{a \in S} |s| + 1$, then by $\overline{E}(S, f) = \overline{E}(S, f^{(k)})$ and Lemma 1, there exist points z_n with $|z_n| < r < 1$, functions $f_n \in \mathscr{F}$, and positive numbers $\rho_n \to 0^+$, such that $\rho_n^{-k} f_n(z_n + \rho_n \zeta) - \rho_n^{-k} a = g_n(\zeta) \to g(\zeta)$ locally uniformly with respect to the spherical metric, where g is a non-constant holomorphic function, all of whose zeros have multiplicity at least k + 1, and $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$.

First, we claim: $\overline{E}(S, g^{(k)}) = \overline{E}(0, g)$. Suppose that $g(\zeta_0) = 0$. Then by Hurwitz's theorem,

there exists a sequence $\{\zeta_n\}$ with $\zeta_n \to \zeta_0$, such that (for *n* sufficiently large) $g_n(\zeta_n) = 0$. Thus $f_n(z_n + \rho_n \zeta_n) = a_1$. Since $\overline{E}(S, f) = \overline{E}(S, f^{(k)})$, we have $f_n^{(k)}(z_n + \rho_n \zeta_n) \in S$, thus $g_n^{(k)}(\zeta_n) \in S$, so $g^{(k)}(\zeta_0) \in S$. Therefore $\overline{E}(0,g) \subseteq \overline{E}(S,g^{(k)})$.

Now suppose that $g^{(k)}(\zeta_0) = s, s \in S$. We claim that $g^{(k)}(\zeta) \neq s$. If $g^{(k)}(\zeta) \equiv s$, then $g(\zeta)$ is a polynomial of the degree at most k, which contradicts the fact that the zeros of $g(\zeta)$ are of multiplicity $\geq k + 1$.

By Hurwitz's theorem, there exists a sequence ζ_n with $\zeta_n \to \zeta_0$, such that $g_n^{(k)}(\zeta_n) = f_n^{(k)}(z_n + \rho_n\zeta_n) = s$, and since $\overline{E}(S, f) = \overline{E}(S, f^{(k)})$, we have $f_n(z_n + \rho_n\zeta_n) \in S$. Hence, there exists a subsequence of $\{f_n\}$, still denoted by $\{f_n\}$, such that $f_n(z_n + \rho_n\zeta_n) = s', s' \in S$.

If
$$s' \neq a_1$$
, then $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = \lim_{n \to \infty} \frac{s' - a_1}{\rho_n^k} = \infty$, which contradicts $g^{(k)}(\zeta_0) = s$.
If $s' = a_1$, then $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = \lim_{n \to \infty} \frac{f_n(z_n + \rho_n \zeta_n) - a_1}{\rho_n^k} = 0$.
Namely, $\overline{E}(S, g^{(k)}) \subseteq \overline{E}(0, g)$. Hence $\overline{E}(S, g^{(k)}) = \overline{E}(0, g)$.

Now we consider the following two subcases:

Subcase 1.1 $g(\zeta)$ is transcendental entire function. By the second fundamental theorem to $g^{(k)}(\zeta)$, we have

$$2T(r,g^{(k)}) \le \overline{N}(r,g) + \sum_{i=1}^{3} \overline{N}(r,\frac{1}{g^{(k)}-a_i}) + S(r,g^{(k)}) \le \overline{N}(r,\frac{1}{g}) + S(r,g^{(k)}).$$
(2.1)

Since the zeros of $g(\zeta)$ are of multiplicity $\geq k + 1$, we get

$$\overline{N}(r, \frac{1}{g}) \le \overline{N}(r, \frac{1}{g^{(k)}}) \le T(r, g^{(k)}).$$
(2.2)

Thus (2.1) and (2.2) yield $T(r, g^{(k)}) = S(r, g^{(k)})$, which is a contradiction.

Subcase 1.2 $g(\zeta)$ is a polynomial. Set

$$g(\zeta) = c_0 \zeta^m + c_1 \zeta^{m-1} + \dots + c_m, \quad m \ge k+1,$$

where c_j (j = 0, 1, ..., m) are finite complex numbers, and $c_0 \neq 0$.

$$T(r, g^{(k)}) = (m - k) \log r + O(1), \text{ as } r \to \infty.$$
$$\overline{N}(r, \frac{1}{g}) \le \frac{m}{k+1} \log r + O(1) \le \frac{m}{2} + O(1), \ S(r, g^{(k)}) = O(1).$$

From (2.1), we obtain

$$2(m-k)\log r \le \frac{m}{2}\log r + O(1),$$

thus $m \leq \frac{4}{3}k$. Since the zeros of $g(\zeta)$ are of multiplicity $\geq k+1$, $g(\zeta)$ has only one zero ζ_0 . Then $g(\zeta) = c_0(\zeta - \zeta_0)^m$, and $g^{(k)}(\zeta_0) = m(m-1)\cdots(m-k+1)|c_0|(\zeta - \zeta_0)^{m-k}$. Obviously, $g^{(k)}(\zeta) = a_j(j=1,2,3)$ have $3(m-k)(\geq 3)$ zeros, which contradicts $\overline{E}(0,g) = \overline{E}(S,g^{(k)})$.

Case 2 $a \notin S$. By Lemma 1, there exist points z_n with $|z_n| < r < 1$, functions $f_n \in \mathscr{F}$, and positive numbers $\rho_n \to 0^+$, such that $g_n = f_n(z_n + \rho_n \zeta) - a \to g(\zeta)$ locally uniformly with respect

to the spherical metric, where g is a non-constant holomorphic function, all of whose zeros have multiplicity at least k + 1.

Using the same argument as Case 1, we have $\overline{E}(a_i - a, g) \subseteq \overline{E}(0, g^{(k)})$, i = 1, 2, 3. By the second fundamental theorem and Lemma 2, we have

$$\begin{split} 3T(r,g) &\leq \overline{N}(r,\frac{1}{g}) + \sum_{i=1}^{3} \overline{N}(r,\frac{1}{g-(a_{i}-a)}) + S(r,g) \\ &\leq \frac{1}{k+1}N(r,\frac{1}{g}) + \overline{N}(r,\frac{1}{g^{(k)}}) + S(r,g) \\ &\leq (1+\frac{1}{k+1})N(r,\frac{1}{g}) + S(r,g) \\ &\leq (1+\frac{1}{k+1})T(r,g) + S(r,g). \end{split}$$

Since $k \ge 1$, T(r,g) = S(r,g), which is a contradiction. Lemma 4 is proved. \Box

3. Proof of Theorem 1

Proof Set $S = \{0, a, b\}$, where a, b are two non-zero distinct finite complex numbers satisfying

$$a^2 \neq b^2$$
, $a \neq 2b$, $a^2 - ab + b^2 \neq 0$, $3d^2 - 2(a+b)d + ab \neq 0$.

First, we prove $\rho_f \leq 1$. Set $\mathscr{F} = \{f(z+\omega)\}, z \in \{z : |z| < 1\}$. Then \mathscr{F} is a family of holomorphic functions in D. Obviously $\forall g(z) = f(z+\omega) \in \mathscr{F}$, we have $E(S,g) = E(S,g^{(k)})$, and the zeros of g - d are of multiplicity $\geq k + 1$. By Lemma 4, \mathscr{F} is normal in D. Thus by Marty's criteria, there exists M(>0) satisfying

$$f^{\#}(\omega) = \frac{|f'(\omega)|}{1 + |f(\omega)|^2} = \frac{|g'(0)|}{1 + |g(0)|^2} = g^{\#}(0) \le M$$

for ω all in \mathbb{C} . By Lemma 3, $\rho_f \leq 1$. Set

$$\varphi(z) = \frac{f^{(k)}(z)[f^{(k)}(z) - a][f^{(k)}(z) - b]}{f(z)[f(z) - a][f(z) - b]}.$$
(3.1)

Then by $E(S, f) = E(S, f^{(k)})$, there exists an entire function $\alpha(z)$ satisfying

$$\varphi(z) = e^{\alpha(z)}.\tag{3.2}$$

Standard computations involving the lemma on the logarithmic derivative show that

$$m(r,\varphi) = S(r,f), \tag{3.3}$$

and hence

$$T(r,\varphi) = m(r,\varphi) + N(r,\varphi) = S(r,f).$$
(3.4)

By $\rho_f \leq 1$, T(r, f) = O(r), S(r, f) = O(logr). It then follows from (3.4) that φ is a polynomial, so by (3.2) φ must be a non-zero constant c. Hence

$$\frac{f^{(k)}(z)[f^{(k)}(z)-a][f^{(k)}(z)-b]}{f(z)[f(z)-a][f(z)-b]} = c,$$

Uniqueness of entire function related to shared set

that is,

$$f^{(k)}(z)[f^{(k)}(z) - a][f^{(k)}(z) - b] = cf(z)[f(z) - a][f(z) - b].$$
(3.5)

Differentiating the two sides of (3.5), we obtain

$$[3(f^{(k)})^2 - 2(a+b)f^{(k)} + ab]f^{(k+1)} = c[3f^2 - 2(a+b)f + ab]f'.$$
(3.6)

We claim $f(z) - d \neq 0$. Indeed, suppose that z_0 is $p(\geq k+1)$ zero of f(z) - d. Then the left-hand side of (3.6) vanishes at z_0 to order p - k - 1, while the right-hand side vanishes to the order at least p - 1, a contradiction. Hence

$$f(z) = d + Be^{Az} \tag{3.7}$$

and

$$f^{(k)}(z) = BA^k e^{Az}, (3.8)$$

where $A \neq 0, B \neq 0$, and d are constants.

$$T(r,f) \le \overline{N}(r,f) + \overline{N}(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{f-d}) + S(r,f) = \overline{N}(r,\frac{1}{f}) + S(r,f),$$

that is

$$\overline{N}(r,\frac{1}{f}) = T(r,f) + S(r,f).$$
(3.9)

Similarly, we have

$$\overline{N}(r, \frac{1}{f-a}) = T(r, f) + S(r, f), \overline{N}(r, \frac{1}{f-b}) = T(r, f) + S(r, f).$$
(3.10)

By (3.9), (3.10), $\overline{E}(S, f) = \overline{E}(S, f^{(k)})$, and the second fundamental theorem, we have

$$\begin{aligned} 3T(r,f) &\leq \overline{N}(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{f-a}) + \overline{N}(r,\frac{1}{f-b}) + S(r,f) \\ &\leq \overline{N}(r,\frac{1}{f^{(k)}-a}) + \overline{N}(r,\frac{1}{f^{(k)}-b}) + S(r,f) \\ &\leq 2T(r,f^{(k)}) + S(r,f) \\ &\leq 2m(r,\frac{f^{(k)}}{f}) + 2m(r,f) + S(r,f) \\ &\leq 2T(r,f) + S(r,f). \end{aligned}$$

Hence we obtain T(r, f) = S(r, f), which contradicts (3.6). Thus $d \in S$. Now we consider the following three cases.

Case 1 d = 0. By (3.6) and (3.7), we have

$$f(z) = Be^{Az} (A \neq 0, B \neq 0), f^{(k)}(z) = BA^k e^{Az} \neq 0.$$
(3.11)

Suppose $f(z_1) = a$. Then since $E(S, f) = E(S, f^{(k)})$, we have either $f^{(k)}(z_1) = a$ or $f^{(k)}(z_1) = b$. If $f^{(k)}(z_1) = a$, then by (3.11), $A^k = 1$, so $f \equiv f^{(k)}$. If $f^{(k)}(z_1) = b$, then by (3.11),

$$A^k = \frac{a}{b}.\tag{3.12}$$

Similarly, if $f(z_2) = b$, then either $f^{(k)}(z_2) = a$ or $f^{(k)}(z_2) = b$. If $f^{(k)}(z_2) = a$, then by (3.11),

$$A^k = \frac{a}{b}.\tag{3.13}$$

If $f^{(k)}(z_2) = b$, then $f \equiv f^{(k)}$. Thus either $f \equiv f^{(k)}$ or, by (3.12) and (3.13), $a^2 = b^2$. However, this contradicts $a^2 \neq b^2$. It follows that if d = 0, then $f \equiv f^{(k)}$.

Case 2 d = a. By (3.6) and (3.7), we have

$$f(z) = a + Be^{Az}, f^{(k)}(z) = BA^k e^{Az} \neq 0.$$
(3.14)

Let $f(z_3) = 0$. Then since $E(S, f) = E(S, f^{(k)})$, either $f^{(k)}(z_3) = a$ or $f^{(k)}(z_3) = b$. Assume first that $f^{(k)}(z_3) = a$. Then by (3.14), $A^k = -1$. Thus

$$f(z) = a + Be^{Az}, \ f^{(k)}(z) = -Be^{Az}.$$
 (3.15)

Let $f(z_4) = b$. Then since $E(S, f) = E(S, f^{(k)})$, either $f^{(k)}(z_4) = a$ or $f^{(k)}(z_4) = b$. If $f^{(k)}(z_4) = a$, (3.15) gives b = 0, which contradicts $b \neq 0$. If $f^{(k)}(z_4) = b$, we obtain a = 2b, which also contradicts $a \neq 2b$. A similar argument applies in case $f^{(k)}(z_4) = b$. In that case, $A^k = -\frac{b}{a}$ and

$$f(z) = a + Be^{Az}, \ f^{(k)}(z) = -\frac{b}{a} \cdot Be^{Az}.$$
 (3.16)

Choosing z_5 so that $f(z_5) = b$, we have either $f^{(k)}(z_5) = a$ or $f^{(k)}(z_5) = b$. If $f^{(k)}(z_5) = a$, (3.16) yields $a^2 - ab + b^2 = 0$, which contradicts $a^2 - ab + b^2 \neq 0$. Similarly $f^{(k)}(z_5) = b$ leads to b = 0, which is also ruled out. It follows that Case 2 cannot occur.

Case 3 d = b. This case is symmetric to Case 2 and can be eliminated by the same arguments.

In the above discussion we have shown that $f \equiv f^{(k)}$. This completes the proof of Theorem 1. \Box

References

- [1] YANG Le. Value Distribution Theory [M]. Science Press, Beijing, 1993.
- [2] HAYMAN W K. Meromorphic Functions [M]. Clarendon Press, Oxford, 1964.
- [3] YANG Chongjun, YI Hongxun. Uniqueness Theory of meromorphic Functions [M]. Science Press, Beijing, 2003.
- [4] FANG Mingliang, ZALCMAN L. Normal families and uniqueness theorems for entire functions [J]. J. Math. Anal. Appl., 2003, 280(2): 273–283.
- [5] PANG Xuecheng, ZALCMAN L. Normal families and shared values [J]. Bull. London. Math. Soc., 2003, 3: 325–331.
- [6] CLUNIE J, HAYMAN W K. The spherical derivative of integral and meromorphic functions [J]. Comment. Math. Helv., 1966, 40: 117–148.

1020