Uniqueness of Entire Function Related to Shared Set

Dong XIE ${ }^{1, *}$, Qing De ZHANG ${ }^{2}$
1. Department of Science, Bozhou Teachers College, Anhui 236800, P. R. China;
2. College of Mathematics, Chengdu University of Information Technology, Sichuan 610225, P. R. China

Abstract

In this paper, uniqueness of entire function related to shared set is studied. Let f be a non-constant entire function and k be a positive integer, d be a finite complex number. There exists a set S with 3 elements such that if f and its derivative $f^{(k)}$ satisfy $E(S, f)=E\left(S, f^{(k)}\right)$, and the zeros of $f(z)-d$ are of multiplicity $\geq k+1$, then $f=f^{(k)}$.

Keywords entire function; normality; uniqueness; shared set; derivative.
Document code A
MR(2010) Subject Classification 30D35; 30D45
Chinese Library Classification O174.52

1. Introduction and main results

In this paper, we use the symbols as given in Nevanlinna theory of meromorphic functions [1-3].

Let f and g be two non-constant meromorphic functions, and $a \in \overline{\mathbb{C}}=\mathbb{C} \bigcup\{\infty\}$. We say that f and g share the value a IM (ignoring multiplicities) if $f-a$ and $g-a$ have the same zeros, and they share the value a CM (counting multiplicities) if $f-a$ and $f-b$ have the same zeros with the same multiplicities. When $a=\infty$ the zeros of $f-a$ means the poles of f (see [3]).

Let f be a non-constant meromorphic function in the complex plane and let S be a set of distinct complex numbers. Put

$$
E(s, f)=\bigcup_{a \in S}\{z: f(z)-a=0, \mathrm{CM}\}, \quad \bar{E}(S, f)=\bigcup_{a \in S}\{z: f(z)-a=0, \mathrm{IM}\}
$$

If $E(S, f)=E(S, g)$, we say that f and g share the set S CM. If $E(S, f)=E(S, g)$, we say that f and g share the set S IM. Especially, when $S=\{a\}, a \in \overline{\mathbb{C}}, E(a, f)=E(a, g)$ or $\bar{E}(a, f)=\bar{E}(a, g)$ means f and g share the value a CM or IM respectively.

In 2003, Fang and Zalcman [4] proved the following result.
Theorem A There exists a set S with 3 elements such that if a non-constant entire function f and its derivative f^{\prime} satisfy $E(S, f)=E(S, g)$, then $f=f^{\prime}$.

[^0]It is natural to ask whether Theorem A remains valid for $f^{(k)}$. In this paper, we use the theory of normal families to prove

Theorem 1 Let f be a non-constant entire function and k be a positive integer, d be a finite complex number. There exists a set S with 3 elements such that if f and its derivative $f^{(k)}$ satisfy $E(S, f)=E\left(S, f^{(k)}\right)$, and the zeros of $f(z)-d$ are of multiplicity $\geq k+1$, then $f=f^{(k)}$.

2. Some lemmas

In order to prove Theorem 1, we need the following lemmas.
Lemma 1 ([5]) Let \mathscr{F} be a family of functions holomorphic on the unit disc, all of whose zeros have multiplicity at least k. Suppose that there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$. If \mathscr{F} is not normal, there exist, for each $\alpha(0 \leq \alpha \leq k)$,
(a) points z_{n} with $\left|z_{n}\right|<r<1$,
(b) functions $f_{n} \in \mathscr{F}$, and
(c) positive numbers $\rho_{n} \rightarrow 0^{+}$
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \xi\right)=g_{n}(\xi) \rightarrow g(\xi)$ locally uniformly with respect to the spherical metric, where g is a non-constant entire function, all of whose zeros have multiplicity at least k, such that $g^{\#}(\xi) \leq g^{\#}(0)=k A+1$. Here $g^{\#}(\xi)=\frac{\left|g^{\prime}(\xi)\right|}{1+\mid g(\xi)^{2}}$ is the spherical derivative of g.

Lemma 2 ([3]) Let f be a non-constant meromorphic function and k be a positive integer. Then

$$
N\left(r, \frac{1}{f^{(k)}}\right)<N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) .
$$

Lemma 3 ([6]) Let g be a meromorphic function on \mathbb{C}. If its spherical derivative is uniformly bounded on $\overline{\mathbb{C}}$. Then the order of g is at most 2. If g is an entire function, then the order of g is at most 1 .

Lemma 4 Let \mathscr{F} be a family of holomorphic functions in D and k be a positive integer, a be a finite complex number. There exists a set with 3 elements such that if any $f \in \mathscr{F}$ satisfies $\bar{E}(S, f)=\bar{E}\left(S, f^{(k)}\right)$, and the zeros of $f(z)-a$ are of multiplicity $\geq k+1$, then \mathscr{F} is normal in D.

Proof Without loss of generality, we may assume $D=\Delta, S=\left\{a_{1}, a_{2}, a_{3}\right\}$. \mathscr{F} is not normal in Δ. We consider two cases.

Case $1 a \in S$. We need only consider that $a=a_{1}$. Set $A=\max _{a \in S}|s|+1$, then by $\bar{E}(S, f)=$ $\bar{E}\left(S, f^{(k)}\right)$ and Lemma 1, there exist points z_{n} with $\left|z_{n}\right|<r<1$, functions $f_{n} \in \mathscr{F}$, and positive numbers $\rho_{n} \rightarrow 0^{+}$, such that $\rho_{n}^{-k} f_{n}\left(z_{n}+\rho_{n} \zeta\right)-\rho_{n}^{-k} a=g_{n}(\zeta) \rightarrow g(\zeta)$ locally uniformly with respect to the spherical metric, where g is a non-constant holomorphic function, all of whose zeros have multiplicity at least $k+1$, and $g^{\#}(\zeta) \leq g^{\#}(0)=k A+1$.

First, we claim: $\bar{E}\left(S, g^{(k)}\right)=\bar{E}(0, g)$. Suppose that $g\left(\zeta_{0}\right)=0$. Then by Hurwitz's theorem,
there exists a sequence $\left\{\zeta_{n}\right\}$ with $\zeta_{n} \rightarrow \zeta_{0}$, such that (for n sufficiently large) $g_{n}\left(\zeta_{n}\right)=0$. Thus $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a_{1}$. Since $\bar{E}(S, f)=\bar{E}\left(S, f^{(k)}\right)$, we have $f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right) \in S$, thus $g_{n}^{(k)}\left(\zeta_{n}\right) \in S$, so $g^{(k)}\left(\zeta_{0}\right) \in S$. Therefore $\bar{E}(0, g) \subseteq \bar{E}\left(S, g^{(k)}\right)$.

Now suppose that $g^{(k)}\left(\zeta_{0}\right)=s, s \in S$. We claim that $g^{(k)}(\zeta) \neq s$. If $g^{(k)}(\zeta) \equiv s$, then $g(\zeta)$ is a polynomial of the degree at most k, which contradicts the fact that the zeros of $g(\zeta)$ are of multiplicity $\geq k+1$.

By Hurwitz's theorem, there exists a sequence ζ_{n} with $\zeta_{n} \rightarrow \zeta_{0}$, such that $g_{n}^{(k)}\left(\zeta_{n}\right)=f_{n}^{(k)}\left(z_{n}+\right.$ $\left.\rho_{n} \zeta_{n}\right)=s$, and since $\bar{E}(S, f)=\bar{E}\left(S, f^{(k)}\right)$, we have $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right) \in S$. Hence, there exists a subsequence of $\left\{f_{n}\right\}$, still denoted by $\left\{f_{n}\right\}$, such that $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=s^{\prime}, s^{\prime} \in S$.

If $s^{\prime} \neq a_{1}$, then $g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} \frac{s^{\prime}-a_{1}}{\rho_{n}^{k}}=\infty$, which contradicts $g^{(k)}\left(\zeta_{0}\right)=s$.
If $s^{\prime}=a_{1}$, then $g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} \frac{f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)-a_{1}}{\rho_{n}^{k}}=0$.
Namely, $\bar{E}\left(S, g^{(k)}\right) \subseteq \bar{E}(0, g)$. Hence $\bar{E}\left(S, g^{(k)}\right)=\bar{E}(0, g)$.
Now we consider the following two subcases:
Subcase $1.1 g(\zeta)$ is transcendental entire function. By the second fundamental theorem to $g^{(k)}(\zeta)$, we have

$$
\begin{equation*}
2 T\left(r, g^{(k)}\right) \leq \bar{N}(r, g)+\sum_{i=1}^{3} \bar{N}\left(r, \frac{1}{g^{(k)}-a_{i}}\right)+S\left(r, g^{(k)}\right) \leq \bar{N}\left(r, \frac{1}{g}\right)+S\left(r, g^{(k)}\right) \tag{2.1}
\end{equation*}
$$

Since the zeros of $g(\zeta)$ are of multiplicity $\geq k+1$, we get

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{g}\right) \leq \bar{N}\left(r, \frac{1}{g^{(k)}}\right) \leq T\left(r, g^{(k)}\right) \tag{2.2}
\end{equation*}
$$

Thus (2.1) and (2.2) yield $T\left(r, g^{(k)}\right)=S\left(r, g^{(k)}\right)$, which is a contradiction.
Subcase $1.2 g(\zeta)$ is a polynomial. Set

$$
g(\zeta)=c_{0} \zeta^{m}+c_{1} \zeta^{m-1}+\cdots+c_{m}, \quad m \geq k+1
$$

where $c_{j}(j=0,1, \ldots, m)$ are finite complex numbers, and $c_{0} \neq 0$.

$$
\begin{gathered}
T\left(r, g^{(k)}\right)=(m-k) \log r+O(1), \text { as } r \rightarrow \infty \\
\bar{N}\left(r, \frac{1}{g}\right) \leq \frac{m}{k+1} \log r+O(1) \leq \frac{m}{2}+O(1), \quad S\left(r, g^{(k)}\right)=O(1)
\end{gathered}
$$

From (2.1), we obtain

$$
2(m-k) \log r \leq \frac{m}{2} \log r+O(1)
$$

thus $m \leq \frac{4}{3} k$. Since the zeros of $g(\zeta)$ are of multiplicity $\geq k+1, g(\zeta)$ has only one zero ζ_{0}. Then $g(\zeta)=c_{0}\left(\zeta-\zeta_{0}\right)^{m}$, and $g^{(k)}\left(\zeta_{0}\right)=m(m-1) \cdots(m-k+1)\left|c_{0}\right|\left(\zeta-\zeta_{0}\right)^{m-k}$. Obviously, $g^{(k)}(\zeta)=a_{j}(j=1,2,3)$ have $3(m-k)(\geq 3)$ zeros, which contradicts $\bar{E}(0, g)=\bar{E}\left(S, g^{(k)}\right)$.

Case $2 a \notin S$. By Lemma 1, there exist points z_{n} with $\left|z_{n}\right|<r<1$, functions $f_{n} \in \mathscr{F}$, and positive numbers $\rho_{n} \rightarrow 0^{+}$, such that $g_{n}=f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a \rightarrow g(\zeta)$ locally uniformly with respect
to the spherical metric, where g is a non-constant holomorphic function, all of whose zeros have multiplicity at least $k+1$.

Using the same argument as Case 1 , we have $\bar{E}\left(a_{i}-a, g\right) \subseteq \bar{E}\left(0, g^{(k)}\right), i=1,2,3$. By the second fundamental theorem and Lemma 2, we have

$$
\begin{aligned}
3 T(r, g) & \leq \bar{N}\left(r, \frac{1}{g}\right)+\sum_{i=1}^{3} \bar{N}\left(r, \frac{1}{g-\left(a_{i}-a\right)}\right)+S(r, g) \\
& \leq \frac{1}{k+1} N\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}}\right)+S(r, g) \\
& \leq\left(1+\frac{1}{k+1}\right) N\left(r, \frac{1}{g}\right)+S(r, g) \\
& \leq\left(1+\frac{1}{k+1}\right) T(r, g)+S(r, g)
\end{aligned}
$$

Since $k \geq 1, T(r, g)=S(r, g)$, which is a contradiction. Lemma 4 is proved.

3. Proof of Theorem 1

Proof Set $S=\{0, a, b\}$, where a, b are two non-zero distinct finite complex numbers satisfying

$$
a^{2} \neq b^{2}, a \neq 2 b, a^{2}-a b+b^{2} \neq 0,3 d^{2}-2(a+b) d+a b \neq 0
$$

First, we prove $\rho_{f} \leq 1$. Set $\mathscr{F}=\{f(z+\omega)\}, z \in\{z:|z|<1\}$. Then \mathscr{F} is a family of holomorphic functions in D. Obviously $\forall g(z)=f(z+\omega) \in \mathscr{F}$, we have $E(S, g)=E\left(S, g^{(k)}\right)$, and the zeros of $g-d$ are of multiplicity $\geq k+1$. By Lemma $4, \mathscr{F}$ is normal in D. Thus by Marty's criteria, there exists $M(>0)$ satisfying

$$
f^{\#}(\omega)=\frac{\left|f^{\prime}(\omega)\right|}{1+|f(\omega)|^{2}}=\frac{\left|g^{\prime}(0)\right|}{1+|g(0)|^{2}}=g^{\#}(0) \leq M
$$

for ω all in \mathbb{C}. By Lemma 3, $\rho_{f} \leq 1$. Set

$$
\begin{equation*}
\varphi(z)=\frac{f^{(k)}(z)\left[f^{(k)}(z)-a\right]\left[f^{(k)}(z)-b\right]}{f(z)[f(z)-a][f(z)-b]} \tag{3.1}
\end{equation*}
$$

Then by $E(S, f)=E\left(S, f^{(k)}\right)$, there exists an entire function $\alpha(z)$ satisfying

$$
\begin{equation*}
\varphi(z)=e^{\alpha(z)} \tag{3.2}
\end{equation*}
$$

Standard computations involving the lemma on the logarithmic derivative show that

$$
\begin{equation*}
m(r, \varphi)=S(r, f) \tag{3.3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
T(r, \varphi)=m(r, \varphi)+N(r, \varphi)=S(r, f) \tag{3.4}
\end{equation*}
$$

By $\rho_{f} \leq 1, T(r, f)=O(r), S(r, f)=O(\log r)$. It then follows from (3.4) that φ is a polynomial, so by (3.2) φ must be a non-zero constant c. Hence

$$
\frac{f^{(k)}(z)\left[f^{(k)}(z)-a\right]\left[f^{(k)}(z)-b\right]}{f(z)[f(z)-a][f(z)-b]}=c
$$

that is,

$$
\begin{equation*}
f^{(k)}(z)\left[f^{(k)}(z)-a\right]\left[f^{(k)}(z)-b\right]=c f(z)[f(z)-a][f(z)-b] . \tag{3.5}
\end{equation*}
$$

Differentiating the two sides of (3.5), we obtain

$$
\begin{equation*}
\left[3\left(f^{(k)}\right)^{2}-2(a+b) f^{(k)}+a b\right] f^{(k+1)}=c\left[3 f^{2}-2(a+b) f+a b\right] f^{\prime} \tag{3.6}
\end{equation*}
$$

We claim $f(z)-d \neq 0$. Indeed, suppose that z_{0} is $p(\geq k+1)$ zero of $f(z)-d$. Then the left-hand side of (3.6) vanishes at z_{0} to order $p-k-1$, while the right-hand side vanishes to the order at least $p-1$, a contradiction. Hence

$$
\begin{equation*}
f(z)=d+B e^{A z} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{(k)}(z)=B A^{k} e^{A z} \tag{3.8}
\end{equation*}
$$

where $A \neq 0, B \neq 0$, and d are constants.

$$
T(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-d}\right)+S(r, f)=\bar{N}\left(r, \frac{1}{f}\right)+S(r, f)
$$

that is

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f}\right)=T(r, f)+S(r, f) \tag{3.9}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f-a}\right)=T(r, f)+S(r, f), \bar{N}\left(r, \frac{1}{f-b}\right)=T(r, f)+S(r, f) \tag{3.10}
\end{equation*}
$$

By (3.9), (3.10), $\bar{E}(S, f)=\bar{E}\left(S, f^{(k)}\right)$, and the second fundamental theorem, we have

$$
\begin{aligned}
3 T(r, f) & \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}\left(r, \frac{1}{f-b}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f^{(k)}-a}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-b}\right)+S(r, f) \\
& \leq 2 T\left(r, f^{(k)}\right)+S(r, f) \\
& \leq 2 m\left(r, \frac{f^{(k)}}{f}\right)+2 m(r, f)+S(r, f) \\
& \leq 2 T(r, f)+S(r, f)
\end{aligned}
$$

Hence we obtain $T(r, f)=S(r, f)$, which contradicts (3.6). Thus $d \in S$. Now we consider the following three cases.

Case $1 d=0$. By (3.6) and (3.7), we have

$$
\begin{equation*}
f(z)=B e^{A z}(A \neq 0, B \neq 0), f^{(k)}(z)=B A^{k} e^{A z} \neq 0 \tag{3.11}
\end{equation*}
$$

Suppose $f\left(z_{1}\right)=a$. Then since $E(S, f)=E\left(S, f^{(k)}\right)$, we have either $f^{(k)}\left(z_{1}\right)=a$ or $f^{(k)}\left(z_{1}\right)=b$. If $f^{(k)}\left(z_{1}\right)=a$, then by $(3.11), A^{k}=1$, so $f \equiv f^{(k)}$. If $f^{(k)}\left(z_{1}\right)=b$, then by (3.11),

$$
\begin{equation*}
A^{k}=\frac{a}{b} \tag{3.12}
\end{equation*}
$$

Similarly, if $f\left(z_{2}\right)=b$, then either $f^{(k)}\left(z_{2}\right)=a$ or $f^{(k)}\left(z_{2}\right)=b$. If $f^{(k)}\left(z_{2}\right)=a$, then by (3.11),

$$
\begin{equation*}
A^{k}=\frac{a}{b} . \tag{3.13}
\end{equation*}
$$

If $f^{(k)}\left(z_{2}\right)=b$, then $f \equiv f^{(k)}$. Thus either $f \equiv f^{(k)}$ or, by (3.12) and (3.13), $a^{2}=b^{2}$. However, this contradicts $a^{2} \neq b^{2}$. It follows that if $d=0$, then $f \equiv f^{(k)}$.

Case $2 d=a$. By (3.6) and (3.7), we have

$$
\begin{equation*}
f(z)=a+B e^{A z}, f^{(k)}(z)=B A^{k} e^{A z} \neq 0 \tag{3.14}
\end{equation*}
$$

Let $f\left(z_{3}\right)=0$. Then since $E(S, f)=E\left(S, f^{(k)}\right)$, either $f^{(k)}\left(z_{3}\right)=a$ or $f^{(k)}\left(z_{3}\right)=b$. Assume first that $f^{(k)}\left(z_{3}\right)=a$. Then by (3.14), $A^{k}=-1$. Thus

$$
\begin{equation*}
f(z)=a+B e^{A z}, f^{(k)}(z)=-B e^{A z} \tag{3.15}
\end{equation*}
$$

Let $f\left(z_{4}\right)=b$. Then since $E(S, f)=E\left(S, f^{(k)}\right)$, either $f^{(k)}\left(z_{4}\right)=a$ or $f^{(k)}\left(z_{4}\right)=b$. If $f^{(k)}\left(z_{4}\right)=$ $a,(3.15)$ gives $b=0$, which contradicts $b \neq 0$. If $f^{(k)}\left(z_{4}\right)=b$, we obtain $a=2 b$, which also contradicts $a \neq 2 b$. A similar argument applies in case $f^{(k)}\left(z_{4}\right)=b$. In that case, $A^{k}=-\frac{b}{a}$ and

$$
\begin{equation*}
f(z)=a+B e^{A z}, f^{(k)}(z)=-\frac{b}{a} \cdot B e^{A z} \tag{3.16}
\end{equation*}
$$

Choosing z_{5} so that $f\left(z_{5}\right)=b$, we have either $f^{(k)}\left(z_{5}\right)=a$ or $f^{(k)}\left(z_{5}\right)=b$. If $f^{(k)}\left(z_{5}\right)=a,(3.16)$ yields $a^{2}-a b+b^{2}=0$, which contradicts $a^{2}-a b+b^{2} \neq 0$. Similarly $f^{(k)}\left(z_{5}\right)=b$ leads to $b=0$, which is also ruled out. It follows that Case 2 cannot occur.

Case $3 d=b$. This case is symmetric to Case 2 and can be eliminated by the same arguments. In the above discussion we have shown that $f \equiv f^{(k)}$. This completes the proof of Theorem 1.

References

[1] YANG Le. Value Distribution Theory [M]. Science Press, Beijing, 1993.
[2] HAYMAN W K. Meromorphic Functions [M]. Clarendon Press, Oxford, 1964.
[3] YANG Chongjun, YI Hongxun. Uniqueness Theory of meromorphic Functions [M]. Science Press, Beijing, 2003.
[4] FANG Mingliang, ZALCMAN L. Normal families and uniqueness theorems for entire functions [J]. J. Math. Anal. Appl., 2003, 280(2): 273-283.
[5] PANG Xuecheng, ZALCMAN L. Normal families and shared values [J]. Bull. London. Math. Soc., 2003, 3: 325-331.
[6] CLUNIE J, HAYMAN W K. The spherical derivative of integral and meromorphic functions [J]. Comment. Math. Helv., 1966, 40: 117-148.

[^0]: Received May 4, 2010; Accepted July 12, 2010
 Supported by the Natural Science Foundation of Anhui Province (Grant No. KJ2010B124).

 * Corresponding author

 E-mail address: eastxie@yahoo.com.cn (D. XIE)

