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Abstract This paper deals with the existence of e-positive mild solutions (see Definition 1) for

the initial value problem of impulsive evolution equation with noncompact semigroup





u′(t) + Au(t) = f(t, u(t)), t ∈ [0, +∞), t 6= tk,

△u|t=tk
= Ik(u(tk)), k = 1, 2, . . . ,

u(0) = x0

in an ordered Banach space E. By using operator semigroup theory and monotonic iterative

technique, without any hypothesis on the impulsive functions, an existence result of e-positive

mild solutions is obtained under weaker measure of noncompactness condition on nonlinearity

of f . Particularly, an existence result without using measure of noncompaceness condition is

presented in ordered and weakly sequentially complete Banach spaces, which is very convenient

for application. An example is given to illustrate that our results are more valuable.

Keywords impulsive evolution equation; e-positive mild solution; equicontinuous semigroup;

Measure of noncompactness.
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1. Introduction and main results

During recent years, the impulsive differential equations have been an object of intensive in-

vestigation because of the wide possibilities for their applications in various fields of science and

technology such as theoretical physics, population dynamics, economics, etc. [1, 2]. Correspond-

ingly, the existence of solutions for impulsive differential equations in Banach spaces has also

been studied by many authors [3–6]. But these results are for the case of ordinary differential

equations. There are seldom the results on impulsive evolution equations [7, 8].

In this paper, we consider the initial value problem (IVP) of nonlinear impulsive evolution
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equation 



u′(t) +Au(t) = f(t, u(t)), t ∈ J∞, t 6= tk,

△u|t=tk
= Ik(u(tk)), k = 1, 2, . . . ,

u(0) = x0,

(1)

where A : D(A) ⊂ E → E is a closed linear operator, −A generates a C0-semigroup T (t) (t ≥ 0)

in E. f ∈ C(J∞ × E,E), J∞ = [0,+∞). 0 < t1 < t2 < · · · < tm < · · · , tm → +∞(m → +∞),

and Ik : E → E, k = 1, 2, . . . are impulsive functions, x0 ∈ E. △u|t=tk
= u(t+k ) − u(t−k ), where

u(t+k ) and u(t−k ) represent the right and left limits of u(t) at t = tk, respectively.

Let PC(J∞, E) := {u : J∞ → E|u(t) is continuous at t 6= tk, and left continuous at t = tk,

and u(t+k ) exists, k = 1, 2, . . .}. Let J ′
∞ = J∞\{t1, t2, . . . , tm, . . .}, J0 = [0, t1] and Jk = (tk, tk+1],

k = 1, 2, . . . . Let λ1 be the minimal positive real eigenvalue of the linear operator A, e1 ∈ D(A)

be the positive eigenvector corresponding to λ1.

In 1999, Liu [7] studied the existence and uniqueness of mild solutions for the problem




u′(t) +Au(t) = f(t, u(t)), t ∈ [0, T0], t 6= tk,

△u|t=tk
= Ik(u(tk)), k = 1, 2, . . . , p,

u(0) = x0.

(2)

The existence theorem in [7] required that nonlinearity f and impulsive functions Ik’s satisfy the

following assumptions:

‖f(t, u) − f(t, v)‖ ≤ C∗‖u− v‖, t ∈ [0, T0], u, v ∈ E, (3)

‖Ik(u) − Ik(v)‖ ≤ hk‖u− v‖, u, v ∈ E, k = 1, 2, . . . , p, (4)

where C∗ > 0 and hk > 0 satisfy

M∗(C∗T0 +

p∑

k=1

hk) < 1 (5)

with M∗ = maxt∈[0,T0] ‖T (t)‖.

The conditions (3)–(5) are all strongly restricted and are difficultly satisfied in applications.

Recently, Cardinali and Rubbioni [8] extended and improved the result of Liu in [7]. They deleted

the conditions (4) and (5) and improved the condition (3). They only required that nonlinearity

f satisfies the following conditions:

‖f(t, x)‖ ≤ a(t)(1 + ‖x‖), t ∈ [0, T0], x ∈ E, (6)

where a ∈ L1([0, T0],R
+) is a function, and for any bounded D ⊂ E

α(f(t,D)) ≤ k(t)α(D), t ∈ [0, T0], (7)

where k ∈ L1([0, T0],R
+) is a function.

But the condition (7) is also difficult to verify in applications. In this paper, we will improve

or delete the condition (7) by using order conditions in ordered Banach spaces. These order
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conditions are verified conveniently in applications. In addition, we obtain the existence of

positive solutions for the initial value problem of impulsive evolution equations on J∞.

Our main results are as follows:

Theorem 1 Let E be an ordered Banach space with norm ‖ · ‖ and partial order “≤”, whose

positive cone K is normal, and −A generate a positive equicontinuous C0-semigroup T (t) (t ≥ 0).

Let x0 ≥ σe1, f(t, σe1) ≥ λ1σe1 for σ > 0 and t ∈ J∞. If the nonlinearity f ∈ C(J∞ ×K,E)

satisfies the following conditions:

(H1) There exist a, b ∈ C(J∞, J∞) such that

‖f(t, x)‖ ≤ a(t)‖x‖ + b(t), t ∈ J∞, x ∈ K.

(H2) For any R > 0, T > 0, there exists C = C(R, T ) > 0 such that

f(t, x2) − f(t, x1) ≥ −C(x2 − x1),

for any t ∈ [0, T ], θ ≤ x1 ≤ x2, ‖x1‖, ‖x2‖ ≤ R.

(H3) For any R > 0, T > 0, there exists L = L(R, T ) > 0 such that

α(f(t,D)) ≤ Lα(D)

for any t ∈ [0, T ], and increasing monotonic sequence D = {xn} ⊂ K∩B(θ,R). Then the IVP(1)

has an e-positive mild solution on J∞.

Remark 1 Analytic semigroup and differentiable semigroup are equicontinuous semigroups

[11]. In applications of partial differential equations, such as strongly damped wave equation,

parabolic type equation, etc., their solution semigroups are the analytic semigroups. Hence, it is

convenient to apply Theorem 1 to these equations.

When E is an ordered and weakly sequentially complete Banach space, we delete the measure

of noncompactness condition (H3) of Theorem 1 and obtain the following result:

Corollary 1 Let E be an ordered and weakly sequentially complete Banach space, whose

positive cone K is normal, −A generate a positive equicontinuous C0-semigroup T (t) (t ≥ 0).

Let x0 ≥ σe1, f(t, σe1) ≥ λ1σe1 for σ > 0 and t ∈ J∞. If the nonlinearity f ∈ C(J∞ ×K,E)

satisfies the assumptions (H1) and (H2), then the IVP(1) has an e-positive mild solution on J∞.

Remark 2 In applications of some partial differential equations, we often choose Lp(Ω) as

working space, which is weakly sequentially complete. Hence, it is very convenient in Lp(Ω) to

apply the Corollary 1 to these equations.

The proof of Theorem 1 will be introduced in next section. In Section 3, an example will be

given to illustrate that our results are more valuable.

2. Proof of main result

Let (E, ‖·‖) be a Banach space, A : D(A) ⊂ E → E be a closed linear operator, −A generate
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a C0-semigroup T (t) (t ≥ 0) in E. Then there exist M > 0 and δ ∈ R such that

‖T (t)‖ ≤Meδt, t ≥ 0.

Let I = [t0, T ], C(I, E) denote the Banach space of all continuous E-value functions on

interval I with norm ‖u‖C = maxt∈I ‖u(t)‖. We consider the initial value problem (IVP) of

linear evolution equation without impulse in E




u′(t) +Au(t) = ϕ(t), t ∈ I,

u(t0) = x0.
(8)

It is well-known [1, Chapter 4, Theorem 2.9] that when x0 ∈ D(A) and ϕ ∈ C1(I, E), the IVP(8)

has unique classical solution u ∈ C1(I, E) ∩C(I, E1) (where E1 is a Banach space generated by

D(A) with norm ‖x‖1 = ‖x‖ + ‖Ax‖) expressed by

u(t) = T (t− t0)x0 +

∫ t

t0

T (t− s)ϕ(s)ds, t ∈ I. (9)

Generally, when x0 ∈ E and ϕ ∈ C(I, E), the function u given by (9) belongs to C(I, E) and it

is called a mild solution of the IVP(8).

Similarly, for the initial value problem (IVP) of the linear impulsive evolution equation in E





u′(t) +Au(t) = ϕ(t), t ∈ J∞, t 6= tk,

△u|t=tk
= Ik(u(tk)), k = 1, 2, . . . ,

u(0) = x0.

(10)

Definition 1 If an abstract function u ∈ PC(J∞, E) satisfies the following integral equation

u(t) = T (t)x0 +

∫ t

0

T (t− s)ϕ(s)ds +
∑

0<tk<t

T (t− tk)Ik(u(tk)),

then we call it a mild solution of the IVP(10). Furthermore, if there exist e ≥ 0 and σ > 0 such

that u(t) ≥ σe for t ∈ J∞, then we call it an e-positive mild solution of the IVP(10).

Let α(·) denote the Kuratowski measure of noncompactness of the bounded set in E and

C(I, E). We refer to [12] for the details of the definition and the properties of the measure of

noncompactness. For any B ⊂ C(I, E) and t ∈ I, set B(t) = {u(t)|u ∈ B} ⊂ E. If B is bounded

in C(I, E), then B(t) is bounded in E, and α(B(t)) ≤ α(B). The following lemmas will be used

in the proof of Theorem 1.

Lemma 1 Let B ⊂ C(I, E) be bounded and equicontinuous. Then α(B(t)) is continuous on I,

and

α(B) = max
t∈I

α(B(t)).

This lemma can be found in [13, Theorem 1.1.2].

Lemma 2 Let B = {un} ⊂ C(I, E) be countable. If there exists ψ ∈ L1(I) such that ‖un(t)‖ ≤
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ψ(t), a. e. t ∈ I, n = 1, 2, . . ., then α(B(t)) is Lebesgue integral on I, and

α({

∫

I

un(t)dt|un ∈ B}) ≤ 2

∫

I

α(B(t))dt.

This lemma can be found in [14, Corollary 3.1(b)].

Proof of Theorem 1 (I) We prove the global existence of e-positive mild solutions for the

IVP(1) on J0 = [0, t1].

In this case, the IVP(1) is equivalent to the initial value problem(IVP) of evolution equation

without impulse in E 



u′(t) +Au(t) = f(t, u(t)), t ∈ J0,

u(0) = x0.

(11)

Next the proof will be divided into two steps.

(i) The local existence of e-positive mild solutions.

For any t0 ≥ 0 and x0 ∈ E, we prove that the initial value problem (IVP) of evolution

equation 



u′(t) +Au(t) = f(t, u(t)), t > t0,

u(t0) = x0

(12)

has an e-positive mild solution on I = [t0, t0 + ht0 ], where ht0 ∈ (0, 1) is pending. Let

Mt0 = sup{‖T (t)‖|0 ≤ t ≤ t0 + 1}, Rt0 = 2Mt0(‖x0‖ + 1) + σe1,

at0 = max
t∈[0,t0+1]

a(t), bt0 = max
t∈[0,t0+1]

b(t), Lt0 = L(t0 + 1, Rt0).

Let C = C(t0 + 1, Rt0) be the constant in condition (H2). The IVP(12) can be rewritten as the

form 



u′(t) + (A+ CI)u(t) = f(t, u(t)) + Cu(t), t > t0,

u(t0) = x0.

(13)

We define the mapping Q by

(Qu)(t) = S(t− t0)x0 +

∫ t

t0

S(t− s)[f(s, u(s)) + Cu(s)]ds, t ∈ I, (14)

where S(t) = e−CtT (t) (t ≥ 0) is the C0-semigroup generated by −(A+ CI). Then S(t) (t ≥ 0)

is a positive equicontinuous C0-semigroup. From condition (H2) and the continuity of f , Q :

C(I,K) → C(I, E) is continuous and increasing, and a solution of the IVP(13) on I is equivalent

to a fixed point of Q.

Denote Ω := {u ∈ C(I,K)|‖u(t)‖ ≤ Rt0 , u(t) ≥ σe1, t ∈ I}. Then Ω ⊂ C(I,K) is a nonempty

bounded convex closed set. Let ht0 ≤ min{1, ‖x0‖+1
(at0

+C)Rt0
+bt0

}. Then for every u ∈ Ω and t ∈ I,

by assumption (H1) and (14), we have

‖(Qu)(t)‖ ≤ ‖S(t− t0)x0‖ + ‖

∫ t

t0

S(t− s)[f(s, u(s)) + Cu(s)]ds‖
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≤Mt0‖x0‖ +Mt0

∫ t

t0

a(s)‖u(s)‖ + b(s) + C‖u(s)‖ds

≤Mt0‖x0‖ +Mt0 [(at0 + C)Rt0 + bt0 ]ht0 ≤ Rt0 .

Let v0 = σe1. Then

ϕ(t) , v′0(t) + (A+ CI)v0(t) = λ1σe1 + Cσe1 ≤ f(t, σe1) + Cσe1.

Since S(t) is a positive C0-semigroup and Q is an increasing operator, from (14), we have

σe1 = v0(t) = S(t− t0)v0(t0) +

∫ t

t0

S(t− s)ϕ(s)ds

≤ S(t− t0)x0 +

∫ t

t0

S(t− s)[f(t, σe1) + Cσe1]ds

= Q(σe1)(t) ≤ (Qu)(t), t ∈ I.

Thus, Q : Ω → Ω is continuous and increasing. By the similar method of Li [10], we can prove

that Q(Ω) is a family of equicontinuous functions in C(I,K).

Let v0 = σe1 ∈ Ω. Define interval sequence {vn} by

vn = Qvn−1, n = 1, 2, . . . . (15)

Since Q is an increasing operator and v1 = Qv0 ≥ v0, we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · . (16)

Hence, {vn} = {Qvn−1} ⊂ Q(Ω) ⊂ Ω is bounded and equicontinuous.

Let B = {vn|n ∈ N}, B0 = {vn−1|n ∈ N}. Since B0 = B∪{v0}, from the property of measure

of noncompactness, we have α(B(t)) = α(B0(t)) for t ∈ I. From condition (H3), Lemma 2 and

(14), for any t ∈ I, we have

α(B(t)) = α(Q(B0)(t)) = α({S(t− t0)x0 +

∫ t

t0

S(t− s)[f(s, vn−1(s)) + Cvn−1(s)]ds|n ∈ N})

= α({

∫ t

t0

S(t− s)[f(s, vn−1(s)) + Cvn−1(s)]ds|n ∈ N})

≤ 2

∫ t

t0

‖S(t− s)‖ · α({f(s, vn−1(s)) + Cvn−1(s)|n ∈ N})ds

≤ 2Mt0

∫ t

t0

α(f(s,B0(s)) + Cα(B0(s))))ds ≤ 2Mt0(Lt0 + C)

∫ t

t0

α(B0(s))})ds

= 2Mt0(Lt0 + C)

∫ t

t0

α(B(s))})ds.

By Bellman inequality, we have α(B(t)) ≡ 0 for t ∈ I. By Lemma 1, we deduce that α(B) =

maxt∈I α(B(t)) = 0, i.e., {vn} is relatively compact in C(I,K). Hence, there exists subsequence

{vnk
} ⊂ {vn} such that vnk

→ u∗ ∈ Ω as k → ∞. Combining this with (16) and the normality

of cone K, it is easy to prove that vn → u∗ as n→ ∞. Let n→ ∞ in (15). From the continuity

of operator Q, we have u∗ = Qu∗. Therefore, u∗ ∈ Ω ⊂ C(I,K) is an e-positive mild solution of

the IVP(13).
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(ii) The global existence of e-positive mild solutions for the IVP(11) on J0.

From (i), we easily see that the IVP(11) has an e-positive mild solution u0 ∈ C([0, h0],K)

expressed by

u0(t) = S(t)x0 +

∫ t

0

S(t− s)[f(s, u0(s)) + Cu0(s)]ds.

By the extension theorem [11], u0 can be extended to a saturated solution of the IVP(11), which

is also denoted by u0 ∈ C([0, T ),K), whose existence interval is [0, T ).

Next, we show that T > t1. Denote

a = max
t∈[0,T+1]

a(t), b = max
t∈[0,T+1]

b(t), M1 = sup
t∈[0,T+1]

‖T (t)‖.

If T ≤ t1, then by assumption (H1), we have

‖u0(t)‖ ≤ ‖S(t)x0‖ +

∫ t

0

‖S(t− s)[f(s, u0(s)) + Cu0(s)]‖ds

≤M1‖x0‖ +M1bT +M1(a+ C)

∫ t

0

‖u0(s)‖ds.

By Bellman inequality, we have

‖u0(t)‖ ≤M1(‖x0‖ + bT )eM1(a+C)t ≤M1(‖x0‖ + bT )eM1(a+C)T , M2.

Hence let N0 = N(0,M2) := supt∈[0,T+1],‖x‖≤M2
‖f(t, x)‖. Since S(t) is continuous in operator

norm for t > 0, for any 0 < τ1 < τ2 < T , we have

‖u0(τ2) − u0(τ1)‖

≤ ‖S(τ2)x0 − S(τ1)x0‖ +

∫ τ1

0

‖S(τ2 − s) − S(τ1 − s)‖ · ‖f(s, u0(s)) + Cu0(s)‖ds+

∫ τ2

τ1

‖S(τ2 − s)‖ · ‖f(s, u0(s)) + Cu0(s)‖ds

≤ ‖S(τ2)x0 − S(τ1)x0‖ + (N0 + CM2)

∫ T

0

‖S(τ2 − τ1 + s) − S(s)‖ds+

M1(N0 + CM2)(τ2 − τ1) → 0, (τ1, τ2 → T−).

Hence by Cauchy criterion, there exists x ∈ K such that limt→T− u0(t) = x. We consider the

initial value problem (IVP) of evolution equation without impulsive in E




u′(t) + (A+ CI)u(t) = f(t, u(t)) + Cu(t), t > T,

u(T ) = x.

(17)

From (i), the IVP(17) has an e-positive mild solution v on [T, T + hT ]. Let

ũ(t) =





u0(t), t ∈ [0, T ),

v(t), t ∈ [T, T + hT ].

It is easy to see that ũ(t) is an e-positive mild solution of the IVP(11) on [0, T + hT ]. Therefore,

ũ(t) is an extension of u0(t), this is a contradiction. Hence, T > t1, i.e., the global e-positive



1054 H. YANG

mild solution u0(t) of the IVP(11) exists on J0, which is also an e-positive mild solution of the

IVP(1) on J0.

(II) We show that the IVP(1) has global e-positive mild solution on J∞.

At first, we prove that the IVP(1) has global e-positive mild solution on J1 = (t1, t2]. We

consider the initial value problem (IVP) of evolution equation without impulse on J1





u′(t) + (A+ CI)u(t) = f(t, u(t)) + Cu(t), t ∈ J1,

u(t+1 ) = u0(t1) + I1(u0(t1)).
(18)

Clearly, a global e-positive mild solution of the IVP(18) on J1 is also an e-positive mild solution

of the IVP(1) on J1. By the argument similar to the proof of (I), the IVP(18) has an e-positive

mild solution u1 ∈ C(J1,K) expressed by

u1(t) = S(t− t1)(u0(t1) + I1(u0(t1))) +

∫ t

t1

S(t− s)[f(s, u(s)) + Cu(s)]ds

= S(t)x0 +

∫ t

0

S(t− s)[f(s, u(s)) + Cu(s)]ds+ S(t− t1)I1(u0(t1)).

Assume that, for t ∈ Jk−1 (k = 3, 4, . . .), the IVP(1) has an e-positive mild solution uk−1 ∈

C(Jk−1,K) (k = 3, 4, . . .). Then, for t ∈ Jk (k = 2, 3, . . .), the initial value problem (IVP) of

evolution equation without impulse in E
{
u′(t) + (A+ CI)u(t) = f(t, u(t)) + Cu(t), t ∈ Jk, k = 2, 3, . . . ,

u(t+k ) = uk−1(tk) + Ik(uk−1(tk))

has an e-positive mild solution uk ∈ C(Jk,K) expressed by

uk(t) =S(t− tk)(uk−1(tk) + Ik(uk−1(tk))) +

∫ t

tk

S(t− s)[f(s, u(s)) + Cu(s)]ds

=S(t− tk)[Ik(uk−1(tk)) + S(tk − tk−1)(uk−2(tk−1) + Ik−1(uk−2(tk−1)))+∫ tk

tk−1

S(tk − s)[f(s, u(s)) + Cu(s)]ds+

∫ t

tk

S(t− s)[f(s, u(s)) + Cu(s)]ds

= · · ·

=S(t)x0 +

∫ t

0

S(t− s)[f(s, u(s)) + Cu(s)]ds+
∑

0<tj<t

S(t− tj)Ij(uj−1(tj)).

Now, we define a function u by:

u(t) =





u0(t), t ∈ J0,

u1(t), t ∈ J1,

· · ·

uk(t), t ∈ Jk (k = 2, 3, . . .),

· · · .

(19)
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It is clear that u(t) ∈ PC(J∞,K) is an e-positive mild solution of the IVP(1), which satisfies

u(t) = S(t)x0 +

∫ t

0

S(t− s)[f(s, u(s)) + Cu(s)]ds+
∑

0<tk<t

S(t− tk)Ik(u(tk)).

By the global existence property of ui(t) on Ji, i = 0, 1, 2, . . . , the u(t) defined by (19) is a global

e-positive mild solution of the IVP(1) on J∞. 2

3. Applications

Let Ω ⊂ R
N be a bounded domain with a sufficiently smooth boundary ∂Ω. We consider the

initial boundary value problem of parabolic type





∂u
∂t

−∇2u = g(x, t, u), x ∈ Ω, t ∈ J∞, t 6= tk,

△u|t=tk
= Ik(u(x, tk)), x ∈ Ω, k = 1, 2, . . . ,

u|∂Ω = 0,

u(x, 0) = ϕ(x), x ∈ Ω,

(20)

where ∇2 denotes a Laplace operator, g(x, t, u) : Ω × J∞ × R
+ → R

+ is continuous. For the

problem (20), we have the following existence result:

Theorem 2 Let λ1 be the minimal positive real eigenvalue of Laplace operator −∇2 with Dirich-

let boundary value condition u|∂Ω = 0, e1 ∈ L2(Ω) be the positive eigenvector corresponding to

λ1. Let ϕ(x) ≥ e1(x), g(x, t, σe1(x)) ≥ λ1σe1(x) for x ∈ Ω, t ∈ J∞ and σ > 0. If the nonlinearity

g(x, t, u) : Ω × J∞ × R
+ → R

+ is continuous and satisfies the following conditions:

(P1) There exist a, b ∈ C(Ω × J∞,R
+) such that

|g(x, t, η)| ≤ a(x, t)|η| + b(x, t),

for any x ∈ Ω, t ∈ J∞, η ∈ R
+.

(P2) For any R > 0, T > 0, there exists M = M(R, T ) > 0 such that

g(x, t, η2) − g(x, t, η1) ≥ −M(η2 − η1),

for any x ∈ Ω, t ∈ J∞, and 0 ≤ η1 ≤ η2, |η1|, |η2| ≤ R, then the problem (20) has an e-positive

mild solution.

Proof Let E = L2(Ω). Then E is an ordered and weakly sequentially complete Banach space.

Let K = {u ∈ L2(Ω)|u(x) ≥ 0, a. e. x ∈ Ω}. Then K is normal in E. We define an operator A

by

D(A) = H2(Ω) ∪H1
0 (Ω), Au = −∇2u. (21)

The operator A : D(A) ⊂ E → E defined by (21) is a positive definite selfadjoint operator with

compact resolvent [15]. Hence, the spectrum σ(A) of A consists of all positive real eigenvalues

and it can be arrayed in sequence as

0 < λ1 < λ2 < · · · < λn < · · · , λn → ∞, n→ ∞.
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It is well-known [11, 16] that −A generates an analytic semigroup T (t) (t ≥ 0) in L2 (Ω). By

the maximum principle of parabolic equation, it is easy to see that T (t) (t ≥ 0) is a positive

operator semigroup. For v ∈ L2 (Ω), let f(t, v) := g(·, t, v(·)), Ik(v(tk)) = I(v(·, tk)). Then the

impulsive parabolic equation (20) is rewritten into the form of the impulsive evolution equation

(1) in E = L2(Ω). Obviously, all the conditions of Corollary 1 are satisfied. From Corollary 1,

the impulsive evolution equation (1) has an e-positive mild solution u∗ ∈ PC(J∞, E), which is

also an e-positive mild solution of the problem (20). 2
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