
Journal of Mathematical Research & Exposition

Nov., 2011, Vol. 31, No. 6, pp. 1064–1066

DOI:10.3770/j.issn:1000-341X.2011.06.014

Http://jmre.dlut.edu.cn

A Note on the Exponential Diophantine Equation
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Abstract Let a and b be fixed positive integers. In this paper, using some elementary methods,

we study the diophantine equation (am
− 1)(bn

− 1) = x2. For example, we prove that if a ≡ 2

(mod 6), b ≡ 3 (mod 12), then (an
− 1)(bm

− 1) = x2 has no solutions in positive integers n, m

and x.

Keywords Pell’s equation; congruences.

MR(2010) Subject Classification 11D61

Chinese Library Classification O156.1

1. Introduction

Let a and b be fixed positive integers. There are many works concerning the diophantine

equation (am−1)(bn−1) = x2. In [5], Szalay proved that the diophantine equation (2n−1)(3n−
1) = x2 has no solutions in positive integers n and x, (2n − 1)(5n − 1) = x2 has the only solution

n = 1, x = 2 in positive integers n and x, and (2n − 1)((2k)n − 1) = x2 has the only solution

k = 2, n = 3, x = 21 in positive integers k ≥ 2, n and x. In 2000, Hajdu and Szalay [1] proved

the equation (2n − 1)(6n − 1) = x2 has no solutions in positive integers (n, x), while the only

solutions to the equation (an − 1)(akn − 1) = x2, with a > 1, k > 1, kn > 2 are (a, n, k, x) =

(2, 3, 2, 21), (3, 1, 5, 22), (7, 1, 4, 120). In 2000, Walsh [6] proved that (2n − 1)(3m − 1) = x2 has

no solutions in positive integers n, m and x.

Following these works, Luca and Walsh [4] showed that the diophantine equation (ak−1)(bk−
1) = xn has finite solutions in positive integers (k, x, n) with n > 1. Moreover, they showed how

one can determine all integers (k, x, 2) of the equation above with k ≥ 1, for almost all pairs

(a, b) with 2 ≤ b < a ≤ 100. In 2009, Le [3] proved that if 3 | b, then (2n −1)(bn−1) = x2 has no

solutions in positive integers n and x. Recently, Li and Lzalay [2] proved that if a ≡ 2 (mod 6)

and b ≡ 0 (mod 3), then the equation (an − 1)(bn − 1) = x2 has no positive integer solution

(n, x).

In this paper, using some elementary methods, we obtain the following results:

Theorem 1 If a ≡ 0 (mod 2), b ≡ 15 (mod 20), then the equation

(an − 1)(bn − 1) = x2 (1)
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has no solutions in positive integers n and x.

Theorem 2 If a ≡ 2 (mod 6), b ≡ 3 (mod 12), then the equation

(an − 1)(bm − 1) = x2 (2)

has no solutions in positive integers n, m and x.

2. Proofs of Theorems

Let d be a positive integer which is not a square. It is well known that the Pell’s equation

x2 − dy2 = 1 has infinitely many positive solutions. If (x1, y1) is the smallest positive integer

solution, then for n = 1, 2, 3, . . ., define xn + yn

√
d = (x1 + y1

√
d)n. The pairs (xn, yn) are

all positive solutions of the Pell’s equation. Moreover, the xn
′s and yn

′s satisfy the following

recurrence relations

x2n = 2x2
n − 1, xn+2 = 2x1xn+1 − xn, (3)

and

y2n = 2xnyn, yn+2 = 2x1yn+1 − yn. (4)

Proof of Theorem 1 If Eq.(1) has a solution (n, x), then we have

an − 1 = dy2, (5)

and

bn − 1 = dz2, (6)

where d, y and z are positive integers satisfying dyz = x, and d is square-free. Note that a ≡ 0

(mod 2). By (5) we know that d is odd. Thus bn − 1 is properly divisible by an even power of

2. Hence bn − 1 ≡ 3n − 1 ≡ 0 (mod 4), and we know that n must be even.

Let (x1, y1) denote the smallest positive integer solution, and xn + yn

√
d = (x1 + y1

√
d)n for

n ≥ 1. By (4), if n is even, then yn = 2xn/2yn/2 is even. Since (xn, yn) = 1 (n ≥ 1), we have xn

is odd for all even values of n. Hence

an/2 + y
√

d = xr + yr

√
d (7)

holds for some odd positive integer r. By (3), we know that xn is even for all odd positive

integers n. Thus

bn/2 + y
√

d = xs + ys

√
d (8)

holds for some positive even integers. Let s = 2t. Then by (3) we have bm/2 = x2t = 2xt
2−1 ≡ 0

(mod 5). It follows that xt
2 ≡ 3 (mod 5), which is impossible.

This completes the proof of Theorem 1. 2

Proof of Theorem 2 If Eq.(2) has a solution (n, m, x), then we have

an − 1 = dy2, (9)
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and

bm − 1 = dz2, (10)

where d, y and z are positive integers satisfying dyz = x, and d is square-free. Since b ≡ 3

(mod 12), by (10) we have dz2 ≡ 2 (mod 3), thus 3 ∤ d, 3 ∤ z, hence z2 ≡ 1 (mod 3), d ≡ 2

(mod 3).

If 3 ∤ y, then y2 ≡ 1 mod 3, an = dy2 + 1 ≡ 0 (mod 3), which is impossible. Thus 3 | y,

an ≡ 2n ≡ 1 (mod 3), which implies that n must be even.

By (9), we know that d is odd, thus bm−1 is properly divisible by an even power of 2. Hence

bm − 1 ≡ 3m − 1 ≡ 0 (mod 4), and we know that m must be even.

Let (x1, y1) denote the smallest positive integer solution, and xn + yn

√
d = (x1 + y1

√
d)n for

n ≥ 1. By (4), if n is even, then yn = 2xn/2yn/2 is even. Noting that (xn, yn) = 1 (n ≥ 1), we

have xn is odd for all even values of n. Hence

an/2 + y
√

d = xr + yr

√
d (11)

holds for some odd positive integer r. By (3), we know that xn is even for all odd positive

integers n, thus

bm/2 + y
√

d = xs + ys

√
d (12)

holds for some positive even integers. Let s = 2t. Then by (3) we have bm/2 = x2t = 2xt
2−1 ≡ 0

(mod 3). It follows that xt
2 ≡ 2 (mod 3), which is impossible.

This completes the proof of Theorem 2. 2
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