A Note on the Exponential Diophantine Equation $(a^m - 1)(b^n - 1) = x^2$

Min TANG

Department of Mathematics, Anhui Normal University, Anhui 241000, P. R. China

Abstract Let a and b be fixed positive integers. In this paper, using some elementary methods, we study the diophantine equation $(a^m - 1)(b^n - 1) = x^2$. For example, we prove that if $a \equiv 2 \pmod{6}$, $b \equiv 3 \pmod{12}$, then $(a^n - 1)(b^m - 1) = x^2$ has no solutions in positive integers n, m and x.

Keywords Pell's equation; congruences.

MR(2010) Subject Classification 11D61 Chinese Library Classification 0156.1

1. Introduction

Let a and b be fixed positive integers. There are many works concerning the diophantine equation $(a^m-1)(b^n-1)=x^2$. In [5], Szalay proved that the diophantine equation $(2^n-1)(3^n-1)=x^2$ has no solutions in positive integers n and x, $(2^n-1)(5^n-1)=x^2$ has the only solution n=1, x=2 in positive integers n and x, and $(2^n-1)((2^k)^n-1)=x^2$ has the only solution k=2, n=3, x=21 in positive integers $k \geq 2, n$ and x. In 2000, Hajdu and Szalay [1] proved the equation $(2^n-1)(6^n-1)=x^2$ has no solutions in positive integers (n,x), while the only solutions to the equation $(a^n-1)(a^{kn}-1)=x^2$, with a>1, k>1, kn>2 are (a,n,k,x)=(2,3,2,21),(3,1,5,22),(7,1,4,120). In 2000, Walsh [6] proved that $(2^n-1)(3^m-1)=x^2$ has no solutions in positive integers n,m and x.

Following these works, Luca and Walsh [4] showed that the diophantine equation $(a^k-1)(b^k-1)=x^n$ has finite solutions in positive integers (k,x,n) with n>1. Moreover, they showed how one can determine all integers (k,x,2) of the equation above with $k\geq 1$, for almost all pairs (a,b) with $2\leq b< a\leq 100$. In 2009, Le [3] proved that if $3\mid b$, then $(2^n-1)(b^n-1)=x^2$ has no solutions in positive integers n and x. Recently, Li and Lzalay [2] proved that if $a\equiv 2\pmod 6$ and $b\equiv 0\pmod 3$, then the equation $(a^n-1)(b^n-1)=x^2$ has no positive integer solution (n,x).

In this paper, using some elementary methods, we obtain the following results:

Theorem 1 If $a \equiv 0 \pmod{2}$, $b \equiv 15 \pmod{20}$, then the equation

$$(a^n - 1)(b^n - 1) = x^2 (1)$$

Received July, 10, 2010; Accepted November 20, 2010

Supported by the National Natural Science Foundation of China (Grant No. 10901002).

E-mail address: tmzzz2000@163.com

A note on the exponential diophantine equation $(a^m - 1)(b^n - 1) = x^2$

1065

has no solutions in positive integers n and x.

Theorem 2 If $a \equiv 2 \pmod{6}$, $b \equiv 3 \pmod{12}$, then the equation

$$(a^n - 1)(b^m - 1) = x^2 (2)$$

has no solutions in positive integers n, m and x.

2. Proofs of Theorems

Let d be a positive integer which is not a square. It is well known that the Pell's equation $x^2 - dy^2 = 1$ has infinitely many positive solutions. If (x_1, y_1) is the smallest positive integer solution, then for $n = 1, 2, 3, \ldots$, define $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$. The pairs (x_n, y_n) are all positive solutions of the Pell's equation. Moreover, the x_n 's and y_n 's satisfy the following recurrence relations

$$x_{2n} = 2x_n^2 - 1, \quad x_{n+2} = 2x_1x_{n+1} - x_n,$$
 (3)

and

$$y_{2n} = 2x_n y_n, \quad y_{n+2} = 2x_1 y_{n+1} - y_n.$$
 (4)

Proof of Theorem 1 If Eq.(1) has a solution (n, x), then we have

$$a^n - 1 = dy^2, (5)$$

and

$$b^n - 1 = dz^2, (6)$$

where d, y and z are positive integers satisfying dyz = x, and d is square-free. Note that $a \equiv 0 \pmod{2}$. By (5) we know that d is odd. Thus $b^n - 1$ is properly divisible by an even power of 2. Hence $b^n - 1 \equiv 3^n - 1 \equiv 0 \pmod{4}$, and we know that n must be even.

Let (x_1, y_1) denote the smallest positive integer solution, and $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$ for $n \ge 1$. By (4), if n is even, then $y_n = 2x_{n/2}y_{n/2}$ is even. Since $(x_n, y_n) = 1$ $(n \ge 1)$, we have x_n is odd for all even values of n. Hence

$$a^{n/2} + y\sqrt{d} = x_r + y_r\sqrt{d} \tag{7}$$

holds for some odd positive integer r. By (3), we know that x_n is even for all odd positive integers n. Thus

$$b^{n/2} + y\sqrt{d} = x_s + y_s\sqrt{d} \tag{8}$$

holds for some positive even integers. Let s=2t. Then by (3) we have $b^{m/2}=x_{2t}=2x_t^2-1\equiv 0\pmod 5$. It follows that $x_t^2\equiv 3\pmod 5$, which is impossible.

This completes the proof of Theorem 1. \square

Proof of Theorem 2 If Eq.(2) has a solution (n, m, x), then we have

$$a^n - 1 = dy^2, (9)$$

1066 M. TANG

and

$$b^m - 1 = dz^2, (10)$$

where d, y and z are positive integers satisfying dyz = x, and d is square-free. Since $b \equiv 3 \pmod{12}$, by (10) we have $dz^2 \equiv 2 \pmod{3}$, thus $3 \nmid d$, $3 \nmid z$, hence $z^2 \equiv 1 \pmod{3}$, $d \equiv 2 \pmod{3}$.

If $3 \nmid y$, then $y^2 \equiv 1 \mod 3$, $a^n = dy^2 + 1 \equiv 0 \pmod 3$, which is impossible. Thus $3 \mid y$, $a^n \equiv 2^n \equiv 1 \pmod 3$, which implies that n must be even.

By (9), we know that d is odd, thus $b^m - 1$ is properly divisible by an even power of 2. Hence $b^m - 1 \equiv 3^m - 1 \equiv 0 \pmod{4}$, and we know that m must be even.

Let (x_1, y_1) denote the smallest positive integer solution, and $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$ for $n \ge 1$. By (4), if n is even, then $y_n = 2x_{n/2}y_{n/2}$ is even. Noting that $(x_n, y_n) = 1$ $(n \ge 1)$, we have x_n is odd for all even values of n. Hence

$$a^{n/2} + y\sqrt{d} = x_r + y_r\sqrt{d} \tag{11}$$

holds for some odd positive integer r. By (3), we know that x_n is even for all odd positive integers n, thus

$$b^{m/2} + y\sqrt{d} = x_s + y_s\sqrt{d} \tag{12}$$

holds for some positive even integers. Let s=2t. Then by (3) we have $b^{m/2}=x_{2t}=2x_t^2-1\equiv 0\pmod 3$. It follows that $x_t^2\equiv 2\pmod 3$, which is impossible.

This completes the proof of Theorem 2. \square

References

- [1] HAJDU L, SZALAY L. On the Diophantine equations $(2^n 1)(6^n 1) = x^2$ and $(a^n 1)(a^{kn} 1) = x^2$ [J]. Period. Math. Hungar., 2000, **40**(2): 141–145.
- [2] LI Lan, SZALAY L. On the exponential diophantine $(a^n 1)(b^n 1) = x^2$ [J]. Publ. Math. Debrecen, 2010, 77(3-4): 465–470.
- [3] LE Maohua. A note on the exponential Diophantine equation $(2^n 1)(b^n 1) = x^2$ [J]. Publ. Math. Debrecen, 2009, **74**(3-4): 401–403.
- [4] LUCA F, WALSH P G. The product of like-indexed terms in binary recurrences [J]. J. Number Theory, 2002, 96(1): 152-173.
- [5] SZALAY L. On the diophantine equations $(2^n 1)(3^n 1) = x^2$ [J]. Publ. Math. Debrecen, 2000, 57(1-2): 1-9.
- [6] WALSH P G. On Diophantine equations of the form $(x^n 1)(y^m 1) = z^2$ [J]. Tatra Mt. Math. Publ., 2000, **20**: 87–89.