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Abstract Let S be a closed orientable surface of genus g ≥ 2, and C(S) the curve complex of S.

In the paper, we introduce the concepts of 2-path between edges in C(S), which can be regarded

as an analogue to the edge path between vertices in C(S). We show that C(S) is 2P -connected,

and the 2-diameter of C(S) is infinite.
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1. Introduction

In the late 1970s, Harvey [4] associated to a surface S a finite-dimensional simplicial complex

C(S), called the complex of curves, which was intended to capture some properties of combi-

natorial topology of S. The vertices of Harvey’s complex are homotopy classes of simple closed

curves in S, and the simplices are collections of curves that can be realized disjointly. Harer [2, 3]

considered the complex from a cohomological point of view, Ivanov [6–9] considered its applica-

tions to the structure of the mapping class group of S, Masur-Minsky [10] started a study of the

intrinsic geometry of C(S), and Hempel [5] applied it to study the topology of 3-manifolds. It

has proved to be of fundamental importance in the study of many problems related to surfaces

in topology, geometry and complex analysis. See [11] for a survey that gives a good account of

the history of the mathematics of the curve complex, continuing up to the recent advance.

An important fact is that the complex C(S), and also its 1-skeleton, can be given the structure

of a metric space by assigning length 1 to every edge and making each simplex an Euclidean

simplex with edges of length 1, see [10].

In the present paper, we introduce the concepts of 2-path between edges in C(S), which can

be regarded as an analogue to the edge path between vertices in C(S). We mainly show that for

the closed orientable surface S = Sg,0 with g ≥ 2, C(S) is 2P -connected, and the 2-diameter of

C(S) is infinite. The arguments are based on the corresponding known results in “lower” case

by Ivanov [7] and Masur-Minsky [10].
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The paper is organized as follows. In Section 2, we review some necessary definitions and

notions and collect some known results which will be used later. The main results and their

proofs are included in Section 3. The terminologies not defined in the paper are all standard,

see, for example, [7].

2. Preliminaries

A simplicial complex consists of a family of vertices and a family of simplices. Simplices

are non-empty finite sets of vertices, subject only to the following two conditions: a non-empty

subset of a simplex σ is a simplex (which is called a face of σ); every vertex belongs to some

simplex. Let σ = {v0, v1, . . . , vp} be a simplex. p is called the dimension of σ, and is denoted

by dim σ, i.e. dimσ =the number of the vertices in it minus 1. A 1-dimensional simplex is also

called an edge.

We use Sg,b to denote the compact, connected, orientable surface of genus g which has b

boundary components. A simple closed curve on Sg,b is called a circle. A circle on Sg,b is non-

trivial if it does not bound a disk in Sg,b and it is not ∂-parallel. The isotopy class of a circle C

is denoted by 〈C〉.

Definition 2.1 Let S = Sg,b. The curve complex C(S) is defined as follows: The vertices of

C(S) are the isotopy classes of non-trivial circles on S. A simplex of C(S) is a set of vertices

{γ0, γ1, . . . , γp} such that γ0 = 〈C0〉, γ1 = 〈C1〉, . . . , γp = 〈Cp〉 for a collection of pairwise disjoint

circles C0, C1, . . . , Cp.

Clearly, C(Sg,b) = ∅ if g = 0 and b = 0, 1, 2 or 3; dimS1,0 = 0; for the other cases of g and b,

dimC(Sg,b) = 3g − 4 + b.

Definition 2.2 Let S = Sg,b, and α, γ be two vertices in C(S). An edge-path in C(S) from

α to γ is a finite sequence β0, β1, . . . , βn of vertices in C(S) such that β0 = α, γ = βn, and the

adjacent βj−1, βj are vertices of an edge in C(S), for 1 ≤ j ≤ n. n is called the length of the

edge-path. We usually say that an edge-path between two vertices in C(S) is a 1-path. C(S) is

P -connected (or simply, connected) if for any two vertices α, γ in C(S), there is an edge path in

C(S) from α to γ.

The following is a well-known theorem due to N.V. Ivanov (see [6] or [7]).

Theorem 2.3 C(Sg,b) is connected for g = 0 and b ≥ 5, g = 1 and b ≥ 2, all g ≥ 2 and b ≥ 0.

Definition 2.4 Let S = Sg,b. Assume that C(Sg,b) is connected. For any two vertices α, γ in

C(S), the distance of α and γ is defined to be the minimal length of all edge-paths in C(S) from

α to γ, and is denoted by d(α, γ). The diameter of C(S) is defined to be the supremum over the

distances between vertices in C(S), and is denoted by diamC(S).

As to the diameter of C(S), we have the following remarkable and completely unexpected

theorem, which is due to Masur and Minsky [10].

Theorem 2.5 Let S = Sg,b. If C(S) is connected, then diamC(S) = ∞.

Theorem 2.5 asserts that for any natural number N , there exists two vertices α, γ in C(S)

so that d(α, γ) ≥ N , i.e., α and γ cannot be connected by an edge-path in C(S) of length less
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than N .

3. 2-paths between two 1-simplices in C(S)

We now introduce the concept of a 2-path between two 1-simplices in C(S), which is analogous

to the edge path between vertices in C(S).

Definition 3.1 Let S = Sg,0 with g ≥ 2. Let α, γ be two 1-simplices in C(S). A 2-path in C(S)

from α to γ is a finite sequence β0, β1, . . . , βn of 1-simplices in C(S) such that β0 = α, γ = βn,

and the adjacent βj−1, βj are 1-faces of a 2-simplex in C(S), for 1 ≤ j ≤ n. It is also called a

2-path between α and γ. n is called the length of the 2-path. C(S) is 2P -connected if for any

two edges α, γ in C(S), there is a 2-path in C(S) from α to γ.

Figure 1 below shows a 2-path between the two edges α and γ in C(S).

α=β0 β1 β2 βn 1- β γn=

Figure 1 A 2-path between the two edges α and γ

For a collection C of pairwise disjoint circles on a surface S, we use SrC to denote the surface

obtained by cutting S open along C.

First we have

Lemma 3.2 Let S = Sg,b, where when g = 0, b ≥ 6; when g = 1, b ≥ 3; and when g ≥ 2,

b ≥ 0. Let σ = {u0, u1} and τ = {u′

0, u1, } be two 1-simplices in C(S). Then there exists a

1-path u0 = v0, v1, . . . , vk = u′

0 in C(S r C1) from u0 to u′

0, where u1 = 〈C1〉, and for each i,

0 ≤ i ≤ k, ςi = {vi, u1} is a 1-simplex in C(S). Moreover, set ξi = {vi−1, vi, u1}, then ξi is a

2-simplex in C(S), having ςi−1 and ςi as 1-faces, 1 ≤ i ≤ k.

Proof If u0 and u′

0 have representatives which are disjoint, then u0, u′

0 is a 1-path from u0 to

u′

0. In the following we assume J ∩ J ′ 6= ∅ for any J ∈ u0 and J ′ ∈ u′

0. For u1 = 〈C1〉, cut S

open along C1 to get a surface S′ = S r C1. Choose J ∈ u0 and J ′ ∈ u′

0 so that J ∩ C1 = ∅ and

J ′ ∩ C1 = ∅. Since J ∩ J ′ 6= ∅, so J and J ′ are lying in the same component, say S∗, of S′.

If C1 is non-separating in S, S∗ = S′ is either a (b + 2)-punctured 2-sphere with b + 2 ≥ 5,

or a (b + 2)-punctured surface of positive genus, the conclusion follows from Theorem 2.3.

Next assume that C1 is separating in S. Then C1 cuts S into two pieces, one of which is

S∗, the other one is denoted by S∗∗. Since C1 is non-trivial on S, S∗∗ is neither a disk nor an

annulus. If S∗∗ is a 3-punctured 2-sphere, then S∗ is either a (b − 1)-punctured 2-sphere with

b − 1 ≥ 5, or a (b − 1)-punctured torus with b − 1 ≥ 2, or a (b − 1)-punctured surface with

genus g ≥ 2. In the last case, S = Sg,b with g ≥ 2 and b ≥ 2. The conclusion again follows
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from Theorem 2.3. If S∗∗ is either a p-punctured 2-sphere with p ≥ 4, or a punctured surface

of positive genus, then there exists a non-trivial circle K on S∗∗. Let v = 〈K〉. Thus u0, v, u′

0

is a 1-path in C(S) from u0 to u′

0, and {u0, u1, v} and {u′

0, u1, v} are 2-simplices in C(S). The

conclusion holds.

This completes the proof. 2

Theorem 3.3 Let S = Sg,0 with g ≥ 2. Then C(S) is 2P -connected.

Proof It suffices to show that for any two 1-simplices σ, τ in C(S), there always exists an 2-path

in C(S) from σ to τ .

Assume σ = {u0, u1}, τ = {w0, w1}. By Theorem 2.3, there exists a 1-path u1 = v0, v1, . . . , vp =

w1 in C(S) from u1 to w1, and σj = {vj−1, vj} is a 1-simplex in C(S), 1 ≤ j ≤ p. Now

σ = {u0, u1} and σ1 = {v1, u1} have one vertex in common. By applying Lemma 3.2 to σ and

σ1, there exists a 1-path u0 = x0, x1, . . . , xs = v1 in C(S r C1), where u1 = 〈C1〉, and for each i,

0 ≤ i ≤ s, li = {xi, u1} is a 1-simplex in C(S). Moreover, set ξi = {xi−1, xi, u1}, ξi is a 2-simplex

in C(S) which has li−1 and li as 1-faces, 1 ≤ i ≤ s. Thus σ = l0, l1, . . . , ls = σ1 is a 2-path from

σ to σ1. See Figure 2 below. Similarly, there exists a 2-path from σj to σj+1, 1 ≤ j ≤ p − 1.

Thus there exists a 2-path in C(S) from σ to τ .

This completes the proof. 2

σ=σ0

σ1

σ2
τ

01
vu ?

00
xu ?

1
x

2
x

sxv ?
1

2
v

3
v

1?pv

pvw ?
1

0
w

Figure 2 A 2-path from σ to τ

From Theorem 3.3, we know that for any two edges in C(Sg,0) with g ≥ 2 there exists a

2-path between them. It is natural to introduce the following definitions.

Definition 3.4 Let S = Sg,0 with g ≥ 2. For any two 1-simplices σ, τ in C(S), there always

exists a 2-path in C(S) from σ to τ . Define the 2-distance of σ and τ , denoted by d2(σ, τ), to be

the minimal length of all 2-paths in C(S) between σ and τ . The 2-diameter of C(S) is defined

to be the supremum over the 2-distances between edges in C(S), and is denoted by diam2C(S).

Theorem 3.5 Let S = Sg,0 with g ≥ 2. Let σ and τ be two distinct edges in C(S). Let u be a

vertex of σ, and w a vertex of τ . Then d(u, w) ≤ d2(σ, τ).

Proof Let n = d2(σ, τ). It suffices to show that there exists a 1-path in C(S) from u to w of

length ≤ 2n. Let σ = σ0, σ1, . . . , σn = τ be a 2-path in C(S) of the minimal length n. Then
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for each i, 1 ≤ i ≤ n, σi−1 and σi are edges of a 2-simplex △i in C(S). We induct on n to

show that for any vertex u in σ0 and any vertex w in σn, there exists a 1-path of length ≤ n in

△1 ∪ · · · ∪ △n from u to w. When n = 1, it is obviously true. Assume the conclusion holds for

n ≤ k. Consider the case n = k + 1. By induction, for any vertex u in σ0 and any vertex v in

σk, which is also a vertex in △n, there exists a 1-path of length ≤ k in △1 ∪ · · · ∪ △k from u to

v. For any vertex w in △n, d(v, w) ≤ 1. So for any vertex u in σ0 and any vertex w in σn, there

exists a 1-path of length ≤ k + 1 = n in △1 ∪ · · · ∪ △k ∪△n from u to w. See Figure 3.

v

1
?

w

2
?

3
?

k?

1k?
+

Figure 3 A 1-path of length from v to w

Theorem 3.6 Let S = Sg,0 with g ≥ 2. Then diam2C(S) = ∞.

Proof Suppose the conclusion is not true. Then there is a positive constant MS so that

diam2C(S) ≤ MS . By Theorem 2.3, C(S) is connected. By Theorem 2.5, diamC(S) = ∞. So

there exist two vertices u and v in C(S) with d(u, v) ≥ MS + 1. Let σ and τ be two edges in

C(S) such that u is a vertex of σ and v is a vertex of τ . Then d2(σ, τ) ≤ diam2C(S) ≤ MS . By

Theorem 3.5, d(u, v) ≤ d2(σ, τ) ≤ diam2C(S) ≤ MS , which contradicts d(u, v) ≥ MS + 1.

The proof is completed. 2
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