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1. Introduction

Let A be the open unit disc in the complex plane and H(A) the class of all analytic functions
on A. The a-Bloch space B* (a > 0) is the space of all analytic functions f on A such that

1£llBe = [£(O)] + sup(L — [2*)*|f'(2)] < oo.
zEA

Under the above norm, B® is a Banach space. When o = 1, B! = B is the well-known Bloch
space. Let Bf} denote the subspace of B consisting of those for which

(L= 12)*f' ()] = 0 as |2 — 1.

This space is called the little a-Bloch space.
An f € H(A) is said to belong to the weighted a-Bloch space Bfy, (see [2-4]), if

— 2\« !
1flBz, = f(0)] + 222(1 = [2[%)* log 1_7|Z|2|f (2)] < o0
Bf,; is a Banach space with the norm || - [|p , when a =1, Bllog = Blog is the weighted Bloch
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space [1]. From the inequality
2
(1- |Z|2)a10g1_7|2|2|f/(2)| >log 2((1 = [2)")|f'(2)];

and fo(z) = (1 — 2)17* € B*, but fo(2)EBR,, we obtain B, C B*. Let Bj, , denote the

subspace of Bf,, consisting of those for which

2
11z

(1= |2*)*log [f'(z)] = 0 as |z| - L.

This space is called the little weighted o Bloch space.

Throughout this paper, we assume that K is a right continuous and nonnegative nondecreas-
ing function on [0,00). For 0 < p < 00, —2 < ¢ < 00, we say that a function f € H(A) belongs
to the space Qx(p, q) (see [5]), if

I7l= (EEE/A PGP = 2P (92, 0))dAR)) " < o,

where dA denotes the normalized Lebesgue area measure in A (i.e., A(A) = 1) and ¢(z,a) is

the Green function with logarithmic singularity at a, that is, g(z,a) = logw—l(z)| (pa(z) is a

conformal automorphism defined by ¢,(z) = 2=£ for a € A). If K(z) = x°, s > 0, the space

1-az

Qk(p, q) equals to F(p,q,s), which was introduced by Zhao in [6]. Moreover from [6], we have
a+2

a+2 a+2
that, F'(p,q,s) = B and Fo(p,q,8) = B,* fors>1,F(p,q,s)C B and Fo(p,q,s) € B,*
for 0 < s < 1. When p > 1, Qx(p, q) is a Banach space under the norm

1l Quway = [F O+ Il
From [5], we know that Qx(p,q) C Bq_:Q, Qr(p,q) = B if and only if

1
1

/ K(log =)(1 — r*)2rdr < cc.
O T

Moreover, HfHBM < Cllfllorp.q) (see, [5, Theorem 2.1]). Throughout the paper we assume
P
that

1
1
/ K(log =)(1 — r?)%rdr < oo,
0 T

otherwise Q(p, q) consists only of constant functions [5].
Let ¢ denote a nonconstant analytic self-map of A and ¢ be an analytic function of A. We can
define the linear operators (called weighted composition followed and proceeded by differentiation

operators)
¢CoDf = ¢(f'op) and ¢DCy f = ¢(fop)', for f € H(A),

where C, and D are composition and differentiation operators, respectively. The boundedness
and compactness of DC, on the Hardy space were investigated by Hibschweiler and Portnoy in
[7] and by Ohno in [8]. In [9], Li and Stevi¢ studied the boundedness and compactness of the
operator DC,, on the a-Bloch spaces, while in [10] they studied these operators between H*

and a-Bloch spaces.
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In this paper, we study the operators ¢DC,, and ¢C,D from Qy(p,q) space to weighted a
Bloch space and little weighted a-Bloch space. Some necessary and sufficient conditions for the
boundedness and compactness of these operators are given.

Throughout this paper, we denote by C' the positive constants, which may differ from one

occurrence to the other. The notation A ~ B means that there is a positive constant C' such
that 2 < A < CB.
2. Statement of the main results

Theorem 2.1 Let ¢ be an analytic self~map of A and ¢ be an analytic function of A. Suppose

p>0,q>—2, and K is a nonnegative nondecreasing function on [0, 00) such that

Y1 @Dpdr < oo, (2.1)
—r

L 1 . 1
/ K(log =)(1 — r)™{=1a} (Jog
0 r 1

where xa(x) denotes the characteristic function of the set A. Then ¢DCy: Qx(p,q) — By, is

bounded if and only if

sup(1 — |2[*)* log 2 |6(2)(¢'(2))?]

zeA e O T A
a2 18(2)¢"(2) + ¢ ()0 (2)]
jgg(l —12]%)* log =12 i |SD(Z)|2)% < o0 (2.2)

Theorem 2.2 Let ¢ be an analytic self~-map of A and ¢ be an analytic function of A. Suppose
p >0, g > —2, and K is a nonnegative nondecreasing function on [0,00) such that (2.1) holds.
Then ¢DCy, : Qi (p, q) — By, is compact if and only if ¢DCy : Qk(p, q) — Bfy, is bounded, and

. 2a 2 1#() (@' (2)’
w120 logl—IzP(1_|<p(z)|2)”2“ Y
i (1 ) ep 2 19()¢"() + F ()" (2)] _
e R S PE (1—|p(z)[2) 5 > (2

Theorem 2.3 Let ¢ be an analytic self~-map of A and ¢ be an analytic function of A. Suppose
p >0, ¢ > —2, and K is a nonnegative nondecreasing function on [0,00) such that (2.1) holds.
Then ¢DCy, : Qk(p, q) — Bi, o is compact if and only if

T SN )[4 C)) i I

I,Sgll(l [21%)" log 1— |22 (1— |go(z)|2)p+z+2 O (2.4)
i (1 |2[2)° log —2__ 122" ) + S _ |
=1 =P a -l

Similarly to the proofs of Theorems 2.1-2.3, we can get the following results. We omit the

proof.

Theorem 2.4 Let ¢ be an analytic self~-map of A and ¢ be an analytic function of A. Suppose
p >0, ¢ > —2, and K is a nonnegative nondecreasing function on [0,00) such that (2.1) holds.
Then
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(i) ¢C,D : Qk(p,q) — By, is bounded if and only if

« (b z SOI z
Sup(l - |Z|2) ].Og 1 2 | ( ) ( ;)7|+q+2
sea — I e
e 4
z
sup(1 — |2|*)* log 5 pE
zea L= 1P (= Je(2)?)
(ii) ¢CuD : Qx(p,q) — Bfy, is compact if and only if ¢Cy, D : Qi(p, q) — By, is bounded,
. o 2 o(2)¢ (2
lim (1 —|z*)*log 5 [p()¢'( 2|+q+2 =0
le(z)1=1 L=z (= Jp()2)
and ,
lim (1 —|2%)" log S GO —
lo(a)l—1 L= P @~ Je(2) )
(iii) ¢C,D : Qr(p,q) — B, o is compact if and only if
. o 2 o(2)¢ (2
lim (1 - [2f2)" log — 2 1P
=1 L= =P - e ™
and ,
lim (1 — [2]?)*log 5 [9'(2)l — =0.
Jol=1 L= = e

3. Proofs of the main results

In this section, we give proofs of the main results. For this purpose, we need some auxiliary

results. The following lemma can be proved in a standard way [11, Proposition 3.11].

Lemma 3.1 Let ¢ be an analytic self~-map of A and ¢ be an analytic function of A. Suppose
p >0, q> —2. Then ¢DC, (or ¢C,D) : Qr(p,q) — B

log
¢Cy D) : Qr(p,q) — By, is bounded and for any bounded sequence {fn}nen in Qx(p,q) which

is compact if and only if $DC, (or

converges to zero uniformly on compact subsets of A as n — oo, one has ||¢DC,, f,|| By, — 0 (or
[¢CoDfullBg, — 0) asn — oc.

Lemma 3.2 A closed set K in By, o is compact if and only if it is bounded and satisties

2
lim sup(1—|z*)*log
\Z\HlfeK( 1=1) 11z

[f'(z)] =0. (3.1)

Proof First suppose that K is compact and let ¢ > 0. Choose an §-net f1, f2,..., fn in K.
There is an 7 for 0 < r < 1, such that (1 — |z]?)® logﬁm’(zﬂ < 5 if 2] >, 1< <. If
fe K, |f = fillsy, <3 for some f; and so

SIS = Fillmg, + (1~ 1) og
e = W e ST P
whenever |z| > r. This establishes (3.1).

On the other hand, if K is a closed bounded set which satisfies (3.1) and {f,} is a sequence

in K, then by Montel’s theorem there is a subsequence {f,,} which converges uniformly on

(1= |2[*) log [fi(2)] <,
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compact subsets of A to some analytic function f, then also {f,, } converges uniformly to f’ on
compact subsets of A. By (3.1), if € > 0, there is an 7, 0 < r < 1, such that for all g € K,
(1 — |2[*)*log ﬁ|g’(2)| < £, if |z| > r. Tt follows that (1 — |z]?)* 10gﬁ|f’(2)| < 5, if
|z| > r. Since {fn,} converges uniformly to f and {f,, } converges uniformly to f’ on |z] < 7,
it follows that limg_,o0 sup || fn, — fHBf’gg < e. Since € > 0, limg_,00 || fn), — f”B%g =0 and K is

compact.

Lemma 3.3 ([14]) Let o > 0. Then for f € H(A) the following are equivalent:
sup(L — [2[*)*[f'(2)] = |f(0)] + sup (L — [2[*)*F[f"(2)].
z€EA z€EA

Proof of Theorem 2.1 Suppose that the conditions in (2.2) hold. Then for any z € A and
f € Qr(p, q), making use of the fact ||f||B_qﬁ < Ol fllQp(p.q and Lemma 3.3, we have
P

(1= )" log = (6D C, 1) ()
2

= (1= )" o T2 () ) (o2 + S (oD ) + P G
< (1= o) log 72162 () I+
(1= |2 108 266" () + ¢/ ()9 ) (ol
< (1= 3Py g € ENEE 1) s
(1= )" log = "‘“Z)(f_(j; (*;T())_ ) ase
R = (Jfﬂj((;'(j)ﬁv'ﬂ ¥
(1 - |2y tog 2 WO XL ONy gy (32

=B = e

Taking the supremum in (3.2) for z € A, and then employing (2.2), we obtain
¢Dcap : Qk(p7 Q) - Bﬁ;g

is bounded.

Conversely, suppose that ¢DC, : Qr(p, q) — By, is bounded, that is, there exists a constant
C such that [[¢DCy f|lsz, < C|lfllQyp.q for all f € Qi(p,q). Taking the functions f(z) =
and f(z) = é, which belong to Qx(p, q), we get

sup(1 = |2 log 7= 10(2)¢” (2) + ¢/ ()¢ (2)| < o (33)

sup(1 — |2[*)* log 1_LW|<z5(2)(<p’(2))2 +0(2)[0(2)¢"(2) + &' ()¢ (2)]] <00 (34)
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From (3.3), (3.4), and the boundedness of the function ¢(z), it follows that
2

sup(1 — [z[*)* log 516(2)(¢(2))?] < 0. (3.5)
ZEA 1- |Z|
For w € A, let
1—|w|?
fu(z) = %
(1 —wz) »
By some direct calculation we have that
q+2 w " q+2p+q+2 w?
fo(w) = s Jw(w) = :
T T W

From [13], we know that f,, € Qr(p,q), for each w € A. Moreover there is a positive constant C'
such that sup,,ea || fuwllQ, g < C. Hence, we have

Cll¢DCol| = [[#DCy fo ) |l B,

log

LaEpEar2 a2 BEEE)PEE)

> e T
poop L= (1= Jp()2) 5
1 / !
q + 2(1 _ |Z|2)a 10g 2 5 |¢(Z)(p (Z) + (b (Z)@q(i)nw(zﬂ (36)
P =12 (1= [p(z)) >
for z € A. Therefore, we obtain
1 / !
(- 1oy o 2 WG+ & GGl
L= (1))
pPtqg+2 o 2 [s(2)(¢'(2))*(p(2))*
< CIoDC, |+ B2 (1 _ oyt 2 POFED CEDT - (55
P 27 (1= o))"
Next, for w € A, let
1—|wl?)? p+qg+2 1—|w?
Juw(2) = ( 7| |p+)q+2 - 2 ,| |M )
(1—wz) > a+t2 (1-wz)
Then from [13], we see that g, (2) € Qk(p,q) and sup,ea [|9wllQ, (p,q) < 00. Since
’ " pt+q+2 |(P(Z)|2
ggp(z)(go(z)) = 07 |g<p(z)(90(z))| = ptqg+2 )
P (—e(=)?) »
we have
00 > CllgDCy|| 2> |9DCp gy (2|l B2,
2 2 / 2 2
Z p + q + (1 _ |Z|2)a log > |(]5(Z)((p (Z)) (fi’jzz | (38)
L= (= Je(2) ) =55
Thus

PN SN [.C) [ (24 €2)id
W(Z)‘Il%(l | | ) g 1— |Z|2 (1 _ |gp(z)|2)p+g+2
PR VN T [ €] (€2 il (2 1) SO
S |¢(Sz)|p>% 4(1 | | ) g 1 _ |Z|2 (1 _ |gp(z)|2)p+z+2 S ||¢D <P|| < (3 9)
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Inequality (3.5) gives

- 6:)( )
u 1—-|z lo _
piorey TR o
< s (1 o) log T 0@ ()] < .10

le(2)I<3

Therefore, the first inequality in (2.2) follows from (3.9) and (3.10). From (3.7) and (3.8), we

obtain y ,
sup(l _ |Z|2)a log : |(;5(Z)(p (Z) + (b ( )
zea L= (1= ()1

Inequalities (3.3) and (3.11) imply

2)le2) 1)

L < 00.

[6(2)¢"(2) + ¢'(2)¢ (2]

+2

o 2
sup (1 - |Z|2) IOg 1 |Z|2

l(2)[>1 - (1—|p(2)]2)%
su Pyl 2 10G)¢"(E) + 2 Glle) _
§2W)‘p>%(1 |21%) 1g1_|z|2 TR < o0, (3.12)
2a 2 |o(2)¢"(2) + ¢'(2)¢' (2)|
u — |z lo
P S (0= ot e
< (g)Q_p? ‘ (sl,)l‘p<l(1 - |Z|2)°‘ log 1—_ |Z|2 |¢(2)90”(2) + ¢/(Z)(P/(Z)| < . (3'13)

Inequlity (3.12) together with (3.13) implies the second inequality of (2.2). This completes the
proof of Theorem 2.1. O

Proof of Theorem 2.2 Suppose ¢DC, : Qi(p,q) — By, is bounded and (2.3) holds. Let
{fu}tnen be a sequence in Qx(p,q) such that sup,cy || fullQ,(p.q) < 00, and f, converges to 0
uniformly on compact subsets of A as n — oco. By the assumption, for any ¢ > 0, there exists a
§ € (0,1) such that

/ 2
(1—|Z|2)a10 2 > |(;5(Z)((p (Z)p)+q|+2 <e
FTEER 1 femp)
L 1y tog 2 [OD"C) + # () )

L= o) log —2—
S (N O
when ¢ <[ ¢(z) [< 1. Since ¢DCy : Qi(p, q) — By, is bounded, from the proof of Theorem 2.1

we have

<e,

My = sup(1 - [2)" log ——|6(2)¢" (=) + ¢/ (2)¢/(2)] < oc.
ZEA 1 |Z|

My i= sup(1 — [2]?)* log —2—|6(2)(' (=))?] < .
ZEA 1 |Z|

Let K = {z € A:| ¢(z) |<d}. Then we have

6DC; fullBg, = jgg(l —[2*)* log [(6DCy fn)' (2)] + 16(0) f7,((0))¢" (0)]

2
1— 2P
< sup(1 = [2f*)" og T () (@)@ )+

zEA
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sup(l - |2[*)* log 1_72|Z|2|¢(2)90"(2) + ' (2)¢' (2|7 (2(2))] + [6(0) £7,(£(0)) " (0)]

< sup(1 — [2*)* log %W|¢(Z)fg(<ﬂ(z))(@/(z))2|+
zeK z

sup (1 = [£f2)* los T 6(2)¢(2) + 6 (¢ (D e+
sup (1= [21%)* o T () ()P
z€(A—K) <
sup (1~ |2)* log T 9(2)" (2) + ¢ (2)¢/ (2) L a(0(2))] + [9(0)£4 (9(0))'(0)
zE(A—-K) 1 |Z|
< sup(1 = |2 o T 9(2) (02 ()71
zeK z

sup (1 — |2[*)* log %ZPW(ZW”(Z) +6'(2)¢ (217 (e(2)] + [6(0).f,(0(0)¢ (0)|+

zeK - |
|6(2)(¢'(2))°

C sup (1—|z]*)*log

oz | nllQupa+
ce(AK) 1_ |Z|2 (1 _ |90(Z)|2) +p+2 Qr(p;q)
2 [9(2)¢"(2) + ¢' ()¢ (2)]
sup (1 — |2[*)*log 1fnllQu,
ce(ATK) SECETERES e

< My sup |fr (0(2))] + My sup | fn(e(2)] + 2Cell fall up.g) + 16(0) fr(0(0))¢" (0)].  (3.14)

The assumption that f,, — 0 as n — oo on compact subsets of A along with Cauchy’s estimate
gives that f; — 0 and f}! — 0 as n — oo on compact subsets of A. Letting n — oo in (3.14)
and using the fact that ¢ is an arbitrary positive number, we obtain lim,, .« [|¢DC,, fx || Bz, = 0.
Applying Lemma 3.1 yields the result.

Now, suppose that ¢DC, : Qr(p,q) — By, is compact. Then it is clear that ¢DC,,
Qx(p,q) — B, is bounded. Let {2, } be a sequence in A such that | ¢(z,) |[— 1 asn — co. Let

(1~ e(z)2) s
Then sup,,e y || fallQu(p.q) < o0 and f,, converges to 0 uniformly on compact subsets of A as n —
o0. Since ¢DCy, : Qr(p, q) — B, is compact, by Lemma 3.1 we have lim;, . |\¢D0¢fn||3gg =
0. On the other hand, from (3.6) we have

z "z )2 (o(20))?

CIoDC, fulay, > — TEZPEIH2 gy 2 [0 (o) Pl
R L=l (1= o (zn)2)

g+2 2 18)¢" (20) + &' )¢ (z) 9z

2\
T(l_ |Zn| ) 10g1_|zn|2 at+2

(1= le(zn)?) >
which implies that

o PHAF20 e 2 |o(za) (@' (20))? (0(2n))°
\w(lmﬂ p (1= fen) log 7 [zl (1= Jp(zn)2) 5
[6(zn)¢" (20) + & (Z")f SleCll )

(1= lep(zn)[?

= lim (1—|2z,]%)%log

lp(2n)|—1 1—|zn|?
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if one of these two limits exists.

Next, for n € N, set

gn(z) = (1- |90(Zn)|2+)2+2 _pta+ 2 1-— |<P(Zn)|2+2 |
(1- ‘P(Zn)z)% q+2 (1- mz)%

Then {g, }nen is a sequence in Qx(p, q). Notice that g/, (p(zn)) =0,

e |= 22 Lol [
i P (1 fplen))

And g,, converges to 0 uniformly on compact subsets of A as n — oco. Since ¢DC,, : Qr(p,q) —
BO{

log

is compact, we have lim,,_, |\¢DC¢gn|\ng = 0. On the other hand, we have

+q+2 o 2 20) (¢ (20))?(9(2n))?
16D Colag, > LEIER ooy og 2 e ) ot
b nlm o (L=e(za)?) 7
Therefore,
! 2
lim (1 _ |Zn|2)a log 2 > |¢(2n)((p (anzqu
fo(zn)l—1 L=lzal (1= feen) )75
/ 2 2
lo(an)|—1 e
This along with (3.15) implies
/! / /
lim (1= [2af?)® log —— [P (on) £ ) )], (3.17)

2.2 o2
lp(zn) | —1 1 — |zn] (1= Jo(za)[2)

From the last two equalities (3.16) and (3.17), the desired result follows.

Proof of Theorem 2.3 Sufficiency. Let f € Qx(p,q). By the proof of Theorem 2.1 we have

20102 " e [6(2) (' (2))*
(1 | | ) 1 g1_|Z|2|(¢DOLPf)( )|§C{(1 | | ) 1 g1_|2|2 (1_|w(z)|2)p+z+2
(1 _ |Z|2)a lo 2 : |¢(Z)(p”(2) + (b/(i):fl(z)l }”f” L (paa)- (318)
SRR e i

Taking the supremum in (3.18) over all f € Qx(p,q) such that ||f[|g,(p,q < 1, then letting

| z |— 1, we get

2
lim sup (1 —[z]*)%log 1_7|Z|2|(¢chof)/(z)| =0.

1Z=1 1 fllo, (r.oy <1

So by Lemma 3.2, we see that the operator ¢ DC, : Qx(p, q) — By}

log,0 18 compact.

Necessity. Assume that ¢DC,, : Qr(p,q) — B3 o is compact. By taking f(2) = z and using
the boundedness of $DCy, : Qi (p, q) — Bfyg o, We get

lim (1 — |2]2)* log ————
lel( |2%) TP

6(2)¢" (2) + ¢ (2)¢(2)] = 0. (3.19)

2

From this, by taking the test function f(z) = % and using the boundedness of pDC,, : Qx(p,q) —



1106 J. R. LONG and P. C.WU

B, o it follows that

. 2\« 2 / 2| —
Tin (1= o) ot 1160 ()] = 0 (3.20)
If |lolloo < 1, from (3.19) and (3.20), we obtain that
i (1 — 1201 |6(2)(¢'(2))°
e T G
1 2
li _ 2 al, / 2|
S (1 . |‘<P|‘Oo)p+z+2 \z?ill(l |Z| ) Og 1 _ |Z|2 |¢(Z)(90 (Z)) | 07
i (1 1oy log 2 () + /G
=1 =P - lep) s
<Lt (1 ) og 06 () + 026 2)] =0

1= lellos)® 2
So the result follows in this case.
Assume that ||¢]lcc = 1. Let {p(2n)}nen be a sequence such that lim, . | ¢(z,) |= 1.
From the compactness of ¢DCy, : Qi(p,q) — By, we see that ¢DCy @ Qi(p,q) — B, is

compact. From Theorem 2.2 we get

im (1 —[2[*)*lo 2 6(2)(¢'(2))° _
|80(12)|—’1(1 | | ) 1 & 1-— |Z|2 (1 _ |<P(Z)|2>p+g+2 0, (321)
2 19(2)¢"(2) + ¢'(2)¢'(2)]

lim (1 — |2*)*log
\w(Z)Hl( 1=1%) 1=z = je2)2)

=0. (3.22)

From (3.19) and (3.22), we have that for every € > 0, there exists an r € (0, 1) such that
/! / /
[6(2)¢"(2) + ¢ ()" (2)] _

1— |22 =2

(1= lp(z)[?) 7

when r < |p(z)| < 1, and there exists a o € (0, 1) such that

(1= 22" log
(1= 2f")" log T 62)¢ (2) + 4 (' (2)] < (1 =19,

when o < |z] < 1. Therefore, when o <| z |< 1, and r < |p(z)| < 1, we have

2 |9(2)¢"(2) + ¢'(2)¢ (2]

(1 —1]z*)%log o <e. (3.23)
L=l a—le@P) ™
On the other hand, if 0 <| z |< 1, and | p(2) |< 7, we obtain
11 / /
(1 _ |Z|2)a log 2 . |(;5(Z)(p (Z) + ¢ (Zq):f (Z)l
2R - e
1 2
———7 (1= [2*)log T |6(2)¢" (2) + ¢/ (2)¢/ (2)] <& (3.24)
1-r2)% — 2|

From (3.23) and (3.24), we get the second equality of (2.4). Similarly to the above arguments,
by (3.20) and (3.21), we get the first equality of (2.4). The proof is completed. O
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