Some New Translation Surfaces in 3-Minkowski Space

Yuan YUAN, Hui Li LIU*

Department of Mathematics, Northeastern University, Liaoning 110004, P. R. China

Abstract In this paper we study translation surfaces of some new types in 3-Minkowski space \mathbb{E}_1^3 and give some classifications of such surfaces whose mean curvature and Gauss curvature satisfy certain conditions.

Keywords Minkowski space; translation surface; Weingarten surface.

Document code A MR(2010) Subject Classification 53C50; 53B30; 53C42 Chinese Library Classification 0184

1. Introduction

For the study of the surfaces theory in 3-Euclidean space \mathbb{E}^3 or 3-Minkowski space \mathbb{E}^3_1 , it is a very important and interesting problem to construct or classify the constant mean curvature or constant Gaussian curvature, or even more general, Weingarten surfaces. It is well-known that the translation surface is special and minimal one in 3-Euclidean space \mathbb{E}^3 is Scherk surface. Here we consider translation surfaces in 3-Minkowski space. The second author gave some classification results for translation surfaces in [1] and [2]. However according to our recent work [3–6] we know that the results in [1] or [2] are only the Cases 1 and 2 of following 6 types of translation surfaces.

In 3-Minkowski space \mathbb{E}_1^3 , according to the spacelike direction, timelike direction and lightlike direction, the translation surfaces can be considered as the following six types

Type 1. Along spacelike direction and spacelike direction;

Type 2. Along spacelike direction and timelike direction;

Type 3. Along lightlike direction and lightlike direction;

Type 4. Along lightlike direction and spacelike direction;

Type 5. Along timelike direction and lightlike direction;

Type 6. Along timelike direction and timelike direction.

As we know that they are really different under Lorentz transformation in \mathbb{E}_1^3 . Using certain coordinate frames, we can express them in the different way [3, 6].

Let \mathbb{E}^3_1 be the 3-Minkowski space with the inner product

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 - x_3 y_3.$$

Received March 4, 2010; Accepted November 20, 2010

* Corresponding author

Supported by the Joint Research of National Nature Science Foundation of China and National Research Foundation (Grant No. 11071032) and Chern Institute of Mathematics and Northeastern University.

E-mail address: yuan_lez@163.com (Y. YUAN); liuhl@mail.neu.edu.cn (H. L. LIU)

Translation surface S_a of Types 5 and 6 can be written as

$$S_a: x(u,v) = \{X(u,v), Y(u,v), Z(u,v)\} = \{f(u+av) + g(v), u, v\}.$$

- (i) When |a| = 1, the surface S_a is translation surface of Type 5.
- (ii) When |a| > 1, the surface S_a is translation surface of Type 6.

With $x_u = \frac{\partial x(u,v)}{\partial u}$, etc., the first fundamental form I of the surface S_a is given by

$$I = E du^{2} + 2F du dv + G dv^{2},$$

$$E = \langle x_{u}, x_{u} \rangle = f_{u}^{2} + 1,$$

$$F = \langle x_{u}, x_{v} \rangle = f_{u} (af_{v} + g_{v}),$$

$$G = \langle x_{v}, x_{v} \rangle = (af_{v} + g_{v})^{2} - 1.$$

For spacelike or timelike surface in \mathbb{E}_1^3 , we have $EG - F^2 > 0$ or $EG - F^2 < 0$. The second fundamental form II of S_a is given by

$$II = Ldu^{2} + 2Mdudv + Ndv^{2},$$

$$L = \frac{1}{\sqrt{|EG - F^{2}|}} \det(x_{u}, x_{v}, x_{uu}) = \frac{f_{uu}}{\sqrt{|(af_{v} + g_{v})^{2} - f_{u}^{2} - 1|}},$$

$$M = \frac{1}{\sqrt{|EG - F^{2}|}} \det(x_{u}, x_{v}, x_{uv}) = \frac{af_{uv}}{\sqrt{|(af_{v} + g_{v})^{2} - f_{u}^{2} - 1|}},$$

$$N = \frac{1}{\sqrt{|EG - F^{2}|}} \det(x_{u}, x_{v}, x_{vv}) = \frac{a^{2}f_{vv} + g_{vv}}{\sqrt{|(af_{v} + g_{v})^{2} - f_{u}^{2} - 1|}}.$$

The Gauss curvature K and the mean curvature H of \mathcal{S}_a are given by

$$K = \frac{LN - M^2}{EG - F^2} = \frac{f_{uu}(a^2 f_{vv} + g_{vv}) - a^2 f_{uv}^2}{((af_v + g_v)^2 - f_u^2 - 1)|(af_v + g_v)^2 - f_u^2 - 1|},$$

$$H = \frac{EN - 2FM + GL}{2(EG - F^2)}$$

$$(f^2 + 1)(a^2 f_{vv} + a_{vv}) - 2af_v f_{vv}(af_v + a_v) + f_{vv}((af_v + a_v)^2 - 1)$$
(1)

$$=\frac{(f_u^2+1)(a^2f_{vv}+g_{vv})-2af_uf_{uv}(af_v+g_v)+f_{uu}((af_v+g_v)^2-1)}{2((af_v+g_v)^2-f_u^2-1)\sqrt{|(af_v+g_v)^2-f_u^2-1|}}.$$
(2)

2. Main results

By a transformation

$$\begin{cases} y = u + av \\ z = v, \end{cases}$$

and $\frac{\partial(y,z)}{\partial(u,v)} \neq 0$, from (1) and (2) we get

$$K = \frac{f_{yy}g_{zz}}{\varepsilon((a^2f_y + g_z)^2 - f_y^2 - 1)^2},$$
(3)

$$H = \frac{g_{zz}(1+f_y^2) + f_{yy}(a^4 - 1 + g_z^2)}{2\varepsilon(\varepsilon((a^2f_y + g_z)^2 - f_y^2 - 1))^{\frac{3}{2}}},$$
(4)

where $\varepsilon = \pm 1$. In the following, we will consider translation surfaces of Types 5 and 6 whose Gauss curvature K and mean curvature H satisfy certain conditions. They are usually called Weingarten surfaces.

Theorem 1 Let S_a be a translation surface of Type 6 in \mathbb{E}^3_1 . If S_a is minimal, it is congruent to a plane or the functions f and g satisfy

$$\begin{cases} f = -\frac{1}{c} \log|\sec(-c(u+av)+c_1)| + c_2, \\ g = \frac{1}{c} \log|\sec(c\sqrt{a^4 - 1}v + c_1)| + c_2, \end{cases}$$

where c, c_1, c_2 are constants and $c \neq 0$.

Proof Let S_a be a translation surface of Type 6 in \mathbb{E}^3_1 . By a transformation in \mathbb{E}^3_1 , the translation surface S_a can be written as

$$x(u,v) = \{ f(u+av) + g(v), u, v \}, \quad |a| > 1.$$

From (4), putting H = 0 gives

$$g_{zz}(1+f_y^2) + f_{yy}(a^4 - 1 + g_z^2) = 0.$$

Hence

$$\frac{g_{zz}}{a^4 - 1 + g_z^2} = -\frac{f_{yy}}{1 + f_y^2} = c,$$

where c is constant.

i) When c = 0, we have

$$g_{zz} = 0$$
 and $f_{yy} = 0$.

Then the surface is a plane.

ii) When $c \neq 0$, we have

$$\begin{cases} f = -\frac{1}{c} \log|\sec(-c(u+av) + c_1)| + c_2, \\ g = \frac{1}{c} \log|\sec(c\sqrt{a^4 - 1}v + c_1)| + c_2, \end{cases}$$

where c_1, c_2 are constants. This completes the proof of Theorem (1). \Box

Theorem 2 Let S_a be a translation surface of Type 6 with constant mean curvature $H \neq 0$ in \mathbb{E}^3_1 . Then

(i) If
$$S_a$$
 is spacelike, it is congruent to the following surfaces or an open part of them in \mathbb{E}^3_1

(a)
$$X(u,v) = -\frac{\sqrt{1+c^2}}{2H}\sqrt{4H^2v^2 - 1} - a^2cv + c(u+av), \ c \in R,$$

(b)
$$X(u,v) = -\frac{\sqrt{c^2 + a^4 - 1}}{2H\sqrt{a^4 - 1}}\sqrt{\frac{4H^2}{a^4 - 1}(u + av)^2 - 1} - \frac{a^2c}{a^4 - 1}u + \frac{a^4 - a^3 - 1}{a^4 - 1}cv, \ c \in R;$$

(ii) If S_a is timelike, it is congruent to the following surfaces or an open part of them in \mathbb{E}^3_1

(c)
$$X(u,v) = -\frac{\sqrt{1+c^2}}{2H}\sqrt{4H^2v^2 + 1 - a^2cv} + c(u+av), \ c \in \mathbb{R}$$

(d)
$$X(u,v) = -\frac{\sqrt{c^2 + a^4 - 1}}{2H\sqrt{a^4 - 1}}\sqrt{\frac{4H^2}{a^4 - 1}}(u + av)^2 + 1 - \frac{a^2c}{a^4 - 1}u + \frac{a^4 - a^3 - 1}{a^4 - 1}cv, \ c \in \mathbb{R}$$

Proof Let
$$S_a$$
 be a translation surface of Type 6 with constant mean curvature $H \neq 0$ in \mathbb{E}^3_1 .

We assume that $f_{yy}g_{zz} \neq 0$. Differentiating (4) with respect to y and z, we obtain

,

$$(a^{4}-1)\frac{\left(\frac{\left(\frac{g_{zz}}{g_{zz}}\right)_{z}}{g_{zz}}\right)_{z}}{g_{zz}}}{g_{zz}} = 3\frac{\left(\frac{\left(\frac{f_{yy}}{f_{y}^{2}+1}\right)_{y}}{f_{yy}}\right)}{f_{yy}} = 3H$$

That is

$$\begin{cases} f_{yy} = (\frac{H}{2}f_y^2 + c_1f_y + c_2)(f_y^2 + 1), \\ g_{zz} = \frac{k}{24}g_z^4 + k_1g_z^3 + k_2g_z^2 + k_3g_z + k_4 \end{cases}$$

where $k = \frac{3H}{a^4-1}$, c_1 , c_2 , k_1 , k_2 , k_3 , k_4 are constants. Putting f_{yy} into (4) and considering the coefficient of f_y^4 , we can get H = 0 or g(z) = constant, which contradicts $H \neq 0$.

By a transformation in \mathbb{E}_1^3 we can assume that $f_{yy} = 0$ and write f(y) = cy. From (4) we have

$$(c^{2}+1)g_{zz} = 2H((a^{2}c+g_{z})^{2}-c^{2}-1)^{\frac{3}{2}}$$
(5)

or

$$(c^{2}+1)g_{zz} = -2H(c^{2}+1-(a^{2}c+g_{z})^{2})^{\frac{3}{2}}.$$
(6)

Solving these equations, we obtain the following surfaces, respectively

$$g(z) = -\frac{\sqrt{1+c^2}}{2H}\sqrt{4H^2(z+c_1)^2 - 1} - a^2cz + c_2, \quad c_1, c_2, c \in \mathbb{R},$$
(7)

which is spacelike and congruent to the surface (a) given by Theorem (2);

$$g(z) = -\frac{\sqrt{1+c^2}}{2H}\sqrt{4H^2(z+c_1)^2+1} - a^2cz + c_2, \quad c_1, c_2, c \in \mathbb{R},$$
(8)

which is timelike and congruent to the surface (c) given by Theorem (2).

When $g_{zz} = 0$ we assume that g(z) = cz. By (4) we have

$$(a^{4} + c^{2} - 1)f_{yy} = 2H((a^{2}f_{y} + c)^{2} - f_{y}^{2} - 1)^{\frac{3}{2}}$$
(9)

or

$$(a^{4} + c^{2} - 1)f_{yy} = -2H(f_{y}^{2} + 1 - (a^{2}f_{y} + c)^{2})^{\frac{3}{2}}.$$
(10)

Solving these equations, we obtain the following surfaces, respectively

$$f(y) = -\frac{\sqrt{a^4 + c^2 - 1}}{2H\sqrt{a^4 - 1}}\sqrt{\frac{4H^2}{a^4 - 1}(y + c_1)^2 - 1} - \frac{a^2c}{a^4 - 1}y + c_2, \quad c_1, c_2, c \in \mathbb{R},$$
(11)

which is spacelike and congruent to the surface (b) given by Theorem (2);

$$f(y) = -\frac{\sqrt{a^4 + c^2 - 1}}{2H\sqrt{a^4 - 1}}\sqrt{\frac{4H^2}{a^4 - 1}}(y + c_1)^2 + 1 - \frac{a^2c}{a^4 - 1}y + c_2, \quad c_1, c_2, c \in \mathbb{R},$$
(12)

which is timelike and congruent to the surface (d) given by Theorem (2). This completes the proof of Theorem (2). \Box

Theorem 3 Let $S_a : x(u, v) = \{f(u + av) + g(v), u, v\}$ be a translation surface of Type 5 or 6 with Gauss curvature K = 0 in \mathbb{E}^3_1 . Then the functions f and g satisfy

$$\begin{cases} f(u+av) = c_1(u+av) + c_2, \quad c_1, c_2 \in R, \\ g(v) \text{ is any function,} \end{cases}$$
(13)

or

$$\begin{cases} g = c_1 v + c_2, \quad c_1, c_2 \in R, \\ f(u+av) \text{ is any function.} \end{cases}$$
(14)

Proof From (3), putting K = 0, we get

$$f_{yy}g_{zz} = 0.$$

i) When $f_{yy} = 0$, we have

$$\begin{cases} f = c_1 y + c_2 = c_1 (u + av) + c_2, & c_1, c_2 \in R, \\ g(v) \text{ is any function.} \end{cases}$$
(15)

ii) When $g_{zz} = 0$, we get

$$\begin{cases} g = c_1 z + c_2 = c_1 v + c_2, \quad c_1, c_2 \in R, \\ f(u + av) \text{ is any function.} \quad \Box \end{cases}$$
(16)

Theorem 4 There is no translation surface of Type 5 or 6 with constant Gauss curvature $K \neq 0$ in \mathbb{E}^3_1 .

Proof Let S_a be a translation surface of Type 6 with constant Gauss curvature $K \neq 0$ in \mathbb{E}_1^3 . From (3) we have $f_{yy}g_{zz} \neq 0$. Differentiating (3) with respect to y and z, we obtain

$$g_{zzz}((a^4 - 1)f_y + g_z) - 2a^2 g_{zz}^2 = 0.$$
 (17)

If $g_{zzz} = 0$ and $a \neq 0$, then $g_{zz} = 0$, which contradicts the assumption $K \neq 0$. So when $g_{zzz} \neq 0$ we have

$$(a^4 - 1)f_y = \frac{2a^2g_{zz}^2}{g_{zzz}} - g_z = c,$$

that is

$$\begin{cases} (a^4 - 1)f_y = c, \\ \frac{2a^2g_{zz}^2}{g_{zzz}} - g_z = c. \end{cases}$$
(18)

By (18) we get that $f_{yy} = 0$. That means K = 0. Therefore, there is no translation surface of Type 6 with constant Gauss curvature $K \neq 0$ in \mathbb{E}^3_1 . The proof of translation surface of Type 5 is similar. This completes the proof of Theorem (4). \Box

With the same methods we can also obtain the following results. We omit the proofs.

Theorem 5 Let $x(u, v) = \{f(u + av) + g(v), u, v\}$ be a translation surface of Type 5 which is

minimal in \mathbb{E}^3_1 . Then the surface is a plane or the functions f and g satisfy

$$\begin{cases} f = \frac{1}{c} \log |\sec(c(u+av) + c_1)| + c_2, \\ g = \frac{1}{c} \log |cv + c_1| + c_2, \end{cases}$$
(19)

where c_1, c_2, c are constants and $c \neq 0$.

Theorem 6 Let S_a be a translation surface of Type 5 with constant mean curvature $H \neq 0$ in \mathbb{E}^3_1 . Then

- (i) If S_a is spacelike, it is congruent to the following surfaces or an open part of them in \mathbb{E}_1^3
- (a) $X(u,v) = -\frac{\sqrt{1+c^2}}{2H}\sqrt{4H^2v^2 1} + cu, \quad c \in R,$ (b) $X(u,v) = -\frac{c}{8H^2}\frac{1}{u+v} + \frac{1-c^2}{2c}u + \frac{c^2+1}{2c}v, \ c \neq 0 \text{ and } c \in R;$
- (ii) If S_a is timelike, it is congruent to the following surfaces or an open part of them in \mathbb{E}_1^3
- (c) $X(u,v) = -\frac{\sqrt{1+c^2}}{2H}\sqrt{4H^2v^2 + 1} + cu , c \in R,$ (d) $X(u,v) = \frac{c}{8H^2}\frac{1}{u+v} + \frac{1-c^2}{2c}u + \frac{c^2+1}{2c}v, c \neq 0 \text{ and } c \in R.$

Theorem 7 Let S_a be a translation surface of Type 5 or 6 in \mathbb{E}^3_1 whose Gauss curvature K and mean curvature H satisfy bH + cK = 0 ($bc \neq 0$). Then it is congruent to a plane or an open part of it.

References

- [1] LIU Huili. Translation surfaces with dependent Gaussian and mean curvature in 3-dimensional spaces [J]. J. Northeast Univ. Tech., 1993, 14(1): 88-93. (in Chinese)
- [2] LIU Huili. Translation surfaces with constant mean curvature in 3-dimensional spaces [J]. J. Geom., 1999, **64**(1-2): 141–149.
- [3] LI Chunxiu. Translation surfaces in 3-Minkowski space [D]. Thesis of Master Degree, NEU, 2007.
- [4] MENG Huihui, LIU Huili. Factorable surfaces in 3-Minkowski space [J]. Bull. Korean Math. Soc., 2009, **46**(1): 155–169.
- [5] YU Yanhua, LIU Huili. The factorable minimal surfaces [J]. Proceedings of the Eleventh International Workshop on Differential Geometry, Kyungpook Nat. Univ., Taegu, 2007, 11: 33-39.
- [6] YUAN Yuan, ZHANG Jinliang, LI Chunxiu. et al. Translation surfaces in the 3-D Minkowski space [J]. J. Northeast. Univ. Nat. Sci., 2009, **30**(2): 302–304. (in Chinese)

1128