Some New Translation Surfaces in 3-Minkowski Space

Yuan YUAN, Hui Li LIU*
Department of Mathematics, Northeastern University, Liaoning 110004, P. R. China

Abstract

In this paper we study translation surfaces of some new types in 3-Minkowski space \mathbb{E}_{1}^{3} and give some classifications of such surfaces whose mean curvature and Gauss curvature satisfy certain conditions.

Keywords Minkowski space; translation surface; Weingarten surface.
Document code A
MR(2010) Subject Classification 53C50; 53B30; 53C42
Chinese Library Classification O184

1. Introduction

For the study of the surfaces theory in 3 -Euclidean space \mathbb{E}^{3} or 3 -Minkowski space \mathbb{E}_{1}^{3}, it is a very important and interesting problem to construct or classify the constant mean curvature or constant Gaussian curvature, or even more general, Weingarten surfaces. It is well-known that the translation surface is special and minimal one in 3 -Euclidean space \mathbb{E}^{3} is Scherk surface. Here we consider translation surfaces in 3-Minkowski space. The second author gave some classification results for translation surfaces in [1] and [2]. However according to our recent work [3-6] we know that the results in [1] or [2] are only the Cases 1 and 2 of following 6 types of translation surfaces.

In 3-Minkowski space \mathbb{E}_{1}^{3}, according to the spacelike direction, timelike direction and lightlike direction, the translation surfaces can be considered as the following six types

Type 1. Along spacelike direction and spacelike direction;
Type 2. Along spacelike direction and timelike direction;
Type 3. Along lightlike direction and lightlike direction;
Type 4. Along lightlike direction and spacelike direction;
Type 5. Along timelike direction and lightlike direction;
Type 6. Along timelike direction and timelike direction.
As we know that they are really different under Lorentz transformation in \mathbb{E}_{1}^{3}. Using certain coordinate frames, we can express them in the different way $[3,6]$.

Let \mathbb{E}_{1}^{3} be the 3-Minkowski space with the inner product

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}
$$

[^0]Translation surface S_{a} of Types 5 and 6 can be written as

$$
S_{a}: x(u, v)=\{X(u, v), Y(u, v), Z(u, v)\}=\{f(u+a v)+g(v), u, v\}
$$

(i) When $|a|=1$, the surface S_{a} is translation surface of Type 5 .
(ii) When $|a|>1$, the surface S_{a} is translation surface of Type 6 .

With $x_{u}=\frac{\partial x(u, v)}{\partial u}$, etc., the first fundamental form I of the surface S_{a} is given by

$$
\begin{aligned}
I & =E \mathrm{~d} u^{2}+2 F \mathrm{~d} u \mathrm{~d} v+G \mathrm{~d} v^{2}, \\
E & =\left\langle x_{u}, x_{u}\right\rangle=f_{u}^{2}+1, \\
F & =\left\langle x_{u}, x_{v}\right\rangle=f_{u}\left(a f_{v}+g_{v}\right), \\
G & =\left\langle x_{v}, x_{v}\right\rangle=\left(a f_{v}+g_{v}\right)^{2}-1 .
\end{aligned}
$$

For spacelike or timelike surface in \mathbb{E}_{1}^{3}, we have $E G-F^{2}>0$ or $E G-F^{2}<0$. The second fundamental form $I I$ of S_{a} is given by

$$
\begin{aligned}
I I & =L \mathrm{~d} u^{2}+2 M \mathrm{~d} u \mathrm{~d} v+N \mathrm{~d} v^{2} \\
L & =\frac{1}{\sqrt{\left|E G-F^{2}\right|}} \operatorname{det}\left(x_{u}, x_{v}, x_{u u}\right)=\frac{f_{u u}}{\sqrt{\left|\left(a f_{v}+g_{v}\right)^{2}-f_{u}^{2}-1\right|}} \\
M & =\frac{1}{\sqrt{\left|E G-F^{2}\right|}} \operatorname{det}\left(x_{u}, x_{v}, x_{u v}\right)=\frac{a f_{u v}}{\sqrt{\left|\left(a f_{v}+g_{v}\right)^{2}-f_{u}^{2}-1\right|}} \\
N & =\frac{1}{\sqrt{\left|E G-F^{2}\right|}} \operatorname{det}\left(x_{u}, x_{v}, x_{v v}\right)=\frac{a^{2} f_{v v}+g_{v v}}{\sqrt{\left|\left(a f_{v}+g_{v}\right)^{2}-f_{u}^{2}-1\right|}}
\end{aligned}
$$

The Gauss curvature K and the mean curvature H of S_{a} are given by

$$
\begin{align*}
K & =\frac{L N-M^{2}}{E G-F^{2}}=\frac{f_{u u}\left(a^{2} f_{v v}+g_{v v}\right)-a^{2} f_{u v}^{2}}{\left(\left(a f_{v}+g_{v}\right)^{2}-f_{u}^{2}-1\right)\left|\left(a f_{v}+g_{v}\right)^{2}-f_{u}^{2}-1\right|} \tag{1}\\
H & =\frac{E N-2 F M+G L}{2\left(E G-F^{2}\right)} \\
& =\frac{\left(f_{u}^{2}+1\right)\left(a^{2} f_{v v}+g_{v v}\right)-2 a f_{u} f_{u v}\left(a f_{v}+g_{v}\right)+f_{u u}\left(\left(a f_{v}+g_{v}\right)^{2}-1\right)}{2\left(\left(a f_{v}+g_{v}\right)^{2}-f_{u}^{2}-1\right) \sqrt{\left|\left(a f_{v}+g_{v}\right)^{2}-f_{u}^{2}-1\right|}} . \tag{2}
\end{align*}
$$

2. Main results

By a transformation

$$
\left\{\begin{array}{l}
y=u+a v \\
z=v
\end{array}\right.
$$

and $\frac{\partial(y, z)}{\partial(u, v)} \neq 0$, from (1) and (2) we get

$$
\begin{align*}
K & =\frac{f_{y y} g_{z z}}{\varepsilon\left(\left(a^{2} f_{y}+g_{z}\right)^{2}-f_{y}^{2}-1\right)^{2}}, \tag{3}\\
H & =\frac{g_{z z}\left(1+f_{y}^{2}\right)+f_{y y}\left(a^{4}-1+g_{z}^{2}\right)}{2 \varepsilon\left(\varepsilon\left(\left(a^{2} f_{y}+g_{z}\right)^{2}-f_{y}^{2}-1\right)\right)^{\frac{3}{2}}}, \tag{4}
\end{align*}
$$

where $\varepsilon= \pm 1$. In the following, we will consider translation surfaces of Types 5 and 6 whose Gauss curvature K and mean curvature H satisfy certain conditions. They are usually called

Weingarten surfaces.
Theorem 1 Let S_{a} be a translation surface of Type 6 in \mathbb{E}_{1}^{3}. If S_{a} is minimal, it is congruent to a plane or the functions f and g satisfy

$$
\left\{\begin{array}{l}
f=-\frac{1}{c} \log \left|\sec \left(-c(u+a v)+c_{1}\right)\right|+c_{2} \\
g=\frac{1}{c} \log \left|\sec \left(c \sqrt{a^{4}-1} v+c_{1}\right)\right|+c_{2}
\end{array}\right.
$$

where c, c_{1}, c_{2} are constants and $c \neq 0$.
Proof Let S_{a} be a translation surface of Type 6 in \mathbb{E}_{1}^{3}. By a transformation in \mathbb{E}_{1}^{3}, the translation surface S_{a} can be written as

$$
x(u, v)=\{f(u+a v)+g(v), u, v\}, \quad|a|>1
$$

From (4), putting $H=0$ gives

$$
g_{z z}\left(1+f_{y}^{2}\right)+f_{y y}\left(a^{4}-1+g_{z}^{2}\right)=0
$$

Hence

$$
\frac{g_{z z}}{a^{4}-1+g_{z}^{2}}=-\frac{f_{y y}}{1+f_{y}^{2}}=c
$$

where c is constant.
i) When $c=0$, we have

$$
g_{z z}=0 \text { and } f_{y y}=0
$$

Then the surface is a plane.
ii) When $c \neq 0$, we have

$$
\left\{\begin{array}{l}
f=-\frac{1}{c} \log \left|\sec \left(-c(u+a v)+c_{1}\right)\right|+c_{2} \\
g=\frac{1}{c} \log \left|\sec \left(c \sqrt{a^{4}-1} v+c_{1}\right)\right|+c_{2}
\end{array}\right.
$$

where c_{1}, c_{2} are constants. This completes the proof of Theorem (1).
Theorem 2 Let S_{a} be a translation surface of Type 6 with constant mean curvature $H \neq 0$ in \mathbb{E}_{1}^{3}. Then
(i) If S_{a} is spacelike, it is congruent to the following surfaces or an open part of them in \mathbb{E}_{1}^{3}
(a) $X(u, v)=-\frac{\sqrt{1+c^{2}}}{2 H} \sqrt{4 H^{2} v^{2}-1}-a^{2} c v+c(u+a v), c \in R$,
(b) $X(u, v)=-\frac{\sqrt{c^{2}+a^{4}-1}}{2 H \sqrt{a^{4}-1}} \sqrt{\frac{4 H^{2}}{a^{4}-1}(u+a v)^{2}-1}-\frac{a^{2} c}{a^{4}-1} u+\frac{a^{4}-a^{3}-1}{a^{4}-1} c v, c \in R$;
(ii) If S_{a} is timelike, it is congruent to the following surfaces or an open part of them in \mathbb{E}_{1}^{3}
(c) $X(u, v)=-\frac{\sqrt{1+c^{2}}}{2 H} \sqrt{4 H^{2} v^{2}+1}-a^{2} c v+c(u+a v), c \in R$,
(d) $X(u, v)=-\frac{\sqrt{c^{2}+a^{4}-1}}{2 H \sqrt{a^{4}-1}} \sqrt{\frac{4 H^{2}}{a^{4}-1}(u+a v)^{2}+1}-\frac{a^{2} c}{a^{4}-1} u+\frac{a^{4}-a^{3}-1}{a^{4}-1} c v, c \in R$.

Proof Let S_{a} be a translation surface of Type 6 with constant mean curvature $H \neq 0$ in \mathbb{E}_{1}^{3}.

We assume that $f_{y y} g_{z z} \neq 0$. Differentiating (4) with respect to y and z, we obtain

$$
\left(a^{4}-1\right) \frac{\left.\left(\frac{\left(\frac{g_{z z z}}{g_{z z}}\right)_{z}}{g_{z z}}\right)_{z}^{g_{z z}}\right)_{z}}{g_{z z}}=3 \frac{\left(\frac{\left(\frac{f_{y y}}{f_{y}^{2}+1}\right)_{y}}{f_{y y}}\right)_{z}}{f_{y y}}=3 H
$$

That is

$$
\left\{\begin{array}{l}
f_{y y}=\left(\frac{H}{2} f_{y}^{2}+c_{1} f_{y}+c_{2}\right)\left(f_{y}^{2}+1\right), \\
g_{z z}=\frac{k}{24} g_{z}^{4}+k_{1} g_{z}^{3}+k_{2} g_{z}^{2}+k_{3} g_{z}+k_{4},
\end{array}\right.
$$

where $k=\frac{3 H}{a^{4}-1}, c_{1}, c_{2}, k_{1}, k_{2}, k_{3}, k_{4}$ are constants. Putting $f_{y y}$ into (4) and considering the coefficient of f_{y}^{4}, we can get $H=0$ or $g(z)=$ constant, which contradicts $H \neq 0$.

By a transformation in \mathbb{E}_{1}^{3} we can assume that $f_{y y}=0$ and write $f(y)=c y$. From (4) we have

$$
\begin{equation*}
\left(c^{2}+1\right) g_{z z}=2 H\left(\left(a^{2} c+g_{z}\right)^{2}-c^{2}-1\right)^{\frac{3}{2}} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(c^{2}+1\right) g_{z z}=-2 H\left(c^{2}+1-\left(a^{2} c+g_{z}\right)^{2}\right)^{\frac{3}{2}} . \tag{6}
\end{equation*}
$$

Solving these equations, we obtain the following surfaces, respectively

$$
\begin{equation*}
g(z)=-\frac{\sqrt{1+c^{2}}}{2 H} \sqrt{4 H^{2}\left(z+c_{1}\right)^{2}-1}-a^{2} c z+c_{2}, \quad c_{1}, c_{2}, c \in R \tag{7}
\end{equation*}
$$

which is spacelike and congruent to the surface (a) given by Theorem (2);

$$
\begin{equation*}
g(z)=-\frac{\sqrt{1+c^{2}}}{2 H} \sqrt{4 H^{2}\left(z+c_{1}\right)^{2}+1}-a^{2} c z+c_{2}, \quad c_{1}, c_{2}, c \in R \tag{8}
\end{equation*}
$$

which is timelike and congruent to the surface (c) given by Theorem (2).
When $g_{z z}=0$ we assume that $g(z)=c z$. By (4) we have

$$
\begin{equation*}
\left(a^{4}+c^{2}-1\right) f_{y y}=2 H\left(\left(a^{2} f_{y}+c\right)^{2}-f_{y}^{2}-1\right)^{\frac{3}{2}} \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(a^{4}+c^{2}-1\right) f_{y y}=-2 H\left(f_{y}^{2}+1-\left(a^{2} f_{y}+c\right)^{2}\right)^{\frac{3}{2}} \tag{10}
\end{equation*}
$$

Solving these equations, we obtain the following surfaces, respectively

$$
\begin{equation*}
f(y)=-\frac{\sqrt{a^{4}+c^{2}-1}}{2 H \sqrt{a^{4}-1}} \sqrt{\frac{4 H^{2}}{a^{4}-1}\left(y+c_{1}\right)^{2}-1}-\frac{a^{2} c}{a^{4}-1} y+c_{2}, \quad c_{1}, c_{2}, c \in R \tag{11}
\end{equation*}
$$

which is spacelike and congruent to the surface (b) given by Theorem (2);

$$
\begin{equation*}
f(y)=-\frac{\sqrt{a^{4}+c^{2}-1}}{2 H \sqrt{a^{4}-1}} \sqrt{\frac{4 H^{2}}{a^{4}-1}\left(y+c_{1}\right)^{2}+1}-\frac{a^{2} c}{a^{4}-1} y+c_{2}, \quad c_{1}, c_{2}, c \in R \tag{12}
\end{equation*}
$$

which is timelike and congruent to the surface (d) given by Theorem (2). This completes the proof of Theorem (2).

Theorem 3 Let $S_{a}: x(u, v)=\{f(u+a v)+g(v), u, v\}$ be a translation surface of Type 5 or 6 with Gauss curvature $K=0$ in \mathbb{E}_{1}^{3}. Then the functions f and g satisfy

$$
\left\{\begin{array}{l}
f(u+a v)=c_{1}(u+a v)+c_{2}, \quad c_{1}, c_{2} \in R \tag{13}\\
g(v) \text { is any function }
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
g=c_{1} v+c_{2}, \quad c_{1}, c_{2} \in R \tag{14}\\
f(u+a v) \text { is any function. }
\end{array}\right.
$$

Proof From (3), putting $K=0$, we get

$$
f_{y y} g_{z z}=0 .
$$

i) When $f_{y y}=0$, we have

$$
\left\{\begin{array}{l}
f=c_{1} y+c_{2}=c_{1}(u+a v)+c_{2}, \quad c_{1}, c_{2} \in R \tag{15}\\
g(v) \text { is any function }
\end{array}\right.
$$

ii) When $g_{z z}=0$, we get

$$
\left\{\begin{array}{l}
g=c_{1} z+c_{2}=c_{1} v+c_{2}, \quad c_{1}, c_{2} \in R, \tag{16}\\
f(u+a v) \text { is any function. }
\end{array}\right.
$$

Theorem 4 There is no translation surface of Type 5 or 6 with constant Gauss curvature $K \neq 0$ in \mathbb{E}_{1}^{3}.

Proof Let S_{a} be a translation surface of Type 6 with constant Gauss curvature $K \neq 0$ in \mathbb{E}_{1}^{3}. From (3) we have $f_{y y} g_{z z} \neq 0$. Differentiating (3) with respect to y and z, we obtain

$$
\begin{equation*}
g_{z z z}\left(\left(a^{4}-1\right) f_{y}+g_{z}\right)-2 a^{2} g_{z z}^{2}=0 \tag{17}
\end{equation*}
$$

If $g_{z z z}=0$ and $a \neq 0$, then $g_{z z}=0$, which contradicts the assumption $K \neq 0$. So when $g_{z z z} \neq 0$ we have

$$
\left(a^{4}-1\right) f_{y}=\frac{2 a^{2} g_{z z}^{2}}{g_{z z z}}-g_{z}=c
$$

that is

$$
\left\{\begin{array}{l}
\left(a^{4}-1\right) f_{y}=c \tag{18}\\
\frac{2 a^{2} g_{z z}^{2}}{g_{z z z}}-g_{z}=c
\end{array}\right.
$$

By (18) we get that $f_{y y}=0$. That means $K=0$. Therefore, there is no translation surface of Type 6 with constant Gauss curvature $K \neq 0$ in \mathbb{E}_{1}^{3}. The proof of translation surface of Type 5 is similar. This completes the proof of Theorem (4).

With the same methods we can also obtain the following results. We omit the proofs.
Theorem 5 Let $x(u, v)=\{f(u+a v)+g(v), u, v\}$ be a translation surface of Type 5 which is
minimal in \mathbb{E}_{1}^{3}. Then the surface is a plane or the functions f and g satisfy

$$
\left\{\begin{align*}
f & =\frac{1}{c} \log \left|\sec \left(c(u+a v)+c_{1}\right)\right|+c_{2}, \tag{19}\\
g & =\frac{1}{c} \log \left|c v+c_{1}\right|+c_{2},
\end{align*}\right.
$$

where c_{1}, c_{2}, c are constants and $c \neq 0$.
Theorem 6 Let S_{a} be a translation surface of Type 5 with constant mean curvature $H \neq 0$ in \mathbb{E}_{1}^{3}. Then
(i) If S_{a} is spacelike, it is congruent to the following surfaces or an open part of them in \mathbb{E}_{1}^{3}
(a) $X(u, v)=-\frac{\sqrt{1+c^{2}}}{2 H} \sqrt{4 H^{2} v^{2}-1}+c u, \quad c \in R$,
(b) $X(u, v)=-\frac{c}{8 H^{2}} \frac{1}{u+v}+\frac{1-c^{2}}{2 c} u+\frac{c^{2}+1}{2 c} v, c \neq 0$ and $c \in R$;
(ii) If S_{a} is timelike, it is congruent to the following surfaces or an open part of them in \mathbb{E}_{1}^{3}
(c) $X(u, v)=-\frac{\sqrt{1+c^{2}}}{2 H} \sqrt{4 H^{2} v^{2}+1}+c u, c \in R$,
(d) $X(u, v)=\frac{c}{8 H^{2}} \frac{1}{u+v}+\frac{1-c^{2}}{2 c} u+\frac{c^{2}+1}{2 c} v, c \neq 0$ and $c \in R$.

Theorem 7 Let S_{a} be a translation surface of Type 5 or 6 in \mathbb{E}_{1}^{3} whose Gauss curvature K and mean curvature H satisfy $b H+c K=0(b c \neq 0)$. Then it is congruent to a plane or an open part of it.

References

[1] LIU Huili. Translation surfaces with dependent Gaussian and mean curvature in 3-dimensional spaces [J]. J. Northeast Univ. Tech., 1993, 14(1): 88-93. (in Chinese)
[2] LIU Huili. Translation surfaces with constant mean curvature in 3-dimensional spaces [J]. J. Geom., 1999, 64(1-2): 141-149.
[3] LI Chunxiu. Translation surfaces in 3-Minkowski space [D]. Thesis of Master Degree, NEU, 2007.
[4] MENG Huihui, LIU Huili. Factorable surfaces in 3-Minkowski space [J]. Bull. Korean Math. Soc., 2009, 46(1): 155-169.
[5] YU Yanhua, LIU Huili. The factorable minimal surfaces [J]. Proceedings of the Eleventh International Workshop on Differential Geometry, Kyungpook Nat. Univ., Taegu, 2007, 11: 33-39.
[6] YUAN Yuan, ZHANG Jinliang, LI Chunxiu. et al. Translation surfaces in the 3-D Minkowski space [J]. J. Northeast. Univ. Nat. Sci., 2009, 30(2): 302-304. (in Chinese)

[^0]: Received March 4, 2010; Accepted November 20, 2010
 Supported by the Joint Research of National Nature Science Foundation of China and National Research Foundation (Grant No. 11071032) and Chern Institute of Mathematics and Northeastern University.

 * Corresponding author

 E-mail address: yuan_lez@163.com (Y. YUAN); liuhl@mail.neu.edu.cn (H. L. LIU)

