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Abstract In this paper we study translation surfaces of some new types in 3-Minkowski space
E3 and give some classifications of such surfaces whose mean curvature and Gauss curvature
satisfy certain conditions.
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1. Introduction

For the study of the surfaces theory in 3-Euclidean space E? or 3-Minkowski space E3, it is a
very important and interesting problem to construct or classify the constant mean curvature or
constant Gaussian curvature, or even more general, Weingarten surfaces. It is well-known that
the translation surface is special and minimal one in 3-Euclidean space E? is Scherk surface. Here
we consider translation surfaces in 3-Minkowski space. The second author gave some classification
results for translation surfaces in [1] and [2]. However according to our recent work [3—6] we know
that the results in [1] or [2] are only the Cases 1 and 2 of following 6 types of translation surfaces.

In 3-Minkowski space E$, according to the spacelike direction, timelike direction and lightlike
direction, the translation surfaces can be considered as the following six types

Type 1. Along spacelike direction and spacelike direction;

Type 2. Along spacelike direction and timelike direction;

Type 3. Along lightlike direction and lightlike direction;

Type 4. Along lightlike direction and spacelike direction;

Type 5. Along timelike direction and lightlike direction;

Type 6. Along timelike direction and timelike direction.

As we know that they are really different under Lorentz transformation in E3. Using certain
coordinate frames, we can express them in the different way [3, 6].

Let E? be the 3-Minkowski space with the inner product

(z,y) = T1y1 + T2y2 — T3Y3.
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Translation surface S, of Types 5 and 6 can be written as
So s x(u,v) = {X (u,v),Y(u,v), Z(u,v)} = {f(u+ av) + g(v),u, v}.
(i) When |a| = 1, the surface S, is translation surface of Type 5.

(i) When |a| > 1, the surface S, is translation surface of Type 6.
With z,, = W, etc., the first fundamental form I of the surface S, is given by

I = Edu? 4+ 2Fdudv 4+ Gdv?,
E= <Iu7xu> = fﬁ +1,

F= <Iu7xv> = fu(afv +gv)a
G= <xv7xv> = (af’u +gv)2 -1

For spacelike or timelike surface in E$, we have EG — F? > 0 or EG — F? < 0. The second

fundamental form I of S, is given by

II = Ldu® + 2Mdudv + Ndv?,
1 uu
= 7d€t($u,$v7xuu) = f ’
|EG—F2| \/|(afv+gv)2_f3_1|
1 uv

= ———det(2y, T, Tuw) = of ’
|EG—F2| \/l(afv+gv)2_f5_1|

1 2 VU v
= 7d€t($u,$v7xvv) = - f 9 :
Viafo+90)? — f2 1]

VIEG — 2|

The Gauss curvature K and the mean curvature H of S, are given by

K— LN — M? _ fuu(Qvav +gvu) —a? 31} (1)
EG - F? ((afv+gv)2_f3_1)|(afv+gv)2_f3_1|7
I7_ EN —2FM + GL
2(EG — F?)

(fg + 1)(a2fvv + gvv) - 2afufuv(afv +gv) + fuu((afv +gv)2 - 1)
2((afv +gv)2 - f’[% - 1)\/|(an +gv)2 - f’[% - 1|

2. Main results

By a transformation

Yy =u—+ av,
z=w,
and gng}; # 0, from (1) and (2) we get
.fyygzz
K= : 3
(@, + 9.7 ] —17 )

H— g-=(1 +.fy2) +fyy(a4 -1 +g§)
2e(e((a2fy +9:)2 — f2—1))%

where ¢ = +1. In the following, we will consider translation surfaces of Types 5 and 6 whose

(4)

Gauss curvature K and mean curvature H satisfy certain conditions. They are usually called
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Weingarten surfaces.

Theorem 1 Let S, be a translation surface of Type 6 in E}. If S, is minimal, it is congruent

to a plane or the functions f and g satisfy
f= —% log | sec(—c(u + av) + ¢1)| + c2,
g= élog |sec(cva® — 1v + ¢1)| + c2,
where ¢, c1, co are constants and ¢ # 0.

Proof Let S, be a translation surface of Type 6 in E3. By a transformation in E, the translation

surface S, can be written as
z(u,v) = {f(u+ av) + g(v),u,v}, l|a| > 1.
From (4), putting H = 0 gives
G==(1+ f) + fyy(a® = 14 g2) = 0.

Hence

92z __ fuy —©c

at—1+ g2 1+ f2 ’

where ¢ is constant.
i) When ¢ = 0, we have

> =0and f,, =0.

Then the surface is a plane.
ii) When ¢ # 0, we have

1
f= - log | sec(—c(u + av) + ¢1)| + c2,
1
g = —log|sec(cva* — v+ ¢1)| + ca,
c
where ¢1, ¢y are constants. This completes the proof of Theorem (1). O

Theorem 2 Let S, be a translation surface of Type 6 with constant mean curvature H # 0 in
E3. Then
(i) If S, is spacelike, it is congruent to the following surfaces or an open part of them in E3
(a) X(u,v)= —%m —a?cv + c¢(u+ av), c € R,

(b) X(u,v):—;;\j;%\/a4 7(u+av)? —1— ‘chu—i—a;ﬂflcv,ceR;

(ii) If S, is timelike, it is congruent to the following surfaces or an open part of them in E3
(c) X(uw)=—YEEVIA22 +1 — a?cv + c(u+ av), ¢ € R,

(@) X(u,v) = —Yoiad, [4

a’c a*—a®—1
e 1u—|—av +1-G4GH5u+*z5cv, ceR.

Proof Let S, be a translation surface of Type 6 with constant mean curvature H # 0 in [E3.
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We assume that fy,g.. # 0. Differentiating (4) with respect to y and z, we obtain

(gzzz)
9zz /

Gzz

9zz - fyy

fj +1 )
fyy

(a* —1) z =3 Y = 3H.

9zz f’lﬂ}

That is I
fyy = (Efyf +eafy+ C2)(fy2 +1),

k
92z = ﬂgg + k1g§ + k29§ + k3g. + ka,

where k = %, 1, ¢2, ki, ko, ks, ks are constants. Putting f,, into (4) and considering the

coefficient of fﬁ, we can get H = 0 or ¢g(z) = constant, which contradicts H # 0.
By a transformation in E} we can assume that f,, = 0 and write f(y) = cy. From (4) we

have
(2 +1)g.. = 2H((a’c+ g.)2 — 2 — 1)2 (5)
or

(®+1)g.. = —2H(c* + 1 — (a’c + g,)?)2. (6)

Solving these equations, we obtain the following surfaces, respectively

V14c2
2H

which is spacelike and congruent to the surface (a) given by Theorem (2);

Vit
9(z) = — Vi

which is timelike and congruent to the surface (c) given by Theorem (2).

g(z) = — VAH2(z 4+ ¢1)2 — 1 —d’cz + ca, c¢1,¢2,c € R, (7)

VAH?2(z +¢1)2 +1—a’cz +ca, c1,c0,c € R, (8)

When g., = 0 we assume that g(z) = cz. By (4) we have

(a* + ¢ = D) fyy = 2H((@*fy + 0 = [ = 1)* (9)
or
(a* + & = 1)fyy = —2H(f + 1= (@, +)*)*. (10)
Solving these equations, we obtain the following surfaces, respectively
f(y)——\g(;\j;—__ll aihfl (y+01)2—1—a4a—2_01y+02, c1,¢2,¢ € R, (11)

which is spacelike and congruent to the surface (b) given by Theorem (2);

Vat+c2 -1 4H? a’c
f(y):_2H\/m a4_1(y+01)2+1_a4_1y+02; 017027C€R7 (12)
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which is timelike and congruent to the surface (d) given by Theorem (2). This completes the
proof of Theorem (2). O

Theorem 3 Let S, : z(u,v) = {f(u+ av) + g(v),u,v} be a translation surface of Type 5 or 6
with Gauss curvature K = 0 in E3. Then the functions f and g satisfy

flu+av) =c1(u+av) +c2, c1,02 €R,
, , (13)
g(v) is any function,
or
g=cv+c, c1,6€R, (14)
f(u+ av) is any function.
Proof From (3), putting K = 0, we get
fyygz2 = 0.
i) When f,, =0, we have
f=ay+eo=alutaw)+c, aceR, (15)
g(v) is any function.
ii) When g.. =0, we get
9201Z+C2201'U+02, ClchGRa (16)
f(u+ av) is any function. O

Theorem 4 There is no translation surface of Type 5 or 6 with constant Gauss curvature K # 0

o3
in Ey.

Proof Let S, be a translation surface of Type 6 with constant Gauss curvature K # 0 in E3.

From (3) we have f,,g.. # 0. Differentiating (3) with respect to y and z, we obtain
QZZZ((a4 —1fy+9g:) - 2a29,§z =0. (17)

If g... = 0 and a # 0, then g,, = 0, which contradicts the assumption K # 0. So when g,., # 0

we have -
2
(a4 — 1)fy = —a gzz — g, =¢C,
9222

that is

(CL4 - l)fy =

2a%g? (18)

il —

9222

By (18) we get that f,, = 0. That means K = 0. Therefore, there is no translation surface of
Type 6 with constant Gauss curvature K # 0 in E. The proof of translation surface of Type 5
is similar. This completes the proof of Theorem (4). O

With the same methods we can also obtain the following results. We omit the proofs.

Theorem 5 Let z(u,v) = {f(u+ av) + g(v),u,v} be a translation surface of Type 5 which is
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minimal in E3. Then the surface is a plane or the functions f and g satisfy

1
f = —log|sec(c(u+ av) + c1)| + c2,
c
1 (19)
g= Elog|cv+cl|+02,

where c1, ¢, ¢ are constants and ¢ # 0.

Theorem 6 Let S, be a translation surface of Type 5 with constant mean curvature H # 0 in
E3. Then
(i) If S, is spacelike, it is congruent to the following surfaces or an open part of them in E3
(a) X(u,v) = —YHEVAH22 — 1+ cu, c€R,
(b) X(u,v) = —gfzos + 1g§2u+ Cz;glv, ¢#0 and c € R;
(ii) If S, is timelike, it is congruent to the following surfaces or an open part of them in E3

(c) X(u,v)= ——@202\/41121)2 +1+4+cu,c€eR,

(d) X(u,v) = sfz oz + 15§2u+ 62;211), c#0andcé€R.

Theorem 7 Let S, be a translation surface of Type 5 or 6 in E3 whose Gauss curvature K and
mean curvature H satisfy bH + ¢cK = 0 (be # 0). Then it is congruent to a plane or an open

part of it.
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