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Abstract In 1999, Kim and Kwak asked one question that “Is a ring R 2-primal if OP ⊆ P for

each P ∈ mSpec(R)?”. In this paper, we prove that if OP has the IFP for each P ∈ mSpec(N),

then OP ⊆ P for each P ∈ mSpec(N) if and only if N is a 2-primal near-ring and also we give

characterization of 2-primal near- rings by using its minimal 0-prime ideals.
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1. Introduction

Throughout this paper, N stands for a zero-symmetric right near-ring. For basic terminology

in near-ring, we refer to Pilz [5]. If N is any near-ring, we use P0(N), N ∗(N) and N (N) to

denote the 0-prime radical, nil radical and the set of all nilpotent elements of N , respectively.

Recall that a near-ring N is called 2-primal if P0(N) = N (N). Kim et al. [4] characterized 2-

primal rings in terms of their minimal prime ideals. In this paper, we give some characterization

of 2-primal near-rings in terms of their minimal 0-prime ideals.

2. Preliminaries

Definition 2.1 An ideal P of a near-ring N is 0-prime if for any two ideals A and B of N ,

AB ⊆ P implies A ⊆ P or B ⊆ P .

Definition 2.2 An ideal P of N is said to be completely prime (resp. completely semiprime)

if ab ∈ P implies a ∈ P or b ∈ P (resp. a2 ∈ P implies a ∈ P ) for any a, b ∈ N .

Definition 2.3 An ideal P of a near-ring N is a minimal 0-prime ideal if P is minimal among

0-prime ideals of N .

Definition 2.4 A subset M of N is called an m-system if for any a, b in M there exists a1 ∈ 〈a〉

and b1 ∈ 〈b〉 such that a1b1 ∈ M .

Definition 2.5 An ideal I of N is said to have the insertion of factors property (or) simply IFP

if xy ∈ I implies xNy ⊆ I for x, y ∈ N .
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Observe that every completely semiprime ideal of N has the IFP.

Definition 2.6 Let N be a near-ring and (m)Spec(N) the set of all (minimal) 0-prime ideals

of N . For P ∈ Spec(N), we put

O (P ) = {a ∈ N |aN〈b〉 = 0 for some b ∈ N \ P} ,

O (P ) = {a ∈ N |am ∈ O (P ) for some positive integer m} ,

OP = {a ∈ N |ab = 0 for some b ∈ N \ P} ,

OP = {a ∈ N |am ∈ OP for some positive integer m} ,

N (P ) = {a ∈ N |aN〈b〉 ⊆ P0(N) for some b ∈ N \ P} ,

N (P ) = {a ∈ N |am ∈ N (P ) for some positive integer m},

NP = {a ∈ N |ab ∈ P0(N) for some b ∈ N \ P} ,

NP = {a ∈ N |am ∈ NP for some b ∈ N \ P} .

3. Characterization of 2-primal near-rings

In this section, we give some characterization of 2-primal near-ring by using its 0-prime ideals.

Proposition 3.1 For each P ∈ Spec(N), O(P ) and N(P ) are ideals of N .

Proof Let P be a 0-prime ideal of N and let a1, a2 ∈ O(P ). Then a1N〈b1〉 = 0 for some

b1 ∈ N \P and a2N〈b2〉 = 0 for some b2 ∈ N \P . Since b1, b2 ∈ N \P and N \P is an m-system,

there exist b′1 ∈ 〈b1〉 and b′2 ∈ 〈b2〉 such that b′1b
′
2 ∈ N \ P . Let b3 = b′1b

′
2. For any n ∈ N and

x ∈ 〈b3〉, (a1 − a2)nx = 0 implies a1 − a2 ∈ O(P ). Let x ∈ O(P ). Then xN〈b〉 = 0. Thus for

n, n′, n1 ∈ N and b′ ∈ 〈b〉, we have (n(n′ + x)−nn′)n1b
′ = 0 implies n(n′ + x)−nn′ ∈ O(P ) and

(xn)n1b
′ = 0 implies xn ∈ O(P ). Thus O(P ) is an ideal of N . Similarly, N(P ) is an ideal of N .

The following results might be helpful for the criterion for a certain class of rings to be 2-

primal.

Theorem 3.2 For a near-ring N , the following statements are equivalent:

(i) N is 2-primal;

(ii) P0(N) is a completely semiprime ideal of N ;

(iii) N(P ) is a completely semiprime ideal of N for each P ∈ mSpec(N);

(iv) NP = N (P ) = N (P ) for each P ∈ mSpec(N);

(v) N (P ) = NP for each P ∈ mSpec(N);

(vi) NP ⊆ P for some P ∈ mSpec(N);

(vii) NP/P0(N) ⊆ P/P0(N) for each P ∈ mSpec(N).

Proof (i)⇒(ii). Since P0(N) = N (N), for any x in N, x2 ∈ P0(N) implies x2 is nilpotent and

hence x ∈ N (N) = P0(N). Therefore, P0(N) is a completely semiprime ideal of N .

(ii)⇒(iii). Let P be a minimal 0-prime ideal of N . Let x ∈ N be such that x2 ∈ N(P ). Then
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x2N〈b〉 ⊆ P0(N) for some b ∈ N \ P . Since P0(N) is a completely semiprime ideal of N , it has

the IFP. So xNxN〈b〉 ⊆ P0(N) which implies xN〈b〉 ⊆ P0(N). Thus x ∈ N(P ) and hence N(P )

is completely semiprime.

(iii)⇒(i). Let a ∈ N (N). Then an = 0 for some positive integer n. If a /∈ P0(N), then there

exists a minimal 0-prime ideal P of N such that a /∈ P . Since N(P ) is a completely semiprime

ideal, an = 0 ∈ N(P ) implies a ∈ N(P ) ⊆ P , a contradiction. Hence a ∈ P0(N).

(ii)⇒(iv). Let P be a minimal 0-prime ideal of N and let a ∈ NP . Then an ∈ NP for some

positive integer n. Thus anb ∈ P0(N) for some b ∈ N \P . Since P0(N) is completely semiprime

ideal of N, it has the IFP. By [3, Lemma 2.1], ab ∈ P0(N). Therefore, aN〈b〉 ⊆ P0(N) for some

b ∈ N \ P and so a ∈ N(P ). Thus NP ⊆ N(P ). But N(P ) ⊆ NP ⊆ NP and N (P ) ⊆ NP .

Therefore, NP = N (P ) = N(P ) for each P ∈ mSpec(N).

(iv)⇒(v)⇒(vi). These are obvious.

(vi)⇒(vii). Let P be a minimal 0-prime ideal of N . Let N = N/P0(N) and P = P/P0(N).

Let a = a+P0(N) ∈ NP for some a ∈ N . Then there exists b ∈ N \P such that ab ∈ P0(N) = 0.

Thus ab ∈ P0(N) and so a ∈ NP ⊆ P . Therefore, a ∈ P and hence NP ⊆ P .

(vii)⇒(i). Suppose that N = N/P0(N) is not reduced. Then there exists a ∈ N such that

a2 = 0 and a 6= 0. Thus a /∈ P0(N) and hence a /∈ P for some P ∈ mSpec(N). Then a /∈ P and

so a ∈ N \ P . But since a2 = 0, we obtain a ∈ NP ⊆ P , which is a contradiction. Therefore

P0(N) = N (N) and hence N is 2-primal. 2

Corollary 3.3 For a near-ring N , assume that N is 2-primal. If P = N(P ) for each P ∈

Spec(N), then P is completely prime ideal of N .

Proof Suppose that N is a 2-primal near-ring. Let xy ∈ P = N(P ). Then there exists b ∈ N \P

such that (xy)N〈b〉 ⊆ P0(N). Since P0(N) has the IFP, we have (xNy)N〈b〉 ⊆ P0(N) ⊆ P and

so xNy ⊆ P since b /∈ P . Hence x ∈ P or y ∈ P since P is a 0-prime ideal of N . Therefore, P is

a completely prime ideal of N . 2

Proposition 3.4 For a near-ring N , we have the following:

(i) N (N) ⊆
⋂

P∈Spec(N) O (P ) ⊆
⋂

Q∈mSpec(N) O (Q) ;

(ii) P0 (N) ⊆
⋂

P∈Spec(N) N (P ) =
⋂

Q∈mSpec(N) N (Q).

Proof (i) Let a ∈ N (N). Then an = 0 for some positive integer n. Let P be any 0-prime ideal

and let b ∈ N \ P . Since an = 0, anN〈b〉 = 0. Thus an ∈ O(P ) and hence a ∈ O (P ). Therefore,

a ∈
⋂

P∈Spec(N) O (P ). The other inclusion is obvious.

(ii) Let a ∈ P0 (N). Let P be any 0-prime ideal of N . Then aN〈b〉 ⊆ P0(N) for any b ∈ N \P

which implies that a ∈ N (P ) and so a ∈
⋂

P∈Spec(N) N (P ). Therefore,

P0 (N) ⊆
⋂

P∈Spec(N)

N (P ) .

But
⋂

P∈Spec(N) N (P ) ⊆
⋂

Q∈mSpec(N) N (Q) always. Since N (Q) ⊆ Q for each Q ∈ mSpec (N),
⋂

Q∈mSpec(N) N (Q) ⊆ P0 (N). 2
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Our next result indicates that our characterization of minimal 0-prime ideals P in terms of

N(P ) holds.

Theorem 3.5 For a near-ring N , assume that N is 2-primal. Then for each P ∈ Spec(N), the

following statements are equivalent:

(i) P ∈ mSpec(N);

(ii) N(P ) = P .

Proof (i)⇒(ii). Let P be a minimal 0-prime ideal of N and let a ∈ P . Suppose a /∈ N(P ). Let

S = {a, a2, a3, . . .}. If 0 ∈ S, then ak = 0 for some positive integer k and hence a ∈ N (N) =

P0(N), which implies that a ∈ N(P ) by Proposition 3.4, a contradiction. So 0 /∈ S. Thus S is

a multiplicative system that does not contain 0. Let L = N \ P , i.e., L is an m-system. Let T

be the set of all non zero elements of N of the form at0x1a
t1x2 · · ·atn−1xnatn , where xi ∈ L and

the t′is are positive integers with t0 and tn allowed to be zero. Clearly, L ⊆ T . Let M = T ∪ S.

We show that M is an m-system. Let x, y ∈ M . If x, y ∈ S, then xy ∈ S ⊆ M and we are

done. Let x ∈ S and y ∈ T , say x = as and y = at0y1a
t1y2a

t2 · · · ynatn . If xy 6= 0, then

xy ∈ T . Suppose xy = 0. Since y1, y2 ∈ L, there exist y′
1 ∈ 〈y1〉 and y′

2 ∈ 〈y2〉 such that

y′
1y

′
2 ∈ L. Since y′

1y
′
2, y3 ∈ L, there exist y′

12 ∈ 〈y′
1y

′
2〉 ⊆ 〈〈y1〉〈y2〉〉 and y′

3 ∈ 〈y3〉 such that

y′
12y

′
3 ∈ L. Continuing this process, we get y′

123...n−2y
′
n−1, yn ∈ L. Then there exist y′

123...n−1 ∈

〈y′
123...n−2y

′
n−1〉 ⊆ 〈· · · 〈〈〈y1〉〈y2〉〉〈y3〉〉 · · · 〈yn−1〉〉 and y′

n ∈ 〈yn〉 such that w = y′
123...n−1y

′
n ∈ L.

Since xy = 0, xy ∈ P0(N). Thus asat0y1a
t1y2 · · · ynatn ∈ P0(N). Since P0(N) = N (N), P0(N)

is completely semiprime ideal of N and hence y1y2 · · · ynas+t0+t1+···+tn ∈ P0(N). Choose m =

s+t0+t1+· · ·+tn. Then y1y2 · · · ynam ∈ P0(N). Since P0(N) has the IFP, 〈y1〉〈y2〉 · · · 〈yn〉〈am〉 ⊆

P0(N). Continuing this process, we obtain 〈· · · 〈〈〈y1〉〈y2〉〉〈y3〉〉 · · · 〈yn−1〉〉〈yn〉〈am〉 ⊆ P0 (N) and

so y′
123...n−1y

′
nam ∈ P0(N). Hence wam ∈ P0(N), where w = y′

123...n−1y
′
n. Since P0(N) is a

completely semiprime ideal, (aw)m ∈ P0(N) and hence aw ∈ P0(N). Thus a ∈ NP = N(P ),

which is a contradiction. Therefore, if x ∈ S, y ∈ T , then xy 6= 0 and so xy ∈ T .

Similarly, one can show that if x, y ∈ T then xy 6= 0 and xy ∈ T . This shows that M is an

m-system that is disjoint from (0). Hence, by [5, Proposition 2.81] there is a 0-prime ideal Q

that is disjoint from M such that a /∈ Q and Q ⊆ P . Since P is a minimal 0-prime ideal, P = Q.

Therefore, a /∈ P , which is a contradiction. Consequently a ∈ N(P ).

(ii)⇒(i). If Q ⊆ P for Q ∈ mSpec(N), then N(P ) ⊆ N(Q) ⊆ Q ⊆ P = N(P ). Therefore,

P ∈ mSpec(N). 2

Theorem 3.6 For a near-ring N , the following statements are equivalent:

(i) N is 2-primal;

(ii) OP ⊆ P for each P ∈ mSpec(N);

(iii) N (N) =
⋂

P∈mSpec(N) OP = P0(N).

Proof (i)⇒(ii). Note that OP ⊆ NP for each P ∈ mSpec(N). By Theorem 3.2, we have

NP = N (P ) ⊆ P and therefore, OP ⊆ P for each P ∈ mSpec(N).
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(ii)⇒(iii). Since OP ⊆ P for each P ∈ mSpec(N),
⋂

P∈mSpec(N) OP ⊆ P0(N). Let a ∈ N (N).

Then am = 0 ∈ O(P ) for some integer m and any P ∈ mSpec(N). Hence a ∈
⋂

P∈mSpec(N) OP .

Thus N (N) ⊆
⋂

P∈mSpec(N) OP ⊆ P0(N) ⊆ N (N).

(iii)⇒(i). It is obvious. 2

Proposition 3.7 Assume that O(P ) is a 0-prime ideal of near-ring N for each P ∈ mSpec(N).

Then O(P ) has the IFP for each P ∈ mSpec(N) if and only if N is a 2-primal near-ring.

Proof Assume that N is a 2-primal near-ring. Let P be a minimal 0-prime ideal of N such that

O(P ) is a 0-prime ideal of N . Let xy ∈ O(P ) for x, y ∈ N . This implies that xyN〈z〉 = 0 for

z ∈ N \ P . Then xyN〈z〉 ⊆ P . Since z /∈ P and P is 0-prime, xy ∈ P . Therefore, O(P ) ⊆ P .

Since P is a minimal 0-prime ideal, O(P ) = P . Since N is 2-primal and P ∈ mSpec(N),

N(P ) = P by Theorem 3.5. Therefore, P is completely prime by Corollary 3.3. Since P = O(P ),

O(P ) is completely prime. In particular, O(P ) has the IFP.

Conversely, suppose that O(P ) has the IFP for each P ∈ mSpec(N). Let x ∈ N (N).

This implies that xn = 0 for some positive integer n. So that xn ∈ O(P ). If x /∈ P0(N),

then there exists a minimal 0-prime ideal P of N such that x /∈ P . Since P is a 0-prime

ideal, there exist r1, r2, . . . , rn−1 ∈ N such that xr1x · · ·xrn−1x /∈ P . But since O(P ) has the

IFP, xr1x · · ·xrn−1x ∈ O(P ). Since O(P ) ⊆ P , xr1x · · ·xrn−1x ∈ P , a contradiction. Thus

x ∈ P0(N). Therefore, N (N) ⊆ P0(N). Always P0(N) ⊆ N (N). Hence N (N) = P0(N). 2

Proposition 3.8 If O(P ) has the IFP for each P ∈ mSpec(N), then for every P ∈ mSpec(N),

O(P ) is a 0-prime ideal if and only if O(P ) is a completely prime ideal of N .

Proof Suppose that O(P ) is a 0-prime ideal for every P ∈ mSpec(N). Let xy ∈ O(P ) for

x, y ∈ N . If x ∈ O(P ), we have done. Suppose x /∈ O(P ). Since xy ∈ O(P ) and O(P ) has

the IFP, xNy ⊆ O(P ). This implies that xNyN〈z〉 = 0 for z ∈ N \ P . This implies that

xNyN〈z〉 ⊆ P. Since P is 0-prime, xNy ⊆ P and therefore x ∈ P or y ∈ P . By Proposition 3.7,

P = O(P ). Since x /∈ O(P ), x /∈ P . Therefore y ∈ P = O(P ). Hence O(P ) is completely prime.

The Converse is obvious. 2

Proposition 3.9 Let N be a near-ring with unity. Let O(P ) be a 0-prime ideal of N for each

P ∈ mSpec(N). Then the following are equivalent:

(i) N is a 2-primal near-ring;

(ii) O(P ) has the IFP for each P ∈ mSpec(N);

(iii) O(P ) is a completely semiprime ideal for each P ∈ mSpec(N);

(iv) O(P ) is a symmetric ideal for each P ∈ mSpec(N);

(v) xy ∈ O(P ) implies yNx ⊆ O(P ) for x, y ∈ N and for each P ∈ mSpec(N).

Proof (i)⇒(ii). It follows from Proposition 3.7.

(ii)⇒(iii). By Proposition 3.8, O(P ) is a completely prime ideal and hence O(P ) is completely

semiprime.



24 C. SELVARAJ and L. MADHUCHELVI

(iii)⇒(iv). Suppose that O(P ) is a completely semiprime ideal for each P ∈ mSpec(N).

Therefore, it has the IFP. Let a, b, c ∈ N be such that abc ∈ O(P ). We shall prove that

acb ∈ O(P ). Since abc ∈ O(P ), there exists s ∈ N \ P such that abcN〈s〉 = 0. So that

abcN〈s〉 ⊆ O(P ). Since O(P ) has the IFP, acbcN〈s〉 ⊆ O(P ). Suppose that cN〈s〉 * O(P ). If

acb /∈ O(P ), since O(P ) is 0-prime, there exists some n ∈ N such that acbncN〈s〉 * O(P ), which

contradicts the IFP of O(P ). Therefore, acb ∈ O(P ).

Suppose that cN〈s〉 ⊆ O(P ). Since O(P ) has the IFP, cbN〈s〉 ⊆ O(P ). Since O(P ) is 0-

prime and s /∈ P = O(P ), cb ∈ O(P ). Therefore, acb ∈ O(P ). Hence O(P ) is a symmetric ideal

in N .

(iv)⇒(v). Suppose that xy ∈ O(P ) for P ∈ mSpec(N). Since O(P ) is symmetric and N has

unity, yx ∈ O(P ). Since O(P ) has the IFP, yNx ⊆ O(P ).

(v)⇒(i). Let x ∈ N (N). Then xr = 0 for some r. So that xr ∈ O(P ) for P ∈ mSpec(N).

Suppose that x /∈ P0(N). Since P0(N) =
⋂

P∈Spec(N) P , x /∈ P . Since P is a 0-prime ideal,

there exist n1, n2, . . . , nr−1 ∈ N such that xn1x · · ·xnr−1x /∈ P . Since xy ∈ O(P ), by hypothesis

yNx ⊆ O(P ). Therefore, xn1x · · ·xnr−1x ∈ O(P ) ⊆ P , a contradiction. Thus x ∈ P0(N).

Hence N (N) ⊆ P0(N). Always P0(N) ⊆ N (N) and consequently N is a 2-primal near-ring. 2

Theorem 3.10 Let O(P ) be a 0-prime ideal for each P ∈ mSpec(N). Then the following are

equivalent;

(i) N is a 2-primal near-ring;

(ii) O(P ) has the IFP;

(iii) Every minimal 0-prime ideal of N is a completely prime ideal of N .

Proof (i)⇒(ii). It follows from Proposition 3.7.

(ii)⇒(iii). Let P be a minimal 0-prime ideal of N . Let a, b ∈ N be such that ab ∈ P . If

b ∈ P , we have done. Suppose that b /∈ P . Since O(P ) = P , ab ∈ O(P ). Since O(P ) has the

IFP, aNb ⊆ O(P ) = P . Since P is 0-prime and b /∈ P , a ∈ P . Hence, P is completely prime

ideal.

(iii)⇒(i). Let x ∈ N (N). Then xr = 0 for some r. So that xr ∈ P, where P ∈ mSpec(N).

Since every minimal 0-prime ideal is completely prime, x ∈ P for every P ∈ mSpec(N). Since

P0(N) =
⋂

P∈mSpec(N) P , x ∈ P0(N). Thus N (N) ⊆ P0(N). 2

Theorem 3.11 Let O(P ) be a 0-prime ideal of N for every P ∈ mSpec(N). Then N is a

2-primal near-ring if and only if P = O(P ) for every minimal 0-prime ideal P of N .

Proof Suppose that N is a 2-primal near-ring. Then O(P ) is a completely prime ideal of N by

Proposition 3.7. Let a ∈ O(P ). Then am ∈ O(P ). Since O(P ) is completely prime, a ∈ O(P ).

Therefore, O(P ) ⊆ O(P ). Clearly, O(P ) ⊆ O(P ). Thus O(P ) = O(P ). Since O(P ) is a 0-prime

ideal of N , P = O(P ). Hence P = O(P ).

Conversely, assume that P = O(P ) for every minimal 0-prime ideal P of N . Let x ∈ N (N).

This implies that xn = 0 for some n. So xn ∈ P for every P ∈ mSpec(N). Since P = O(P ) =

O(P ), xn ∈ O(P ). Since O(P ) is completely prime, x ∈ O(P ) = O(P ) = P . This implies that
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x ∈ P0(N). Thus N (N) ⊆ P0(N) and consequently N is a 2-primal near-ring. 2

In [4], Kim and Kwak asked one question that “Is a ring R 2-primal if OP ⊆ P for each

P ∈ mSpec(R)?”. Here we prove the following theorem for near-rings.

Theorem 3.12 If OP has the IFP for each P ∈ mSpec(N), then OP ⊆ P for each P ∈ mSpec(N)

if and only if N is a 2-primal near-ring.

Proof Let x ∈ N (N). Then xn = 0 for some n. So that xn ∈ O(P ) ⊆ OP . Suppose x /∈ P0(N).

Since P0(N) =
⋂

P∈mSpec(N) P , there exists P ∈ mSpec(N) such that x /∈ P . Since P is a

0-prime ideal, there exist r1, r2, . . . , rn−1 ∈ N such that xr1x · · ·xrn−1x /∈ P . But since OP

has the IFP, xr1x · · ·xrn−1x ∈ OP . Again since OP ⊆ P , xr1x · · ·xrn−1x ∈ P , a contradiction.

Thus x ∈ P0(N). Hence N (N) ⊆ P0(N).

Conversely, assume that N is a 2-primal near-ring. By Theorem 3.6, OP ⊆ P for each

P ∈ mSpec(N). Since OP ⊆ OP , OP ⊆ P for each P ∈ mSpec(N).
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