Characterization of 2-Primal Near-Rings

C. SELVARAJ^{1,*}, L. MADHUCHELVI²

1. Department of Mathematics, Periyar University, Salem-636011, Tamilnadu, India;

2. Department of Mathematics, Sri Sarada College, Salem-636016, Tamilnadu, India

Abstract In 1999, Kim and Kwak asked one question that "Is a ring R 2-primal if $O_P \subseteq P$ for each $P \in m\text{Spec}(R)$?". In this paper, we prove that if O_P has the IFP for each $P \in m\text{Spec}(N)$, then $O_P \subseteq P$ for each $P \in m\text{Spec}(N)$ if and only if N is a 2-primal near-ring and also we give characterization of 2-primal near-rings by using its minimal 0-prime ideals.

Keywords 2-primal; completely prime; completely semiprime.

MR(2010) Subject Classification 16Y30; 16E50

1. Introduction

Throughout this paper, N stands for a zero-symmetric right near-ring. For basic terminology in near-ring, we refer to Pilz [5]. If N is any near-ring, we use $\mathcal{P}_0(N)$, $\mathcal{N}^*(N)$ and $\mathcal{N}(N)$ to denote the 0-prime radical, nil radical and the set of all nilpotent elements of N, respectively. Recall that a near-ring N is called 2-primal if $\mathcal{P}_0(N) = \mathcal{N}(N)$. Kim et al. [4] characterized 2primal rings in terms of their minimal prime ideals. In this paper, we give some characterization of 2-primal near-rings in terms of their minimal 0-prime ideals.

2. Preliminaries

Definition 2.1 An ideal P of a near-ring N is 0-prime if for any two ideals A and B of N, $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Definition 2.2 An ideal P of N is said to be completely prime (resp. completely semiprime) if $ab \in P$ implies $a \in P$ or $b \in P$ (resp. $a^2 \in P$ implies $a \in P$) for any $a, b \in N$.

Definition 2.3 An ideal P of a near-ring N is a minimal 0-prime ideal if P is minimal among 0-prime ideals of N.

Definition 2.4 A subset M of N is called an m-system if for any a, b in M there exists $a_1 \in \langle a \rangle$ and $b_1 \in \langle b \rangle$ such that $a_1b_1 \in M$.

Definition 2.5 An ideal I of N is said to have the insertion of factors property (or) simply IFP if $xy \in I$ implies $xNy \subseteq I$ for $x, y \in N$.

Received March 12, 2010; Accepted April 27, 2010 * Corresponding author

E-mail address: selvavlr@yahoo.com (C. SELVARAJ); chelvissc@yahoo.co.in (L. MADHUCHELVI)

Observe that every completely semiprime ideal of N has the IFP.

Definition 2.6 Let N be a near-ring and (m)Spec(N) the set of all (minimal) 0-prime ideals of N. For $P \in$ Spec(N), we put

$$O(P) = \{a \in N | aN \langle b \rangle = 0 \text{ for some } b \in N \setminus P\},\$$

$$\overline{O}(P) = \{a \in N | a^m \in O(P) \text{ for some positive integer } m\},\$$

$$O_P = \{a \in N | ab = 0 \text{ for some } b \in N \setminus P\},\$$

$$\overline{O}_P = \{a \in N | a^m \in O_P \text{ for some positive integer } m\},\$$

$$N(P) = \{a \in N | aN \langle b \rangle \subseteq \mathcal{P}_0(N) \text{ for some } b \in N \setminus P\},\$$

$$\overline{N}(P) = \{a \in N | a^m \in N(P) \text{ for some positive integer } m\},\$$

$$N_P = \{a \in N | ab \in \mathcal{P}_0(N) \text{ for some } b \in N \setminus P\},\$$

$$\overline{N}_P = \{a \in N | a^m \in N_P \text{ for some } b \in N \setminus P\},\$$

$$\overline{N}_P = \{a \in N | a^m \in N_P \text{ for some } b \in N \setminus P\}.$$

3. Characterization of 2-primal near-rings

In this section, we give some characterization of 2-primal near-ring by using its 0-prime ideals.

Proposition 3.1 For each $P \in \text{Spec}(N)$, O(P) and N(P) are ideals of N.

Proof Let P be a 0-prime ideal of N and let $a_1, a_2 \in O(P)$. Then $a_1N\langle b_1 \rangle = 0$ for some $b_1 \in N \setminus P$ and $a_2N\langle b_2 \rangle = 0$ for some $b_2 \in N \setminus P$. Since $b_1, b_2 \in N \setminus P$ and $N \setminus P$ is an m-system, there exist $b'_1 \in \langle b_1 \rangle$ and $b'_2 \in \langle b_2 \rangle$ such that $b'_1b'_2 \in N \setminus P$. Let $b_3 = b'_1b'_2$. For any $n \in N$ and $x \in \langle b_3 \rangle$, $(a_1 - a_2)nx = 0$ implies $a_1 - a_2 \in O(P)$. Let $x \in O(P)$. Then $xN\langle b \rangle = 0$. Thus for $n, n', n_1 \in N$ and $b' \in \langle b \rangle$, we have $(n(n' + x) - nn')n_1b' = 0$ implies $n(n' + x) - nn' \in O(P)$ and $(xn)n_1b' = 0$ implies $xn \in O(P)$. Thus O(P) is an ideal of N. Similarly, N(P) is an ideal of N.

The following results might be helpful for the criterion for a certain class of rings to be 2primal.

Theorem 3.2 For a near-ring N, the following statements are equivalent:

- (i) N is 2-primal;
- (ii) $\mathcal{P}_0(N)$ is a completely semiprime ideal of N;
- (iii) N(P) is a completely semiprime ideal of N for each $P \in mSpec(N)$;
- (iv) $\overline{N}_P = \overline{N}(P) = N(P)$ for each $P \in m\text{Spec}(N)$;
- (v) $N(P) = N_P$ for each $P \in mSpec(N)$;
- (vi) $N_P \subseteq P$ for some $P \in mSpec(N)$;
- (vii) $N_{P/\mathcal{P}_0(N)} \subseteq P/\mathcal{P}_0(N)$ for each $P \in m \operatorname{Spec}(N)$.

Proof (i) \Rightarrow (ii). Since $\mathcal{P}_0(N) = \mathcal{N}(N)$, for any x in $N, x^2 \in \mathcal{P}_0(N)$ implies x^2 is nilpotent and hence $x \in \mathcal{N}(N) = \mathcal{P}_0(N)$. Therefore, $\mathcal{P}_0(N)$ is a completely semiprime ideal of N.

(ii) \Rightarrow (iii). Let P be a minimal 0-prime ideal of N. Let $x \in N$ be such that $x^2 \in N(P)$. Then

 $x^2 N \langle b \rangle \subseteq \mathcal{P}_0(N)$ for some $b \in N \setminus P$. Since $\mathcal{P}_0(N)$ is a completely semiprime ideal of N, it has the IFP. So $xNxN \langle b \rangle \subseteq \mathcal{P}_0(N)$ which implies $xN \langle b \rangle \subseteq \mathcal{P}_0(N)$. Thus $x \in N(P)$ and hence N(P)is completely semiprime.

(iii) \Rightarrow (i). Let $a \in \mathcal{N}(N)$. Then $a^n = 0$ for some positive integer n. If $a \notin \mathcal{P}_0(N)$, then there exists a minimal 0-prime ideal P of N such that $a \notin P$. Since N(P) is a completely semiprime ideal, $a^n = 0 \in N(P)$ implies $a \in N(P) \subseteq P$, a contradiction. Hence $a \in \mathcal{P}_0(N)$.

(ii) \Rightarrow (iv). Let P be a minimal 0-prime ideal of N and let $a \in \overline{N}_P$. Then $a^n \in N_P$ for some positive integer n. Thus $a^n b \in \mathcal{P}_0(N)$ for some $b \in N \setminus P$. Since $\mathcal{P}_0(N)$ is completely semiprime ideal of N, it has the IFP. By [3, Lemma 2.1], $ab \in \mathcal{P}_0(N)$. Therefore, $aN \langle b \rangle \subseteq \mathcal{P}_0(N)$ for some $b \in N \setminus P$ and so $a \in N(P)$. Thus $\overline{N}_P \subseteq N(P)$. But $N(P) \subseteq N_P \subseteq \overline{N}_P$ and $\overline{N}(P) \subseteq \overline{N}_P$. Therefore, $\overline{N}_P = \overline{N}(P) = N(P)$ for each $P \in m$ Spec(N).

 $(iv) \Rightarrow (v) \Rightarrow (vi)$. These are obvious.

 $(\text{vi}) \Rightarrow (\text{vii})$. Let P be a minimal 0-prime ideal of N. Let $\overline{N} = N/\mathcal{P}_0(N)$ and $\overline{P} = P/\mathcal{P}_0(N)$. Let $\overline{a} = a + \mathcal{P}_0(N) \in N_{\overline{P}}$ for some $a \in N$. Then there exists $\overline{b} \in \overline{N} \setminus \overline{P}$ such that $\overline{ab} \in \mathcal{P}_0(\overline{N}) = \overline{0}$. Thus $ab \in \mathcal{P}_0(N)$ and so $a \in N_P \subseteq P$. Therefore, $\overline{a} \in \overline{P}$ and hence $N_{\overline{P}} \subseteq \overline{P}$.

 $(\text{vii}) \Rightarrow (\text{i})$. Suppose that $\overline{N} = N/\mathcal{P}_0(N)$ is not reduced. Then there exists $\overline{a} \in \overline{N}$ such that $\overline{a}^2 = \overline{0}$ and $\overline{a} \neq \overline{0}$. Thus $a \notin \mathcal{P}_0(N)$ and hence $a \notin P$ for some $P \in m\text{Spec}(N)$. Then $\overline{a} \notin \overline{P}$ and so $\overline{a} \in \overline{N} \setminus \overline{P}$. But since $\overline{a}^2 = \overline{0}$, we obtain $\overline{a} \in N_{\overline{P}} \subseteq \overline{P}$, which is a contradiction. Therefore $\mathcal{P}_0(N) = \mathcal{N}(N)$ and hence N is 2-primal. \Box

Corollary 3.3 For a near-ring N, assume that N is 2-primal. If P = N(P) for each $P \in \text{Spec}(N)$, then P is completely prime ideal of N.

Proof Suppose that N is a 2-primal near-ring. Let $xy \in P = N(P)$. Then there exists $b \in N \setminus P$ such that $(xy)N\langle b \rangle \subseteq \mathcal{P}_0(N)$. Since $\mathcal{P}_0(N)$ has the IFP, we have $(xNy)N\langle b \rangle \subseteq \mathcal{P}_0(N) \subseteq P$ and so $xNy \subseteq P$ since $b \notin P$. Hence $x \in P$ or $y \in P$ since P is a 0-prime ideal of N. Therefore, P is a completely prime ideal of N. \Box

Proposition 3.4 For a near-ring N, we have the following:

(i) $\mathcal{N}(N) \subseteq \bigcap_{P \in \operatorname{Spec}(N)} \overline{O}(P) \subseteq \bigcap_{Q \in m \operatorname{Spec}(N)} \overline{O}(Q);$ (ii) $\mathcal{P}_0(N) \subseteq \bigcap_{P \in \operatorname{Spec}(N)} N(P) = \bigcap_{Q \in m \operatorname{Spec}(N)} N(Q).$

Proof (i) Let $a \in \mathcal{N}(N)$. Then $a^n = 0$ for some positive integer n. Let P be any 0-prime ideal and let $b \in N \setminus P$. Since $a^n = 0$, $a^n N \langle b \rangle = 0$. Thus $a^n \in O(P)$ and hence $a \in \overline{O}(P)$. Therefore, $a \in \bigcap_{P \in \text{Spec}(N)} \overline{O}(P)$. The other inclusion is obvious.

(ii) Let $a \in \mathcal{P}_0(N)$. Let P be any 0-prime ideal of N. Then $aN\langle b \rangle \subseteq \mathcal{P}_0(N)$ for any $b \in N \setminus P$ which implies that $a \in N(P)$ and so $a \in \bigcap_{P \in \text{Spec}(N)} N(P)$. Therefore,

$$\mathcal{P}_{0}(N) \subseteq \bigcap_{P \in \operatorname{Spec}(N)} N(P).$$

But $\bigcap_{P \in \operatorname{Spec}(N)} N(P) \subseteq \bigcap_{Q \in m \operatorname{Spec}(N)} N(Q)$ always. Since $N(Q) \subseteq Q$ for each $Q \in m \operatorname{Spec}(N)$, $\bigcap_{Q \in m \operatorname{Spec}(N)} N(Q) \subseteq \mathcal{P}_0(N)$. \Box

Our next result indicates that our characterization of minimal 0-prime ideals P in terms of N(P) holds.

Theorem 3.5 For a near-ring N, assume that N is 2-primal. Then for each $P \in \text{Spec}(N)$, the following statements are equivalent:

- (i) $P \in mSpec(N);$
- (*ii*) N(P) = P.

Proof (i) \Rightarrow (ii). Let P be a minimal 0-prime ideal of N and let $a \in P$. Suppose $a \notin N(P)$. Let $S = \{a, a^2, a^3, \ldots\}$. If $0 \in S$, then $a^k = 0$ for some positive integer k and hence $a \in \mathcal{N}(N) =$ $\mathcal{P}_0(N)$, which implies that $a \in N(P)$ by Proposition 3.4, a contradiction. So $0 \notin S$. Thus S is a multiplicative system that does not contain 0. Let $L = N \setminus P$, i.e., L is an m-system. Let T be the set of all non zero elements of N of the form $a^{t_0}x_1a^{t_1}x_2\cdots a^{t_{n-1}}x_na^{t_n}$, where $x_i \in L$ and the t'_i s are positive integers with t_0 and t_n allowed to be zero. Clearly, $L \subseteq T$. Let $M = T \cup S$. We show that M is an m-system. Let $x, y \in M$. If $x, y \in S$, then $xy \in S \subseteq M$ and we are done. Let $x \in S$ and $y \in T$, say $x = a^s$ and $y = a^{t_0}y_1a^{t_1}y_2a^{t_2}\cdots y_na^{t_n}$. If $xy \neq 0$, then $xy \in T$. Suppose xy = 0. Since $y_1, y_2 \in L$, there exist $y'_1 \in \langle y_1 \rangle$ and $y'_2 \in \langle y_2 \rangle$ such that $y'_1y'_2 \in L$. Since $y'_1y'_2, y_3 \in L$, there exist $y'_{12} \in \langle y'_1y'_2 \rangle \subseteq \langle \langle y_1 \rangle \langle y_2 \rangle \rangle$ and $y'_3 \in \langle y_3 \rangle$ such that $y'_{12}y'_3 \in L$. Continuing this process, we get $y'_{123...n-2}y'_{n-1}$, $y_n \in L$. Then there exist $y'_{123...n-1} \in U_n$ $\langle y'_{123\dots n-2}y'_{n-1}\rangle \subseteq \langle \cdots \langle \langle \langle y_1 \rangle \langle y_2 \rangle \rangle \langle y_3 \rangle \rangle \cdots \langle y_{n-1} \rangle \rangle$ and $y'_n \in \langle y_n \rangle$ such that $w = y'_{123\dots n-1}y'_n \in L$. Since xy = 0, $xy \in \mathcal{P}_0(N)$. Thus $a^s a^{t_0} y_1 a^{t_1} y_2 \cdots y_n a^{t_n} \in \mathcal{P}_0(N)$. Since $\mathcal{P}_0(N) = \mathcal{N}(N)$, $\mathcal{P}_0(N)$ is completely semiprime ideal of N and hence $y_1y_2\cdots y_na^{s+t_0+t_1+\cdots+t_n} \in \mathcal{P}_0(N)$. Choose m = $s+t_0+t_1+\cdots+t_n$. Then $y_1y_2\cdots y_na^m \in \mathcal{P}_0(N)$. Since $\mathcal{P}_0(N)$ has the IFP, $\langle y_1 \rangle \langle y_2 \rangle \cdots \langle y_n \rangle \langle a^m \rangle \subseteq$ $\mathcal{P}_0(N)$. Continuing this process, we obtain $\langle \cdots \langle \langle \langle y_1 \rangle \langle y_2 \rangle \rangle \langle y_3 \rangle \rangle \cdots \langle y_{n-1} \rangle \rangle \langle y_n \rangle \langle a^m \rangle \subseteq \mathcal{P}_0(N)$ and so $y'_{123...n-1}y'_na^m \in \mathcal{P}_0(N)$. Hence $wa^m \in \mathcal{P}_0(N)$, where $w = y'_{123...n-1}y'_n$. Since $\mathcal{P}_0(N)$ is a completely semiprime ideal, $(aw)^m \in \mathcal{P}_0(N)$ and hence $aw \in \mathcal{P}_0(N)$. Thus $a \in N_P = N(P)$, which is a contradiction. Therefore, if $x \in S$, $y \in T$, then $xy \neq 0$ and so $xy \in T$.

Similarly, one can show that if $x, y \in T$ then $xy \neq 0$ and $xy \in T$. This shows that M is an m-system that is disjoint from (0). Hence, by [5, Proposition 2.81] there is a 0-prime ideal Q that is disjoint from M such that $a \notin Q$ and $Q \subseteq P$. Since P is a minimal 0-prime ideal, P = Q. Therefore, $a \notin P$, which is a contradiction. Consequently $a \in N(P)$.

(ii) \Rightarrow (i). If $Q \subseteq P$ for $Q \in m$ Spec(N), then $N(P) \subseteq N(Q) \subseteq Q \subseteq P = N(P)$. Therefore, $P \in m$ Spec(N). \Box

Theorem 3.6 For a near-ring N, the following statements are equivalent:

- (i) N is 2-primal;
- (ii) $\overline{O}_P \subseteq P$ for each $P \in mSpec(N)$;
- (iii) $\mathcal{N}(N) = \bigcap_{P \in m \operatorname{Spec}(N)} \overline{O}_P = \mathcal{P}_0(N).$

Proof (i) \Rightarrow (ii). Note that $\overline{O}_P \subseteq \overline{N}_P$ for each $P \in m\text{Spec}(N)$. By Theorem 3.2, we have $\overline{N}_P = N(P) \subseteq P$ and therefore, $\overline{O}_P \subseteq P$ for each $P \in m\text{Spec}(N)$.

(ii) \Rightarrow (iii). Since $\overline{O}_P \subseteq P$ for each $P \in m$ Spec(N), $\bigcap_{P \in m$ Spec $(N)} \overline{O}_P \subseteq \mathcal{P}_0(N)$. Let $a \in \mathcal{N}(N)$. Then $a^m = 0 \in O(P)$ for some integer m and any $P \in m$ Spec(N). Hence $a \in \bigcap_{P \in m$ Spec $(N)} \overline{O}_P$. Thus $\mathcal{N}(N) \subseteq \bigcap_{P \in m$ Spec $(N)} \overline{O}_P \subseteq \mathcal{P}_0(N) \subseteq \mathcal{N}(N)$.

(iii) \Rightarrow (i). It is obvious. \Box

Proposition 3.7 Assume that O(P) is a 0-prime ideal of near-ring N for each $P \in mSpec(N)$. Then O(P) has the IFP for each $P \in mSpec(N)$ if and only if N is a 2-primal near-ring.

Proof Assume that N is a 2-primal near-ring. Let P be a minimal 0-prime ideal of N such that O(P) is a 0-prime ideal of N. Let $xy \in O(P)$ for $x, y \in N$. This implies that $xyN\langle z \rangle = 0$ for $z \in N \setminus P$. Then $xyN\langle z \rangle \subseteq P$. Since $z \notin P$ and P is 0-prime, $xy \in P$. Therefore, $O(P) \subseteq P$. Since P is a minimal 0-prime ideal, O(P) = P. Since N is 2-primal and $P \in mSpec(N)$, N(P) = P by Theorem 3.5. Therefore, P is completely prime by Corollary 3.3. Since P = O(P), O(P) is completely prime. In particular, O(P) has the IFP.

Conversely, suppose that O(P) has the IFP for each $P \in m\operatorname{Spec}(N)$. Let $x \in \mathcal{N}(N)$. This implies that $x^n = 0$ for some positive integer n. So that $x^n \in O(P)$. If $x \notin \mathcal{P}_0(N)$, then there exists a minimal 0-prime ideal P of N such that $x \notin P$. Since P is a 0-prime ideal, there exist $r_1, r_2, \ldots, r_{n-1} \in N$ such that $xr_1x \cdots xr_{n-1}x \notin P$. But since O(P) has the IFP, $xr_1x \cdots xr_{n-1}x \in O(P)$. Since $O(P) \subseteq P$, $xr_1x \cdots xr_{n-1}x \in P$, a contradiction. Thus $x \in \mathcal{P}_0(N)$. Therefore, $\mathcal{N}(N) \subseteq \mathcal{P}_0(N)$. Always $\mathcal{P}_0(N) \subseteq \mathcal{N}(N)$. Hence $\mathcal{N}(N) = \mathcal{P}_0(N)$. \Box

Proposition 3.8 If O(P) has the IFP for each $P \in mSpec(N)$, then for every $P \in mSpec(N)$, O(P) is a 0-prime ideal if and only if O(P) is a completely prime ideal of N.

Proof Suppose that O(P) is a 0-prime ideal for every $P \in m \operatorname{Spec}(N)$. Let $xy \in O(P)$ for $x, y \in N$. If $x \in O(P)$, we have done. Suppose $x \notin O(P)$. Since $xy \in O(P)$ and O(P) has the IFP, $xNy \subseteq O(P)$. This implies that $xNyN\langle z \rangle = 0$ for $z \in N \setminus P$. This implies that $xNyN\langle z \rangle \subseteq P$. Since P is 0-prime, $xNy \subseteq P$ and therefore $x \in P$ or $y \in P$. By Proposition 3.7, P = O(P). Since $x \notin O(P)$, $x \notin P$. Therefore $y \in P = O(P)$. Hence O(P) is completely prime. The Converse is obvious. \Box

Proposition 3.9 Let N be a near-ring with unity. Let O(P) be a 0-prime ideal of N for each $P \in mSpec(N)$. Then the following are equivalent:

- (i) N is a 2-primal near-ring;
- (ii) O(P) has the IFP for each $P \in mSpec(N)$;
- (iii) O(P) is a completely semiprime ideal for each $P \in mSpec(N)$;
- (iv) O(P) is a symmetric ideal for each $P \in mSpec(N)$;
- (v) $xy \in O(P)$ implies $yNx \subseteq O(P)$ for $x, y \in N$ and for each $P \in mSpec(N)$.

Proof (i) \Rightarrow (ii). It follows from Proposition 3.7.

(ii) \Rightarrow (iii). By Proposition 3.8, O(P) is a completely prime ideal and hence O(P) is completely semiprime.

(iii) \Rightarrow (iv). Suppose that O(P) is a completely semiprime ideal for each $P \in m$ Spec(N). Therefore, it has the IFP. Let $a, b, c \in N$ be such that $abc \in O(P)$. We shall prove that $acb \in O(P)$. Since $abc \in O(P)$, there exists $s \in N \setminus P$ such that $abcN\langle s \rangle = 0$. So that $abcN\langle s \rangle \subseteq O(P)$. Since O(P) has the IFP, $acbcN\langle s \rangle \subseteq O(P)$. Suppose that $cN\langle s \rangle \nsubseteq O(P)$. If $acb \notin O(P)$, since O(P) is 0-prime, there exists some $n \in N$ such that $acbncN\langle s \rangle \oiint O(P)$, which contradicts the IFP of O(P). Therefore, $acb \in O(P)$.

Suppose that $cN\langle s \rangle \subseteq O(P)$. Since O(P) has the IFP, $cbN\langle s \rangle \subseteq O(P)$. Since O(P) is 0-prime and $s \notin P = O(P)$, $cb \in O(P)$. Therefore, $acb \in O(P)$. Hence O(P) is a symmetric ideal in N.

(iv) \Rightarrow (v). Suppose that $xy \in O(P)$ for $P \in m$ Spec(N). Since O(P) is symmetric and N has unity, $yx \in O(P)$. Since O(P) has the IFP, $yNx \subseteq O(P)$.

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$. Let $x \in \mathcal{N}(N)$. Then $x^r = 0$ for some r. So that $x^r \in O(P)$ for $P \in m$ Spec(N). Suppose that $x \notin \mathcal{P}_0(N)$. Since $\mathcal{P}_0(N) = \bigcap_{P \in \text{Spec}(N)} P$, $x \notin P$. Since P is a 0-prime ideal, there exist $n_1, n_2, \ldots, n_{r-1} \in N$ such that $xn_1 x \cdots xn_{r-1} x \notin P$. Since $xy \in O(P)$, by hypothesis $yNx \subseteq O(P)$. Therefore, $xn_1 x \cdots xn_{r-1} x \in O(P) \subseteq P$, a contradiction. Thus $x \in \mathcal{P}_0(N)$. Hence $\mathcal{N}(N) \subseteq \mathcal{P}_0(N)$. Always $\mathcal{P}_0(N) \subseteq \mathcal{N}(N)$ and consequently N is a 2-primal near-ring. \Box

Theorem 3.10 Let O(P) be a 0-prime ideal for each $P \in mSpec(N)$. Then the following are equivalent;

- (i) N is a 2-primal near-ring;
- (ii) O(P) has the IFP;
- (iii) Every minimal 0-prime ideal of N is a completely prime ideal of N.

Proof (i) \Rightarrow (ii). It follows from Proposition 3.7.

(ii) \Rightarrow (iii). Let P be a minimal 0-prime ideal of N. Let $a, b \in N$ be such that $ab \in P$. If $b \in P$, we have done. Suppose that $b \notin P$. Since O(P) = P, $ab \in O(P)$. Since O(P) has the IFP, $aNb \subseteq O(P) = P$. Since P is 0-prime and $b \notin P$, $a \in P$. Hence, P is completely prime ideal.

(iii) \Rightarrow (i). Let $x \in \mathcal{N}(N)$. Then $x^r = 0$ for some r. So that $x^r \in P$, where $P \in m$ Spec(N). Since every minimal 0-prime ideal is completely prime, $x \in P$ for every $P \in m$ Spec(N). Since $\mathcal{P}_0(N) = \bigcap_{P \in m$ Spec $(N)} P$, $x \in \mathcal{P}_0(N)$. Thus $\mathcal{N}(N) \subseteq \mathcal{P}_0(N)$. \Box

Theorem 3.11 Let O(P) be a 0-prime ideal of N for every $P \in mSpec(N)$. Then N is a 2-primal near-ring if and only if $P = \overline{O}(P)$ for every minimal 0-prime ideal P of N.

Proof Suppose that N is a 2-primal near-ring. Then O(P) is a completely prime ideal of N by Proposition 3.7. Let $a \in \overline{O}(P)$. Then $a^m \in O(P)$. Since O(P) is completely prime, $a \in O(P)$. Therefore, $\overline{O}(P) \subseteq O(P)$. Clearly, $O(P) \subseteq \overline{O}(P)$. Thus $O(P) = \overline{O}(P)$. Since O(P) is a 0-prime ideal of N, P = O(P). Hence $P = \overline{O}(P)$.

Conversely, assume that $P = \overline{O}(P)$ for every minimal 0-prime ideal P of N. Let $x \in \mathcal{N}(N)$. This implies that $x^n = 0$ for some n. So $x^n \in P$ for every $P \in m\text{Spec}(N)$. Since $P = \overline{O}(P) = O(P)$, $x^n \in O(P)$. Since O(P) is completely prime, $x \in O(P) = \overline{O}(P) = P$. This implies that $x \in \mathcal{P}_0(N)$. Thus $\mathcal{N}(N) \subseteq \mathcal{P}_0(N)$ and consequently N is a 2-primal near-ring. \Box

In [4], Kim and Kwak asked one question that "Is a ring R 2-primal if $O_P \subseteq P$ for each $P \in m$ Spec(R)?". Here we prove the following theorem for near-rings.

Theorem 3.12 If O_P has the IFP for each $P \in mSpec(N)$, then $O_P \subseteq P$ for each $P \in mSpec(N)$ if and only if N is a 2-primal near-ring.

Proof Let $x \in \mathcal{N}(N)$. Then $x^n = 0$ for some n. So that $x^n \in O(P) \subseteq O_P$. Suppose $x \notin \mathcal{P}_0(N)$. Since $\mathcal{P}_0(N) = \bigcap_{P \in m \operatorname{Spec}(N)} P$, there exists $P \in m \operatorname{Spec}(N)$ such that $x \notin P$. Since P is a 0-prime ideal, there exist $r_1, r_2, \ldots, r_{n-1} \in N$ such that $xr_1x \cdots xr_{n-1}x \notin P$. But since O_P has the IFP, $xr_1x \cdots xr_{n-1}x \in O_P$. Again since $O_P \subseteq P$, $xr_1x \cdots xr_{n-1}x \in P$, a contradiction. Thus $x \in \mathcal{P}_0(N)$. Hence $\mathcal{N}(N) \subseteq \mathcal{P}_0(N)$.

Conversely, assume that N is a 2-primal near-ring. By Theorem 3.6, $\overline{O}_P \subseteq P$ for each $P \in m\text{Spec}(N)$. Since $O_P \subseteq \overline{O}_P$, $O_P \subseteq P$ for each $P \in m\text{Spec}(N)$.

References

- G. F. BIRKENMEIER, H. E. HEATHERLY, E. K. LEE. Prime ideals and prime radicals in near-rings. Monatsh. Math., 1994, 117(3-4): 179–197.
- [2] G. F. BIRKENMEIER, H. E. HEATHERLY, E. K. LEE. Completely Prime Ideals and Associated Radicals. World Sci. Publ., River Edge, NJ, 1993.
- [3] N. J. GROENEWALD. The completely prime radical in near-rings. Acta Math. Hungar., 1988, 51(3-4): 301–305.
- [4] N. K. KIM, T. K. KWAK. Minimal prime ideals in 2-primal rings. Math. Japon., 1999, 50(3): 415–420.
- [5] G. PILZ. Near-Rings. North-Holland, Amsterdam, 1983.