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Abstract A left GC-lpp semigroup S is called split if the natural homomorphism γ♭ of S onto

S/γ induced by γ is split. It is proved that a left GC-lpp semigroup is split if and only if it has a

left adequate transversal. In particular, a construction theorem for split left GC-lpp semigroups

is established.
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1. Introduction

The relations L∗ and R∗ are generalizations of the usual Green’s relations L and R, respec-

tively; elements a and b of a semigroup S are related by L∗ (resp., R∗) if and only if they are

related by L (resp., R) in some oversemigroup of S. S is called left abundant if each R∗-class

contains at least one idempotent. Right abundant semigroups can be dually defined. Follow-

ing [4], a semigroup is called abundant if it is both left abundant and right abundant. A left

abundant semigroup S is called left adequate [3] if E(S) (the set of idempotents of S) forms a

semilattice. Right adequate semigroup is dually defined. A semigroup is called adequate if it

is both left adequate and right adequate. It is not difficult to see that each R∗-class of a left

adequate semigroup contains exactly one idempotent. For a left adequate semigroup S, we shall

use a† to denote the idempotent in the R∗-class of S containing a. Moreover, a left adequate

semigroup S is said to be left ample, also known as left type A, if for all a ∈ S and e ∈ E(S),

ae = (ae)†a. For (left, right) adequate semigroups, one can refer to [3].

As an application of left ample semigroups, Guo-Guo-Shum [10] introduced left GC-lpp

semigroups. In precise, a left GC-lpp semigroup is defined as a left abundant semigroup in

which

(1) E(S) is a left regular band (that is, a band satisfying the identity xy = xyx); and

(2) For all a ∈ S and e ∈ E(S), ae = (ae)†a,

where a† is the idempotent in the R∗-class of S containing a. Indeed, left GC-lpp semigroups
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are common generalizations of left ample semigroups and R-unipotent semigroups. In [10], the

authors established the construction of left GC-lpp semigroups. After then, Guo-Shum [14]

considered some special cases of left GC-lpp semigroups. In [5], the second author investigated

proper abundant left GC-lpp semigroups, called abundant left C-lpp proper semigroups. Guo-

Ni-Shum [11] studied left GC-lpp monoids which are F-rpp and obtained the construction of

such left GC-lpp semigroups. Recently, Guo-Shum [12] gave a structure theorem for proper left

GC-lpp semigroups.

By an orthodox semigroup, we mean a regular semigroup whose set of idempotents forms a

band. R-unipotent semigroups are just orthodox semigroups each of whose R-classes contains

exactly one idempotent. As the analogue of orthodox semigroups in the range of abundant

semigroups, El-Qallali and Fountain [2] defined quasi-adequate semigroups. The so-called quasi-

adequate semigroups are abundant semigroups in which the set of idempotents constitutes a

band. For quasi-adequate semigroups, see [6–9] and others.

Recall that an R∗-homomorphism of a semigroup S into another T is a homomorphism φ

preserving the R∗-classes, that is, for all a, b ∈ S, if aR∗b, then aφ R∗ bφ. It is worth to mention

that not all homomorphisms on a semigroup are R∗-homomorphisms but any homomorphism

on a regular semigroup is R∗-homomorphic. A congruence ρ on S is called R∗-homomorphic

if the natural homomorphism ρ♮ of S onto S/ρ induced by ρ is R∗-homomorphic. An R∗-

homomorphism of S onto T is said to be split if there exists an R∗-homomorphism ψ of T into

S such that ψφ = idT , where idT is the identity mapping on T . An orthodox semigroup is called

split if the homomorphism induced by the smallest inverse semigroup congruence is split. In

[16], McAlister and Blyth researched split orthodox semigroups. Analogously, we can define split

quasi-adequate semigroups. El-Qallali [1] and Guo-Peng [13] investigated split quasi-adequate

semigroups.

Left GC-lpp semigroups can be thought as some kind of orthodox semigroups. Also, any left

GC-lpp semigroup has the smallest left ample semigroup congruence. Now, natural questions

arise:

(1) Can we define split left GC-lpp semigroups?

(2) What can we say about this kind of semigroups?

The aim of this paper is to answer the above questions.

Throughout this paper, we use notations and terminology in Fountain [4] and the book of

Howie [15]. For bands, one can refer to the book of Petrich [17]. Here we recall some known

results used in the sequel. To begin with, we provide some results on L∗ and the dual for the

relation R∗.

Lemma 1.1 ([4]) Let S be a semigroup and a, b ∈ S. Then the following statements are

equivalent:

(1) aL∗b.

(2) For all x, y ∈ S1, ax = ay if and only if bx = by.

Lemma 1.2 ([4]) Let S be a semigroup and e2 = e, a ∈ S. Then the following statements are
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equivalent:

(1) aL∗e;

(2) ae = a and for all x, y ∈ S1, ax = ay implies that ex = ey.

It is well known that R∗ is a left congruence while L∗ is a right congruence. In general,

R ⊆ R∗ and L ⊆ L∗. But when a, b are regular elements of S, aR∗ [L∗] b if and only if aR [L] b.

For the sake of convenience, we denote by E(S) the set of idempotents of S and by Reg(S) the

set of regular elements of S. We use a∗ [resp., a†] to denote the typical idempotents related to a

by L∗ [resp., R∗]. And, Ka stands for the K-class of S containing a if K is an equivalence on S.

A band B is called a left regular band [17] if for all x, y ∈ B, xy = xyx. The band B is

called left normal if it satisfies the identity: xyz = xzy. It is not difficult to show that a left

normal band is a left regular band. For a left abundant semigroup T whose set of idempotents

constitutes a left regular band, each R∗-class of S contains exactly one idempotent. In fact, if

e, f ∈ E(S) such that eR∗aR∗f , then eRf , and f = ef = efe = ee = e, as required. This fact

will be repeatedly used.

The following lemma is due to [11].

Lemma 1.3 Let S be a left GC-lpp semigroup.

(1) For all a, b ∈ S, (ab†)† = (ab)† = a†(ab)†.

(2) The relation γ = {(a, b) ∈ S × S : a = eb, e ∈ E(b†)} is the smallest left ample

semigroup congruence by which the natural homomorphism induced is R∗-homomorphic, where

E(b†) = {f ∈ E(S) : fDE(S)b†}.

Let U be a left abundant subsemigroup of a left abundant semigroup of S. Then we call U

a right *-subsemigroup of S if for all a ∈ U, there exists e ∈ E(U) such that aR∗(S)e. Now let

S◦ be a left adequate right *-subsemigroup of S and E◦ be the idempotent semilattice of S◦.

Then S◦ is called a left adequate transversal for S if for any element x ∈ S, there exist a unique

element x◦ ∈ S◦ and an idempotent e ∈ E(S) such that x = ex◦ where eL∗(x◦)† for (x◦)† ∈ E◦.

In this case, e can be uniquely determined by x, and eR∗x. We shall denote by ex the unique

idempotent e.

Lemma 1.4 Let S be a left abundant semigroup. If a, b ∈ S and b = ea with e = ea†e, then

eR∗b.

Proof Suppose that b = ea with e = ea†e. Then eb = b and for all x, y ∈ S1, xb = yb which

implies that xea† = yea†, so xea†e = yea†e and xe = ye. Thus eR∗b.

Let B be a band and assume that B = ∪α∈Y Bα is the semilattice decomposition of B into

rectangular bands Bα with α ∈ Y . A subset E = {xα : α ∈ Y } of B is called a skeleton if

xα ∈ Bα for any α ∈ Y and xαxβ = xαβ = xβxα for all α, β ∈ Y . It is easy to see that any

skeleton of B is isomorphic to the structure semilattice Y of B.

Lemma 1.5 ([16]) A band is split if and only if it has a skeleton.
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2. Definition and characterizations

Definition 2.1 A left GC-lpp semigroup S is called split if the natural homomorphism γ♮ of S

onto S/γ induced by γ is split.

Let S be a left GC-lpp semigroup. By Guo-Guo-Shum [10], the smallest left ample semigroup

congruence γ is idempotent-pure and R∗-homomorphic, and so the restriction of γ to E(S) is

just DE(S). We now assume that the natural homomorphism γ♭ induced by γ is split and that the

R∗-homomorphism ϕ is the one such that ϕγ♭ = idS/γ . Then the natural homomorphism from

E(S) onto E(S)/DE(S) induced by DE(S) is split. In fact, for all e ∈ E(S), we have eγ ⊆ E(S)

and eγ = eγ|E(S), so eγ ∈ E(S/γ). Suppose that eγϕ = a, then aγe and so (eγ)ϕ|E(S)/γγ|
♭
E(S) =

aγ|♭E(S) = aγ|E(S) = eγ|E(S) = eγ. This shows that ϕ|E(S)/γγ|
♭
E(S) = idE(S)/γ . Thus γ|♭E(S) is

split. By Lemma 1.5, we deduce the following corollary.

Corollary 2.2 If S is a split left GC-lpp semigroup, then E(S) has a skeleton.

Let S be a left GC-lpp semigroup with the left regular band B of idempotents. If E is a

skeleton of B, then we define the span of E by

span(E) = {a ∈ S| (∃e ∈ E) eR∗a} = {a ∈ S| a† ∈ E}.

Lemma 2.3 Let S be a left GC-lpp semigroup with a left regular band B of idempotents. If E

is a skeleton of B, then span(E) meets every γ-class of S exactly once.

Proof Pick a ∈ S. Then there exists e1 ∈ B such that e1R
∗a. On the other hand, since E is a

skeleton of B, there exists uniquely e ∈ E such that e ∈ E(e1). Since B is a left regular band,

we know that E(e1) is a left zero band. Thereby eLe1. Suppose that ã = ea. Then ãγa and by

Lemma 1.4, ãR∗e. Consequently, ã ∈ span(E) and hence span(E) meets every γ-class at least

once.

In order to show that span(E) meets every γ-class precisely once, it suffices to verify that if

a ∈ S and b ∈ span(E) with aγb, then ã = b. Suppose that there exists uniquely u ∈ E such that

uR∗b. Then by Lemma 1.4, e ∈ E(u) and whence e = u because e, u ∈ E and E is a skeleton

of B. Thus ãR∗e = uR∗b so that (ã, b) ∈ γ ∩ R∗. Since γ ∩ R∗ = idS , ã = b. Consequently,

span(E) meets every γ-class exactly once.

Lemma 2.4 Let S be a split left GC-lpp semigroup with a left regular band B of idempotents

and ϕ be an R∗-homomorphism of S/γ into S such that ϕγ♭ = idS/γ . Denote E = Bγ♭ϕ

(Certainly, E is a skeleton of B). Then span(E) is a left adequate right *-subsemigroup of S.

Proof Let S◦ = (S/γ)ϕ. Then for each element s ∈ S◦, there exists a ∈ S such that (aγ)ϕ = s,

so aγ = sγ. Since S is a left GC-lpp semigroup and ϕ is an R∗-homomorphism, there exists

e ∈ E(S) such that sR∗e, hence aγ = sγR∗eγ and (aγ)ϕR∗(eγ)ϕ, i.e. sR∗(eγ)ϕ where (eγ)ϕ ∈

E(S◦), so S◦ is a right *-subsemigroup and furthermore it is a left adequate right *-subsemigroup

S◦ of S having E as a semilattice of idempotents.

Since ϕγ♭ = idS/γ , we have γ♭ϕγ♭ = γ♭ and so [(aγ)ϕ]γ♭ = aγ for all a ∈ S. This shows that
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S◦ meets each γ-class of S. On the other hand, assume that a, b ∈ S◦ and aγ = bγ. Take xϕ = a

and yϕ = b with x, y ∈ S/γ. Then

x = xϕγ♭ = aγ = bγ = yϕγ♭ = y and a = xϕ = yϕ = b.

This shows that S◦ meets a γ-class of S at most one. Consequently, S◦ meets each γ-class of S

exactly once.

It remains to show that S◦ = span(E). Given a ∈ S◦. Then, by using the arguments of the

above proof, S◦ is a right *-subsemigroup of S, and so eR∗a for some idempotents e ∈ E(S◦).

Since E is a skeleton of B, a ∈ span(E) and whence, S◦ ⊆ span(E). For any u ∈ span(E),

by the above proof again, there exists v ∈ S◦ such that uγv. Because S◦ ⊆ span(E), we

have v ⊆ span(E). But since span(E) meets every γ-class exactly once, we have u = v and

consequently u ∈ S◦. This leads to span(E) ⊆ S◦. We have now proved that span(E) = S◦, as

required.

Theorem 2.5 If S is a left GC-lpp semigroup, then S is split if and only if S has a left adequate

transversal.

Proof Suppose that S is split and that ϕ is an R∗-homomorphism of S/γ into S such that

ϕγ♭ = idS/γ . Then E◦ = E(S)γ♭ϕ is a skeleton of E(S). By Lemma 2.4, span(E◦) is a left

adequate right *-subsemigroup of S. Since span(E◦) meets every γ-class exactly once, for any

a ∈ S, there exists a unique a◦ ∈ span(E◦) such that aγa◦. By the definition of γ, a = ea◦

for some e ∈ E((a◦)†) with (a◦)† ∈ E◦. Obviously, e(a◦)†L(a◦)†. This shows that S has a left

adequate transversal span(E◦).

Conversely, assume that S has a left adequate transversal S◦. Denote by E◦ the set of

idempotents of S◦. Then for any a ∈ S, there are a unique element a◦ ∈ S◦ and an idempotent

e ∈ E(S) such that a = ea◦ with eL∗(a◦)† for (a◦)† ∈ E◦. Clearly, aγa◦. For any b ∈ S, we

suppose that b◦ ∈ S◦ has the similar property as a◦. It follows that if a◦γb◦ and a◦ = mb◦ with

m ∈ E((b◦)†). Furthermore, a◦ = mb◦ = m(b◦)†b◦. We can also easily show that m(b◦)†L(b◦)†.

Observe that S◦ is a left adequate transversal of S. Hence a◦ = b◦. On the other hand, S◦ meets

every γ-class of S exactly once. This shows that

ϕ : S/γ → S; aγ 7→ a◦

is well defined.

Let a, e2 = e ∈ S and eR∗a. Since S◦ is a left adequate transversal of S, a = eaa
◦ with ea

and a◦ having the same meanings as in Section 1, and whence eaL(a◦)†, eaR
∗a. Since S is a

left GC-lpp semigroup, ea = e and (ea)◦ = e◦. Consider eaL(a◦)†, then (ea)◦ = (a◦)†, hence

(ea)◦R∗a◦. So e◦R∗a◦. Thereby, these imply that for any a, b ∈ S, if aR∗b, then a◦R∗b◦.

We next prove that for all aγ, bγ ∈ S/γ, if aγR∗bγ, then a◦R∗b◦. Let aγR∗bγ. Then there

exist e, f ∈ E(S) such that eR∗a and fR∗b. By the above proof, e◦R∗a◦. By Lemma 1.3 (2),

eγR∗aγ and fγR∗bγ. It follows that eγR∗fγ. But since S/γ is left ample semigroup, eγ = fγ.

Hence, e◦ = f◦ because S◦ meets every γ-class exactly once. Thus, we have proved that a◦R∗b◦.
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Since S◦ is a left adequate transversal of S, ϕ is a bijection. By the above proof, ϕ is an

R∗-homomorphism if ϕ is a homomorphism. Also, we can easily see that ϕγ♭ = idS/γ . Now, to

show that γ♭ is split, we need only to prove that ϕ is a homomorphism. For this, we need only

to show that (ab)◦ = a◦b◦ for all a, b ∈ S.

In fact, since aγa◦ and bγb◦, abγa◦b◦. Also, we have abγ(ab)◦. Thus S◦∩γab = {a◦b◦, (ab)◦},

where γab is the γ-class of S containing ab. But since S◦ meets every γ-class exactly once, we

have a◦b◦ = (ab)◦. Thus the proof is completed. 2

It is a natural question whether the converse of Corollary 2.2 is true. We cannot answer this

question. For left GC-lpp semigroups with left normal bands of idempotents, we have

Theorem 2.6 If S is a left GC-lpp semigroup with a left normal band B of idempotents, then

S is split if and only if B is split.

Proof We only prove the sufficiency because the necessity is trivial. For this purpose, we assume

that B is split and E is a skeleton of B. Then, by the proof of the necessary part of Theorem 2.5,

span(E) is a left adequate transversal of S if span(E) is a left adequate right *-subsemigroup of

S. By the definition of the span of E, it can be easily seen that span(E) is a left adequate right

*-subsemigroup of S if span(E) is a subsemigroup of S.

We now proceed to show that span(E) is a subsemigroup of S. We only need to prove that

ab ∈ span(E) for all a, b ∈ span(E). Since a, b ∈ span(E), we have a†, b† ∈ E. Observe that

a†(ab)† = (ab)† since S is a left GC-lpp semigroup. Since E is a skeleton of S, we deduce that

k ∈ E such that kDB(ab)†. This shows that (ab)†k(ab)† = (ab)† and k(ab)†k = k. Hence

(ab)† = a†(ab)†a† = a†(ab)†k(ab)†a† = a†k(ab)†a† = a†(k(ab)†ka†) = a†ka† = a†k ∈ E,

since B is a left normal band. Therefore ab ∈ span(E). Thus, span(E) is indeed a subsemigroup

of S. 2

3. A construction theorem

Consider

Y a semilattice;

T a left type A semigroup with semilattice Y of idempotents; and

L a left regular band having Y as a skeleton.

Moreover, assume that L = ∪α∈Y Lα is the semilattice decomposition of L into left zero bands

Lα with α ∈ Y . Denote by End(L) the semigroup of endomorphisms (on the left) on L. Now

define

φ : T → End(L); t 7→ φt = φt.

Then, we call the above quadruple (Y, T, L;φ) a GC-system if the following conditions are satis-

fied:

(GC1) φ is a semigroup homomorphism.

(GC2) For all a ∈ T and x ∈ Lα, we have φax ∈ L(aα)† .
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Given a GC − system(Y, T, L;φ), and put

GC = GC(Y, T, L;φ) = {(e, a) ∈ L× T | a ∈ T.e ∈ La†}.

Define a multiplication on GC by the rule that

(e, a) ◦ (g, b) = (e(φag), ab).

Since R∗ is a left congruence on T , abR∗ab† and so (ab)† = (ab†)† as T is a left ample semigroup.

By (GC2), it follows that φag ∈ L(ab)† . On the other hand, since a†(ab)† = (ab)†, e(φag) ∈

La†L(ab)† ⊆ La†(ab)† = L(ab)† . This shows that ◦ is well defined.

Lemma 4.1 If (Y, T, L;φ) is a GC-system, then GC(Y, T, L;φ) is a semigroup with respect to

the above operation ◦.

Proof If (e, a), (f, b), (g, c) ∈ GC, then

(e, a) ◦ [(f, b) ◦ (g, c)] = (e, a) ◦ (fφb(g), bc) = (eφa(fφb(g)), abc)

= (eφa(f)φab(g), abc) = (eφa(f), ab) ◦ (g, c)

= [(e, a) ◦ (f, b)] ◦ (g, c)

and (GC, ◦) satisfies the associative law. Thus (GC, ◦) is a semigroup. 2

Lemma 4.2 Let (Y, T, L;φ) be a GC-system. Then the following statements hold for GC =

GC(Y, T, L;φ):

(1) (e, a) ∈ E(G) if and only if a ∈ E(T ). Moreover, E(G) is a left regular band.

(2) (e, a)R∗(f, b) if and only if e = f and aR∗b.

(3) (GC, ◦) is a left GC-lpp semigroup.

Proof (1) If (e, a) ∈ E(GC), then (e(φae), a
2) = (e, a) and so a2 = a. Conversely, if a ∈ Y ,

then by (GC2), e, φae ∈ La, and e(φae) = e since La is a left zero band. This shows that

(e, a)2 = (e(φae), a
2) = (e, a).

If (e, a), (f, b) ∈ E(GC), then a, b ∈ E(T ) and

(e, a)(f, b)(e, a) = (eφa(f), ab)(e, a) = (e(φaf)(φabe), aba).

Since f ∈ Lb, we have φaf ∈ L(ab)† = Lab, and so φabe ∈ L(aba)† = Lab, thereby (φaf)(φabe) =

φaf . Thus (e, a)(f, b)(e, a) = (eφaf, ab) = (e, a)(f, b), and whence E(GC) is a left regular band.

(2) We first prove that (e, a)R∗(e, a†). We can easily see that (e, a†)(e, a) = (e(φa†e), a†a) =

(e, a). If (g, c), (h, d) ∈ (GC)1 such that (g, c)(e, a) = (h, d)(e, a), then (gφc(e), ca) = (hφd(e), da).

By comparing components, gφc(e) = hφd(e) and ca = da. The second equality derives that

ca† = da†. Thus (gφc(e), ca
†) = (hφd(e), da

†), that is, (g, c)(e, a†) = (h, d)(e, a†). Therefore

(e, a)R∗(e, a†). Moreover,

(e, a)R∗(f, b) ⇔ (e, a†)R(f, b†)

⇔ (e, a†)(f, b†) = (f, b†) and (f, b†)(e, a†) = (e, a†)

⇔ e(φa†f) = f, f(φb†e) = e, a†b† = b† and b†a† = a†
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⇔ a† = b† and e = f

⇔ aR∗b and e = f.

(3) By (1) and (2), we only need to prove that (e, a)(f, b†) = ((e, a)(f, b†))†(e, a) for all

(f, b†) ∈ E(G). In fact,

((e, a)(f, b†))†(e, a) = (e(φaf), ab†)†(e, a) = (e(φaf), (ab†)†)(e, a)

= (e(φaf)φ(ab)†(e), (ab
†)†a).

Since φa(f), φ(ab)†(e) ∈ L(ab)† and T is left ample, (φaf)(φ(ab)†e) = φaf and (ab†)†a = ab†. So

((e, a)(f, b†))†(e, a) = (eφa(f), ab†) = (e, a)(f, b†).

Thus GC is a left GC-lpp semigroup. 2

Theorem 4.3 If (Y, T, L;φ) is a GC-system, then GC◦ = {(a†, a)| a ∈ T } is a left adequate

transversal of GC(Y, T, L;φ). Moreover, GC is split.

Proof It is easy to check that the mapping

ψ : GC◦ → T ; (a†, a) 7→ a

is a semigroup isomorphism. Hence GC◦ is a left adequate semigroup. On the other hand, by

Lemma 4.2, (a†, a†)R∗(a†, a) and so GC◦ is a right *-subsemigroup of GC. Thus GC◦ is a left

adequate *-subsemigroup of GC.

Now let (e, a) ∈ GC. It is not difficult to find that (e, a) = (e, a†)(a†, a). Since (e, a†)(a†, a†) =

(eφa†a†, a†) = (e, a†) and (a†, a†)(e, a†) = (a†, a†), we have (e, a†)L(a†, a†). On the other hand,

if (b†, b) ∈ GC◦ such that (e, a) = (x, α)(b†, b), where (x, α) ∈ E(G) with (x, α)L(b†, b†), then

(x, α)(b†, b†) = (x, α) and (b†, b†)(x, α) = (x, α), so αb† = α and b†α = b†, thereby α = b† since

T is a left ample semigroup. Now, from the fact that (e, a) = (x, α)(b†, b), we can show that

a = b. Thus (a†, a) = (b†, b) and whence GC◦ is a left adequate transversal of GC.

The rest follows from Theorem 2.5.

We conclude this paper with proving that any split left GC-lpp semigroup is isomorphic to

some GC(Y, T, L;φ). In what follows, we always assume that S is a split left GC-lpp semigroup

with left regular band E of idempotents. By Theorem 2.5, we let S◦ be a left adequate transversal

for S.

For t ∈ S◦, define

ϕt : E → E; x 7→ ϕtx = (tx)†.

If x, y ∈ E, then since S is a left GC-lpp semigroup,

ϕt(xy) = (txy)†R∗txy = (tx)†tyR∗(tx)†(ty)† = (ϕtx)(ϕty)

and whence ϕt(xy) = (ϕtx)(ϕty) since each R∗-class of a left GC-lpp semigroup contains exactly

one idempotent. Thus ϕt is a homomorphism.

Now let s, t ∈ S◦. Then for all x ∈ E, since S is a left GC-lpp semigroup,

ϕstx = (stx)†R∗stxR∗s(tx)†R∗(s(tx)†)† = ϕsϕt(x).
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Since each R∗-class of a left GC-lpp semigroup contains precisely one idempotent, it follows that

ϕstx = ϕs(ϕtx), and whence ϕst = ϕsϕt. Thus the mapping

ϕ : S◦ → End(E); t 7→ ϕt

is a homomorphism of S◦ into End(E). On the other hand, note that E(S◦) is a skeleton of E,

we observe that E has the semilattice decomposition into left zero bands Eα with α ∈ E(S◦),

such that α ∈ Eα. If x ∈ Eα and t ∈ S◦, then ϕtx = (tx)†R∗tx = txα = (tx)†tαR∗(ϕtx)(tα)†,

thereby ϕtx = (ϕtx)(tα)† since each R∗-class of a left GC-lpp semigroup contains precisely one

idempotent. Similarly, (tα)† = (tα)†(ϕtx). Thus ϕtxL(tα)†, that is, ϕtx ∈ E(tα)† . This means

that ϕt satisfies Condition (GC2). So, we have

Lemma 4.4 (E(S◦), S◦, E;ϕ) is a GC-system.

Theorem 4.5 S is isomorphic to GC(E(S◦), S◦, E;ϕ).

Proof We need only to prove that the mapping

θ : S → GC(E(S◦), S◦, E;ϕ); a 7→ (ea, a
◦),

where a◦ has the same meaning as before, is a semigroup isomorphism. Since S◦ is a left adequate

transversal of S, θ is a bijection.

Now, it remains to verify that θ is a homomorphism. In fact, for a, b ∈ S,

θ(a)θ(b) = (ea, a
◦)(eb, b

◦) = (ea(ϕa◦eb), a
◦b◦) = (ea(a◦eb)

†, a◦b◦).

It is easy to see that ea(a◦eb)
†a◦b◦ = eaa

◦ebb
◦ = ab. On the other hand, since ebR

∗b, we

have (a◦eb)
†R∗a◦ebR

∗a◦b, and ea(a◦eb)
†R∗eaa

◦b = ab. By the uniqueness of eab and (ab)◦,

eab = ea(a◦eb)
† and (ab)◦ = a◦b◦. Therefore, θ(ab) = (ea(a◦eb)

†, a◦b◦) = θ(a)θ(b). Thus θ is a

homomorphism. 2

Summing up Theorems 4.3 and 4.5, we obtain the construction theorem for split left GC-lpp

semigroups.

Theorem If (Y, T, L;φ) is a GC-system, then GC = GC(Y, T, L;φ) = {(e, a) ∈ L×T | a ∈ T, e ∈

La†} is a split left GC-lpp semigroup whose band of idempotents is isomorphic to L. Conversely,

any split left GC-lpp semigroup can be constructed in this way.
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