
Journal of Mathematical Research with Applications

Jan., 2012, Vol. 32, No. 1, pp. 43–52

DOI:10.3770/j.issn:2095-2651.2012.01.006

Http://jmre.dlut.edu.cn

Existence of Homoclinic Solution for a Class of
Hamiltonian Systems

Min ZHU∗, Shi Ping LU

Department of Mathematics, Anhui Normal University, Anhui 241000, P. R. China

Abstract We study the existence of homoclinic orbits for some Hamiltonian system. A homo-

clinic orbit is obtained as a limit of 2kT -periodic solutions of a sequence of systems of differential

equations.
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1. Introduction and main results

In this paper, we consider the existence of homoclinic solution for the following Hamiltonian

system:
d

dt

(
Φp(u̇(t))

)
−l(t)Φp(u(t)) + ∇F (t, u(t)) = f(t), (HS)

where p > 1, t ∈ R, u ∈ Rn, Φp(u) = |u|p−2u, l(t) ∈ C(R, (0, +∞)), where l(t) is T -periodic,

T > 0 and F : R × Rn → R and f : R → Rn satisfy:

(A1) F (t, 0) ≡ 0 and F is T -periodic with respect to t;

(A2) There exist functions b ∈ C(R, (0, +∞)) and H(t, x) ∈ C1(R × Rn, (0, +∞)) and the

constant µ > p such that

F (t, x) =
b(t)

µ
|x|µ + H(t, x),

where b0 = mint∈[0,T ] b(t) > 0, b(t) and H(t, x) are T -periodic with respect to t;

(A3) For every t ∈ R and x ∈ Rn \ {0},

0 < µH(t, x) ≤
(
∇H(t, x), x

)
.

Here and subsequently, (·, ·) : Rn × Rn → R denotes the standard inner product in Rn and

| · | is the induced norm in Rn.

The existence of homoclinic orbits is one of the most important problems in the theory of

Hamiltonian systems. Recently the existence and multiplicity of homoclinic orbits for Hamilto-

nian systems have been studied extensively via critical point theory, such as [1–4, 7–11] and the
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references therein. In [1], Tang considered the system:

d

dt

(
|u̇(t)|p−2u̇(t)

)
= ∇F (t, u(t)) + f(t), (1.1)

and proved the following theorem:

Theorem A Assume that F and f satisfy the following conditions:

(F1) F ∈ C1(R × Rn, R) is T -periodic with respect to t, T > 0;

(F2) There are constants b > 0 and µ > 1 such that for all (t, x) ∈ [0, T ] × Rn

F (t, x) ≥ F (t, 0) + b|x|µ;

(F3) f 6= 0 is a continuous and bounded function such that
∫

R
|f(t)|

µ
µ−1 dt < ∞.

Then system (1.1) possesses a homoclinic solution u0 ∈ W 1,p(R, Rn).

Our goal in this paper is to consider the different system (HS) and to use the different

conditions instead of (F2), (F3). In order to obtain a homoclinic solution of (HS), we consider a

sequence of systems of differential equations:

d

dt

(
Φp(u̇(t))

)
−l(t)Φp(u(t)) + ∇F (t, u(t)) = fk(t), (HSk)

where for every k ∈ N, fk : R → Rn is a 2kT -periodic extension of the restriction of f to the

interval [−kT, kT ].

For each k ∈ N , let W
1,p
2kT (R, Rn), L

p
2kT (R, Rn) and L∞

2kT (R, Rn) denote the Banach spaces

of 2kT−periodic functions on R with values in Rn under the norms

‖u‖W
1,p

2kT
:=

[ ∫ kT

−kT

(
|u̇(t)|p + |u(t)|p

)
dt

] 1
p

,

‖u‖L
p

2kT
:=

(∫ kT

−kT

|u(t)|pdt
) 1

p

and

‖u‖L∞

2kT
:= ess sup

{
|u(t)| : t ∈ [−kT, kT ]

}
,

respectively. Furthermore for each k ∈ N , let

Ek :=
{
u
∣∣u, u̇ ∈ L

p
2kT (R, Rn),

∫ kT

−kT

[
|u̇(t)|p+

(
l(t)Φp(u(t)), u(t)

)]
dt < +∞

}

and ∀u ∈ Ek, let

‖u‖Ek
:=

{∫ kT

−kT

[
|u̇(t)|p+

(
l(t)Φp(u(t)), u(t)

)]
dt

} 1
p

. (1.2)

Then Ek is a Hilbert space on the above norm.

Lemma 1.1 Let u : R → Rn be a continuous mapping such that u̇ ∈ L
p
loc(R, Rn). For every

t ∈ R the following inequality holds:

|u(t)| ≤ 2
p−1

p

(∫ t+ 1
2

t− 1
2

(
|u(s)|p + |u̇(s)|p

)
ds

) 1
p

. (1.3)
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Proof Fix t ∈ R. For every τ ∈ R,

|u(t)| ≤ |u(τ)|+
∣∣∣
∫ t

τ

u̇(s)ds
∣∣∣. (1.4)

Integrating (1.4) over [t− 1
2 , t+ 1

2 ] with respect to τ and using the Hölder and Jensen inequalities,

we obtain

|u(t)| ≤

∫ t+ 1
2

t− 1
2

(
|u(τ)|+

∣∣∣
∫ t

τ

u̇(s)ds
∣∣∣
)
dτ

≤
(∫ t+ 1

2

t− 1
2

(
|u(τ)|+

∣∣∣
∫ t

τ

u̇(s)ds
∣∣∣
)p

dτ
) 1

p

≤
(
2p−1

∫ t+ 1
2

t− 1
2

(
|u(τ)|p+

∣∣∣
∫ t

τ

u̇(s)ds
∣∣∣
p)

dτ
) 1

p

≤
(
2p−1

∫ t+ 1
2

t− 1
2

(
|u(τ)|p +

∫ t+ 1
2

t− 1
2

|u̇(s)|pds
)
dτ

) 1
p

≤ 2
p−1

p

( ∫ t+ 1
2

t− 1
2

|u(τ)|pdτ +

∫ t+ 1
2

t− 1
2

|u̇(s)|pds
) 1

p

,

which implies that (1.3) holds. The proof is completed. 2

Corollary 1.1 Let u ∈ W
1,p
2kT . Then the following inequality holds:

‖u‖L∞

2kT
≤ 2

p−1

p

(
1 +

1

2T

) 1
p

‖u‖W
1,p

2kT
, ∀ k ∈ N. (1.5)

Proof Integrating (1.4) over [t−kT, t+kT ] with respect to τ and similar to the proof of Lemma

1.1, we have

2kT |u(t)| ≤

∫ t+kT

t−kT

(
|u(τ)|+

∣∣∣
∫ t

τ

u̇(s)ds
∣∣∣
)
dτ

≤ (2kT )
p−1

p

(∫ t+kT

t−kT

(
|u(τ)|+

∣∣∣
∫ t

τ

u̇(s)ds
∣∣∣
)p

dτ
) 1

p

≤ (2kT )
p−1

p

(
2p−1

∫ t+kT

t−kT

(
|u(τ)|p +

∫ t+kT

t−kT

|u̇(s)|pds
)
dτ

) 1
p

≤ (2kT )
p−1

p 2
p−1

p

( ∫ t+kT

t−kT

|u(τ)|pdτ + 2kT

∫ t+kT

t−kT

|u̇(s)|pds
) 1

p

,

which implies the following

‖u‖L∞

2kT
≤ 2

p−1

p

(
1 +

1

2kT

) 1
p

‖u‖W
1,p

2kT
≤ 2

p−1

p

(
1 +

1

2T

) 1
p

‖u‖W
1,p

2kT
, ∀k ∈ N.

The proof is completed. 2

Corollary 1.2 Let u ∈ Ek. Then the following inequality holds:

‖u‖L∞

2kT
≤ 2

p−1

p max{1,
1

l∗
}
(
1 +

1

2T

) 1
p

‖u‖Ek
, (1.6)

where l∗ = mint∈[0,T ] l(t).
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Proof For each u ∈ Ek, we have by (1.2) and (1.5),

‖u‖p
Ek

≥

∫ kT

−kT

[
|u̇(t)|p + l∗|u(t)|p

]
dt ≥ min

{
1, l∗

}
‖u‖p

W
1,p

2kT

≥ min
{
1, l∗

}[
2

p−1

p

(
1 +

1

2T

) 1
p
]−p

‖u‖p
L∞

2kT
,

so (1.6) holds.

Set M := sup
{
H(t, u) : t ∈ [0, T ], |u| = 1

}
, b1 = maxt∈[0,T ] b(t), C1 = 2

p−1

p max{1, 1
l∗
}
(
1 +

1
2T

) 1
p and suppose that:

(A4)
( ∫

R
|f(t)|

p
p−1 dt

)1− 1
p

:= M1 < 1

C
p−1

1

[
1
p
δp−1−

(
b1
µ

+ M
)
δµ−1

]
,

where δ =
[

p−1

p(µ−1)
(

b1
µ

+M
)
] 1

µ−p

.

Remark 1.1 For f(x) = 1
p
xp−1 − ( b1

µ
+ M)xµ−1, x ∈ [0, 1] and δ defined above, by simple

calculation, we can obtain that δ is the maximum point of f(x) and f(δ) = 1
p
δp−1 − ( b1

µ
+

M)δµ−1 > 0.

In this paper, the main result is the following theorem.

Theorem 1.1 If the conditions (A1)–(A4) are satisfied, then system (HS) possesses a nontrivial

homoclinic solution u0.

2. Preliminaries

Let Ik : Ek → R be defined by

Ik(u) =
1

p

∫ kT

−kT

[
|u̇(t)|p+

(
l(t)Φp(u(t)), u(t)

)]
dt−

∫ kT

−kT

F (t, u(t))dt +

∫ kT

−kT

(
fk(t), u(t)

)
dt. (2.1)

Then Ik ∈ C1(Ek, R) and one can easily check that

I ′k(u)v =

∫ kT

−kT

[(
Φp(u̇(t)), v̇(t)

)
+

(
l(t)Φp(u(t)), v(t)

)
−

(
∇F (t, u(t)), v(t)

)
+

(
fk(t), v(t)

)]
dt (2.2)

for all u, v ∈ Ek, where I ′k(u) means the Frechet derivative. Furthermore, the critical points of

Ik are classical 2kT−periodic solutions of (HSk). We will obtain a critical point of Ik by using a

standard version of the Mountain Pass Theorem, therefore we state the definition of PS-condition

and this theorem precisely.

Definition 2.1 ([5]) The function ϕ ∈ C1(X, R) satisfies the Palais-Smale condition (PS) if

every sequence {un} in X satisfies that {ϕ(un)} is bounded and

ϕ′(un) → 0 (n → ∞)

contains a convergent subsequence.

Lemma 2.1 ([5]) Let E be a real Banach space and I ∈ C1(E, R) satisfy the Palais-Smale

condition. If further I satisfies the following conditions:

(i) I(0) = 0;
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(ii) There exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(iii) There exists e ∈ E \ Bρ(0) such that I(e) ≤ 0,

then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where Bρ(0) is an open ball in E of radius ρ about 0, and

Γ =
{
g ∈ C([0, 1], E) : g(0) = 0, g(1) = e

}
.

Lemma 2.2 ([2]) Assume that (A3) holds, then for every t ∈ [0, T ], the following inequalities

hold:

H(t, u) ≤ H
(
t,

u

|u|

)
|u|µ, 0 < |u| ≤ 1; (2.3)

H(t, u) ≥ H
(
t,

u

|u|

)
|u|µ, |u| ≥ 1. (2.4)

Meanwhile, we set m := inf{H(t, u) : t ∈ [0, T ], |u| = 1}. Then for every ζ ∈ R \ {0} and

u ∈ Ek \ {0}, one can find from [2]
∫ kT

−kT

H(t, ζu(t))dt ≥ m|ζ|µ
∫ kT

−kT

|u(t)|µdt − 2kTm. (2.5)

Lemma 2.3 ([2]) Let u : R → Rn be a continuous mapping. If a weak derivative u̇ : R → Rn

is continuous at t0, then

lim
t→t0

u(t) − u(t0)

t − t0
= u̇(t0).

3. Proof of theorem

We will divide the proof of Theorem 1.1 into a series of lemmas.

Lemma 3.1 Under the conditions of Theorem 1.1, for every k ∈ N , system (HSk) possesses a

2kT -periodic solution.

Proof It is clear that Ik(0) = 0. We firstly show that Ik satisfies the Palais-Smale condition.

Assume that {uj}j∈N ⊂ Ek is a sequence such that {Ik(uj)}j∈N is bounded and I ′k(uj) → 0 (j →

+∞). From (2.1), (2.2) and (A2), we have

µIk(uj) =
µ

p
‖uj‖

p
Ek

−

∫ kT

−kT

[
b(t)|uj(t)|

µ + µH(t, uj(t))
]
dt + µ

∫ kT

−kT

(
fk(t), uj(t)

)
dt, (3.1)

and

I ′k(uj)uj = ‖uj‖
p
Ek

−

∫ kT

−kT

[
b(t)|uj(t)|

µ+
(
∇H(t, uj(t)), uj(t)

)]
dt +

∫ kT

−kT

(
fk(t), uj(t)

)
dt. (3.2)

So we obtain from (3.1), (3.2), (A3) and (A4),

(µ

p
− 1

)
‖uj‖

p
Ek

=µIk(uj) − I ′k(uj)uj +

∫ kT

−kT

[
µH(t, uj(t))−

(
∇H(t, uj(t)), uj(t)

)]
dt−
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(µ − 1)

∫ kT

−kT

(
fk(t), uj(t)

)
dt

≤µIk(uj) − I ′k(uj)uj + (µ − 1)
(∫ kT

−kT

∣∣fk(t)
∣∣ p

p−1 dt
)1− 1

p
( ∫ kT

−kT

∣∣uj(t)
∣∣pdt

) 1
p

≤µIk(uj) − I ′k(uj)uj + (µ − 1)M1‖uj‖Ek
. (3.3)

Since µ
p
− 1 > 0, {Ik(uj)} is bounded and I ′k(uj) → 0 (j → +∞), (3.3) shows that {uj}j∈N is

bounded in Ek.

In a similar way to [6], we can prove that {uj}j∈N has a convergent subsequence in Ek.

Hence, Ik satisfies the Palais-Smale condition.

We now show that there exist constants ρ, α > 0 independent of k such that Ik satisfies

condition (ii) of Lemma 2.1 with these constants. If ‖u‖Ek
= δ

C1
:= ρ, then it follows from

Corollary 1.2 that |u(t)| ≤ δ ≤ 1 for t ∈ [−kT, kT ]. From (2.3), we have

∫ kT

−kT

H(t, u(t))dt ≤

∫

{t∈[−kT,kT ]|u(t) 6=0}

H
(
t,

u(t)

|u(t)|

)
|u(t)|µdt

≤ Mδµ−p

∫ kT

−kT

|u(t)|pdt, (3.4)

where M = sup{H(t, u) : t ∈ [0, T ], |u| = 1}. According to (2.1), (A2), (3.4) and (A4), if

‖u‖Ek
= δ

C1
, then

Ik(u) =
1

p
‖u‖p

Ek
−

1

µ

∫ kT

−kT

b(t)|u(t)|µdt −

∫ kT

−kT

H(t, u(t))dt +

∫ kT

−kT

(
fk(t), u(t)

)
dt

≥
1

p
‖u‖p

Ek
−

(b1

µ
+ M

)
δµ−p

∫ kT

−kT

|u(t)|pdt − M1‖u‖Ek

≥
1

p
‖u‖p

Ek
−

(b1

µ
+ M

)
δµ−p‖u‖p

Ek
− M1‖u‖Ek

=
δ

C1

[ 1

C
p−1
1

1

p
δp−1 −

1

C
p−1
1

(b1

µ
+ M

)
δµ−1 − M1

]

:=α > 0, (3.5)

where b1, M1, and M are given previously. Then inequality (3.5) shows that ‖u‖Ek
= δ

C1
= ρ

which implies that Ik(u) ≥ α.

Finally, it remains to show that Ik satisfies condition (iii) of Lemma 2.1. From (A2), (2.1)

and (2.5), we have

Ik(u) ≤
1

p
‖u‖p

Ek
−

b0

µ

∫ kT

−kT

|u(t)|µdt − m

∫ kT

−kT

|u(t)|µdt +

∫ kT

−kT

(
fk(t), u(t)

)
dt + 2kTm, (3.6)

where b0 = mint∈[0,T ] b(t) > 0 as defined in (A2). From (3.6), we have for every ζ ∈ R+ and

q ∈ E1,

I1(ζq) ≤
1

p
ζp‖q‖p

E1
−

b0

µ
ζµ

∫ T

−T

|q(t)|µdt − mζµ

∫ T

−T

|q(t)|µdt+

ζ‖f1‖L1
2T
‖q‖L1

2T
+ 2Tm. (3.7)
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Take Q ∈ E1 such that Q(±T ) = 0. Since 1 < p < µ, (3.7) implies that there exists ζ1 ∈ R+

such that ‖ζ1Q‖E1
> ρ and I1(ζ1Q) < 0. Set e1(t) = ζ1Q(t) and

ek(t) =

{
e1(t), |t| < T,

0, T ≤ |t| ≤ kT,
(3.8)

then ek ∈ Ek, ‖ek‖Ek
= ‖e1‖E1

> ρ and Ik(ek) = I1(e1) < 0. By Lemma 2.1, Ik possesses a

critical value ck ≥ α given by

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)), (3.9)

where Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek}. Hence, ∀k ∈ N , there exists uk ∈ Ek such

that

Ik(uk) = ck, I ′k(uk) = 0. (3.10)

Since ck > 0, uk is a nontrivial solution even if fk(t) = 0. The proof is completed. 2

Lemma 3.2 Let uk ∈ Ek be the 2kT -periodic solution of (HSk) which satisfies (3.10). Then

there exists a positive constant M2 independent of k such that

‖uk‖L∞

2kT
≤ M2, ∀k ∈ N. (3.11)

Proof For ∀k ∈ N , let gk : [0, 1] → Ek be a curve given by gk(s) = sek, where ek is defined as

in (3.8). Then gk ∈ Γk and Ik(gk(s)) = I1(g1(s)) (k > 1) and s ∈ [0, 1]. Therefore by (3.9),

ck ≤ max
s∈[0,1]

I1(g1(s)) = M̃2,

where M̃2 is independent of k. Hence, we have

Ik(uk) ≤ M̃2, I ′k(uk) = 0.

Similarly to (3.3), we obtain
(µ

p
− 1

)
‖uk‖

p
Ek

≤ µM̃2 + (µ − 1)M1‖uk‖Ek
,

so there exists a constant M2 > 0 such that

‖uk‖Ek
≤ M2, ∀k ∈ N. (3.12)

Therefore from (1.6), we get

‖uk‖L∞

2kT
≤ C1‖uk‖Ek

≤ C1M2 := M2,

where C1 is given in the condition (A4). The proof is completed. 2

Lemma 3.3 Let uk ∈ Ek be the 2kT -periodic solution of system (HSk) which satisfies (3.11).

Then there exists a subsequence {ukj} of {uk} convergent to a certain u0 ∈ C1(R, Rn) in

C1
loc(R, Rn).

Proof By (3.11), we know that {uk} is a uniformly bounded sequence. Since uk(t) is a 2kT -

periodic solution of (HSk), for every t ∈ [−kT, kT ]

d

dt

(
|u̇k(t)|p−2u̇k(t)

)
= l(t)Φp(uk(t)) −∇F (t, uk(t)) + fk(t),
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hence,
∣∣∣ d

dt

(
|u̇k(t)|p−2u̇k(t)

)∣∣∣ ≤ max
t∈[0,T ]

|l(t)|Mp−1
2 + sup

t∈[0,T ],|x|≤M2

∣∣∇F (t, x)
∣∣+ sup

t∈R

|f(t)|

:= M3, t ∈ [−kT, kT ]. (3.13)

Thus we can claim that {u̇k} is uniformly and equicontinuous in a similar way to [1]. So {uk}

and {u̇k} are both uniformly bounded and equicontinuous, and we can obtain the existence of

subsequence {ukj
} convergent to a certain u0 in C1

loc(R, Rn) by using the Arzelà-Ascoli theorem.

Proof of Theorem 1.1 Step 1. We show that u0 is a solution of (HS). By Lemmas 3.1 and

3.3, we have

d

dt

(
Φp

(
u̇kj

(t)
))

−l(t)Φp

(
ukj

(t)
)
+∇F (t, ukj

(t)) = fkj
(t), t ∈ [−kjT, kjT ].

Take a, b such that a < b. Then there exists j0 ∈ N such that for all j > j0, we have

d

dt

(
Φp

(
u̇kj

(t)
))

−l(t)Φp

(
ukj

(t)
)
+∇F (t, ukj

(t)) = f(t), t ∈ [a, b].

From Lemma 3.3, it follows that u̇kj
→ u̇0 uniformly on [a, b], and we get

d

dt

(
Φp

(
u̇0(t)

))
−l(t)Φp

(
u0(t)

)
+∇F (t, u0(t)) = f(t), t ∈ [a, b].

Since a and b are arbitrary, we conclude that u0 satisfies (HS).

Step 2. We prove that u0(t) → 0 (t → ±∞). From (3.12), we obtain
∫ kjT

−kjT

[∣∣u̇kj
(t)

∣∣p+
(
l(t)Φp(ukj

(t)), ukj
(t)

)]
dt ≤ M

p

2 := M4.

For every l ∈ N , there exists j1 ∈ N such that for j > j1,
∫ lT

−lT

[∣∣u̇kj
(t)

∣∣p+
(
l(t)Φp(ukj

(t)), ukj
(t)

)]
dt ≤ M4.

It follows that for each l ∈ N ,
∫ lT

−lT

[∣∣u̇0(t)
∣∣p+

(
l(t)Φp(u0(t)), u0(t)

)]
dt ≤ M4.

Letting l → ∞ yields
∫ ∞

−∞

[∣∣u̇0(t)
∣∣p+

(
l(t)Φp(u0(t)), u0(t)

)]
dt ≤ M4.

Hence ∫

|t|≥r

[∣∣u̇0(t)
∣∣p+

(
l(t)Φp(u0(t)), u0(t)

)]
dt → 0, r → ∞,

then we have ∫

|t|≥r

[∣∣u̇0(t)
∣∣p+

∣∣u0(t)
∣∣p

]
dt → 0, r → ∞. (3.14)

Combining (3.14) with (1.3), we get u0(t) → 0 as t → ±∞.

Step 3. We prove

u̇0(t) → 0, t → ±∞. (3.15)
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Since u0(t) → 0 (t → ±∞), there holds

|u0(t)| ≤ M2 for t ∈ R.

From this, (HS) and (A4), similarly to (3.13), we have
∣∣∣ d

dt

(
|u̇0(t)|

p−2u̇0(t)
)∣∣∣ ≤ max

t∈[0,T ]
|l(t)|Mp

2 + sup
(t,x)∈[0,T ]×[−M2,M2]

∣∣∇F (t, x)
∣∣+ sup

t∈R

∣∣f(t)
∣∣.

:= M5.

If (3.15) does not hold, then there exist ε0 ∈ (0, 1
2 ) and a sequence {tk} such that

|t1| < |t2| < |t3| < · · · , |tk| + 1 < |tk+1|, k = 1, 2, . . . ,

and

|u̇0(tk)| ≥ (2ε0)
1

p−1 , k = 1, 2, . . . .

From this we have for t ∈ [tk, tk + ε0

1+M5
]

|u̇0(t)|
p−1 =

∣∣∣|u̇0(tk)|p−2u̇0(tk) +

∫ t

tk

d

ds

(
|u̇0(s)|

p−2u̇0(s)
)
ds

∣∣∣

≥ |u̇0(tk)|p−1 −

∫ t

tk

∣∣∣ d

ds

(
|u̇0(s)|

p−2u̇0(s)
)∣∣∣ds ≥ ε0.

It follows that ∫ ∞

−∞

|u̇0(t)|
pdt ≥

∞∑

k=1

∫ tk+
ε0

1+M5

tk

|u̇0(t)|
pdt = ∞,

which contradicts (3.14) and so (3.15) holds.

Step 4. In the end, we have to show that if f ≡ 0, then u0 6≡ 0. Let Y : [0, +∞) → [0, +∞)

be given as follows: Y (0) = 0 and

Y (s) = max
t∈[0,T ],0<|u|≤s

|(u,∇F (t, u))|

|u|p
for s > 0.

Then Y is continuous, nondecreasing and Y (s) ≥ 0 for s ≥ 0. It folows from (1.6)
∫ kjT

−kjT

(
ukj

(t),∇F (t, ukj
(t))

)
dt ≤ C1Y

(
‖ukj

‖L∞

2kT

)
‖ukj

‖p
Ekj

, ∀ j ∈ N. (3.16)

Since I ′kj
(ukj

)ukj
= 0, we have

∫ kjT

−kjT

(
ukj

(t),∇F (t, ukj
(t))

)
dt =

∫ kjT

−kjT

[(
Φp(u̇kj

(t)), u̇kj
(t)

)
+

(
l(t)Φp(ukj

(t)), ukj
(t)

)]
dt

= ‖ukj
‖p

Ekj
. (3.17)

By (3.16) and (3.17), it follows that

Y
(
‖ukj

‖L∞

2kjT

)
≥

1

C1
> 0.

If ‖ukj
‖L∞

2kjT
→ 0 as j → ∞, we would have Y (0) ≥ 1

C1
> 0, which is a contradiction. Thus

there is γ > 0 such that

‖ukj
‖L∞

2kjT
≥ γ, ∀j ∈ N. (3.18)
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We can assume that the maximum of ukj
occurs in [−T, T ]. If u0(t) ≡ 0, then

‖ukj
‖L∞

2kjT
= max

t∈[−T,T ]
|ukj

(t)| → 0,

which contradicts (3.18). The proof is completed. 2
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