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1. Introduction

Strong limit theory is one of the most important problems in probability theory, and has

received extensive attention in the literature. Liu [1] obtained some strong limit theorems for

a multivariate function sequence of discrete random variables by using the concept of the con-

ditional moment generating function. Yang [2] proved two strong limit theorems for arbitrary

stochastic sequences. Li, Chen and Zhang [3] studied the strong limit theorems of arbitrary de-

pendent continuous random variables by using the analytic technique and the Laplace transform

approach. Yang and Yang [4] established a strong limit theorem of the Dubins-Freedman type

for arbitrary stochastic sequences. Furthermore, many comprehensive works can be found in [5]

and references therein. The purpose of this paper is to establish a kind of strong limit theorems

represented by inequalities with random bounds, and to extend the analytic technique proposed

by Liu [5]. In the proof, the approach of applying the tool of moment generating function to the

study of strong limit theorem of the sequences of continuous random variables is proposed.

Let {Xn, n ≥ 1} be a sequence of absolutely continuous random variables on the probability

space (Ω,F , P ) with joint distribution density function fn(x1, . . . , xn). Let f(xk), k = 1, 2, . . . ,
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stand for the marginal density function of Xk, and call
∏n

k=1 f(xk) the reference product density

function. Let

rn(ω) = ln
[

fn(X1, . . . , Xn)
/

n
∏

k=1

f(Xk)
]

, (1)

where ω is a sample point. In statistical terms, rn(ω) is called the log-likelihood ratio. Let

r(ω) = lim sup
n→∞

1

n
rn(ω) (2)

with ln 0 = −∞. r(ω) is called asymptotic log-likelihood ratio.

Let f(x) > 0 stand for the density function of the random variable Y , and let the mathemat-

ical expectation and moment generating function of the random variable Y be
∫

∞

−∞

xf(x)dx = m = E(Y ), (3)

and

M(t) =

∫

∞

−∞

etxf(x)dx = E(etY ), (4)

respectively. In this paper, we assume that there exists t0 ∈ (0,+∞), such that M(t) < ∞,

t ∈ [−t0, t0].
In order to prove our main results, we first give a lemma, which will play a central role in

the proof of Theorem 3.

Lemma 1 ([6, P. 54]) There exists a random variable Y such that its mathematical expectation

and moment generating function are defined by (3) and (4), respectively. If EY = m = 0, then

there exist constants g > EY 2/2 and a0 > 0, such that

M(t) ≤ egt2 , t ∈ (−a0, a0). (5)

2. Main results

Our main existence results are the following:

Theorem 1 Let {Xn, n ≥ 1} be a sequence of absolutely continuous random variables on the

probability space (Ω,F , P ), r(ω), M(t) be given as above, and M(t) be defined in [−t0, t0]. Then

there exists a constant c > 0 such that

lim inf
n→∞

1

n

n
∑

k=1

[Xk −m] ≥ α(c), a.e., ω ∈ D(c), (6)

where

D(c) = {ω : r(ω) ≤ c} , (7)

α(c) = sup{ϕ(t),−t0 ≤ t < 0}, (8)

ϕ(t) = [lnM(t) + c]/t−m, −t0 ≤ t < 0, (9)

and then

α(c) ≤ 0, −t0 ≤ t < 0, (10)
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lim
c→0+

α(c) = α(0) = 0. (11)

Proof For arbitrary t ∈ [−t0, t0], let

g(t, x) = etxf(x)/M(t). (12)

Then
∫

∞

−∞

g(t, x)dx = 1. (13)

Let

qn(t;x1, . . . , xn) =
n

∏

k=1

g(t, xk) = 1/[M(t)]n exp(t
n

∑

k=1

xk) ·
n

∏

k=1

f(xk). (14)

By (14), it is easy to see that qn(t;x1, . . . , xn) is an n multivariate probability density function.

Let

tn(t, ω) =
qn(t,X1, . . . , Xn)

fn(X1, . . . , Xn)
. (15)

By [6], we can see that tn(t, ω) is a nonnegative supermartingale that converges a.e. Hence there

exists A(t) ∈ F , P (A(t)) = 1, such that

lim
n→∞

tn(t, ω) <∞, ω ∈ A(t). (16)

This implies that

lim sup
n→∞

1

n
ln tn(t, ω) ≤ 0, ω ∈ A(t). (17)

By (17), (14) and (3), we obtain

lim sup
n→∞

1

n

{

− n lnM(t) + t

n
∑

k=1

Xk − ln rn(ω)
}

≤ 0, ω ∈ A(t). (18)

Let t = 0. We have

lim inf
n→∞

1

n
ln rn(ω) ≥ 0, ω ∈ A(0), (19)

that is

r(ω) ≥ 0, ω ∈ A(0). (20)

Let −t0 ≤ t < 0. By (7) and (18), we have

t lim inf
n→∞

1

n

n
∑

k=1

Xk ≤ lim sup
n→∞

[ 1

n
ln rn(ω) + lnM(t)

]

= r(ω) + lnM(t), ω ∈ A(t) ∩D(c). (21)

By the property of the inferior limit

lim inf
n→∞

(an − bn) ≥ d⇒ lim inf
n→∞

(an − cn) ≥ lim inf
n→∞

(bn − cn) + d, (22)

and dividing the two sides of (21) by t, we obtain

lim inf
n→∞

1

n

n
∑

k=1

[Xk −m] ≥ 1

t
r(ω) +

1

t
lnM(t) −m ≥ [lnM(t) + c]/t−m, ω ∈ A(t) ∩D(c). (23)
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Let Q− be the set of rational numbers in the interval [−t0, 0) and let A∗ = ∩t∈Q−A(t). Then

P (A∗) = 1. By (23), we have

lim inf
n→∞

1

n

n
∑

k=1

[Xk −m] ≥ [lnM(t) + c]/t−m, ω ∈ A∗ ∩D(c), ∀ t ∈ Q−. (24)

By (9), (20) and (24), we obtain

lim inf
n→∞

1

n

n
∑

k=1

[Xk −m] ≥ ϕ(t), ω ∈ A∗ ∩D(c), ∀ t ∈ Q−. (25)

We know that ϕ(t) is a continuous function with respect to t on the interval [−t0, 0) and

limc→∞ ϕ(t) = −∞. By (8) and (20), for each ω ∈ A∗ ∩ D(c), take tn(ω) ∈ Q− (n = 1, 2, . . .),

such that

lim
n→∞

ϕ[tn(ω)] = α(c). (26)

By (25), we have

lim inf
n→∞

1

n

n
∑

k=1

[Xk −m] ≥ ϕ[tn(ω)], ω ∈ A∗ ∩D(c). (27)

From (26) and (27), we have

lim inf
n→∞

1

n

n
∑

k=1

[Xk −m] ≥ α(c), ω ∈ A∗ ∩D(c). (28)

Since P (A∗) = 1, (6) holds by (28). By the Jensen inequality we obtain

M(t) = E(etY ) ≥ etE(Y ) = etm. (29)

By (9) and (29), we have

ϕ(t) ≤ c/t ≤ 0, −t0 ≤ t < 0, (30)

then

α(x) ≤ 0. (31)

Thus, (10) follows from (31). By L′hospital rule, we have

lim
t→0−

lnM(t)/t = lim
t→0−

M ′(t)/M(t) = m. (32)

By (8) and (32), we have

α(0) = 0. (33)

By (8) and (9), we have

α(c) ≥ ϕ(
√
c) = [M(

√
c) + c]/

√
c−m. (34)

It is easy to see that

lim
c→0+

ϕ(
√
c) = 0. (35)

By (31), (34) and (35), we can show that

lim
c→0+

α(c) = 0. (36)
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Then (11) follows from (31) and (36). 2

Theorem 2 Under the conditions of the theorem 1, there holds

lim sup
n→∞

1

n

n
∑

k=1

[Xk −m] ≤ β(c), a.e., ω ∈ D(c), (37)

where

β(c) = inf{ψ(t), 0 < t ≤ t0}, (38)

ψ(t) = [lnM(t) + c]/t−m, 0 < t ≤ t0, (39)

and then

β(c) ≥ 0, 0 < t ≤ t0, (40)

lim
c→0+

β(c) = β(0) = 0. (41)

The proof of Theorem 2 is similar to that of Theorem 1 and hence is omitted here.

Remark 1 In Theorems 1 and 2, a subset D(c) of the sample space is determined by using the

condition r(ω) ≤ c, and on this subset the limit properties of 1
n

∑n
k=1[Xk −m] as n → ∞ are

studied. r(ω) ≤ c is the key condition for determining D(c), where the asymptotic log-likelihood

ratio r(ω) can be regarded as a stochastic measure of the deviation between {Xn, n ≥ 1} and

the sequence of random variables with product density function.

Remark 2 Roughly speaking, condition (7) can be regarded as a restriction on the devia-

tion between {Xn, n ≥ 1} and the sequence of random variables with product density function
∏n

k=1 f(xk). From (6) and (37), it is easy to see that the inferior and superior limits depend on c.

The smaller c is, the smaller the deviation is. For example, let {Xn, n ≥ 1} be a sequence of ab-

solutely continuous random variables with joint distribution density function fn(x1, . . . , xn), and

Yk, k = 1, . . . , n, are i.i.d. random variable sequence with exponential density function f(x, λ),

where λ > 0 is a parameter. By the definition of log-likelihood ratio, we have

rn(ω) = ln
[

fn(X1, . . . , Xn)
/

n
∏

k=1

f(Xk, λ)
]

≈
fn(X1, . . . , Xn) −

n
∏

k=1

f(Xk, λ)

n
∏

k=1

f(Xk, λ)
.

Let D(c) = {ω : lim supn→∞

1
n
rn(ω) ≤ c} denote a subset of sample space. It is easy to show

that the subset D(c) controls the deviation between fn(X1, . . . , Xn) and the product exponential

density function
∏n

k=1 f(Xk, λ), and the smaller c is, the smaller the deviation is. Obviously,

r(ω) = 0 if and only if c = 0, that is, Xk(1 ≤ k ≤ n) are independent exponential random

variables with parameter λ.

Theorem 3 Under the conditions of the theorem 1, let m = E(Y ) = 0, EY 2 <∞. Let c ≤ ga2
0

and a0 ≤ t0. Then

lim inf
n→∞

1

n

n
∑

k=1

Xk ≥ −2
√
gc, − a0 < t < 0, a.e., ω ∈ D(c), (42)
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lim sup
n→∞

1

n

n
∑

k=1

Xk ≤ 2
√
gc, 0 < t < a0, a.e., ω ∈ D(c), (43)

where g and a0 are given by Lemma 1.

Proof Since the proof of (43) is similar to that of (42), we only prove (42) here. By Lemma 1,

we have

α(c) = sup{[M(t) + c]/t,−a0 < t < 0} ≤ sup{[gt2 + c]/t,−a0 < t < 0}
= − inf{(−gt) + (−c/t), − a0 < t < 0} = −2

√
gc, − a0 < t < 0. (44)

Hence, (42) follows from (44) directly. 2

Corollary 1 Let {Xn, n ≥ 1} be independent random variables. Then

lim
n→∞

1

n

n
∑

k=1

(Xk −m) = 0, a.e. (45)

Proof In this case, fn(x1, . . . , xn) =
∏n

k=1 f(xk), n ≥ 1, and r(ω) = 0. Hence (45) follows

directly from (11) and (41). 2

Corollary 2 Under the conditions of the theorem 1, if f(xk) is a Normal distribution with

parameters µ and σ2, where E(Xk) = µ and Var(Xk) = σ2, then

lim inf
n→∞

1

n

n
∑

k=1

[Xk − µ] ≥ −σ
√

2c, a.e., ω ∈ D(c), (46)

lim sup
n→∞

1

n

n
∑

k=1

[Xk − µ] ≤ σ
√

2c, a.e., ω ∈ D(c). (47)

Proof By (4), the moment generating function of the normal density function f(xk) is defined

by

M(t) = eµt+ 1
2
t2σ2

. (48)

By (9) and (48), let t < 0. We have

ϕ(t) =
µt+ 1

2 t
2σ2 + c

t
− µ =

1

2
tσ2 +

c

t
. (49)

It is easy to see that if t = −
√

2c/σ, the function ϕ(t) attains its largest value ϕ(−
√

2c/σ) =

−σ
√

2c. Therefore, (46) follows from (6) and (49).

Let t > 0. We have
1

2
tσ2 +

c

t
≥ σ

√
2c. (50)

By (39) and (50), it is easy to see that if t =
√

2c/σ, the function ψ(t) attains its smallest value

ψ(
√

2c/σ) = σ
√

2c. Therefore, (47) follows from (37) and (50). 2
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