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Abstract In this paper, we study the compact operators on weighted Bergman spaces of the
unit ball. Extending Miao and Zheng'result in 2004, we obtain the necessary and sufficient
conditions for the operator to be compact on weighted Bergman spaces of the unit ball under
some integrable conditions.
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1. Preliminaries

Throughout let n be a fixed integer n > 2. Let C™ denote the Euclidean space of complex

dimension n. For z = (21, ..., 25), w = (w1, ..., w,) € C", we define
(z,w) = 2101 + + -+ + 2, Wn,

where wy, is the complex conjugate of wy.

For a multi-index m = (mq,...,my) and z = (21,..., 2,) € C", we also write

|2l = V]2 + o [2nf?, 2™ =2

Denote the unit ball in C™ by B,. Let v denote the Lebesgue volume measure on B,
normalized so that v(B,) = 1. For —1 < a < oo, we denote by v, the weighted Lebesgue
measure on B,, defined by dv,(z) = co(1 — |2|?)*dv(z), where ¢, = % is a normalizing
constant so that dv, is a probability measure on B,. For a > —1 and p > 1 the weighted

Bergman space AE consists of holomorphic functions f in LP(B,, dv,), that is,
AP, = LP (B, dva) | H(B,).

It is clear that AP is a linear subspace of L?(B,,, dv,,).
When a function f : B,, — C is holomorphic, all higher order partial derivatives exist and
are still holomorphic. For a multi-index m = (mq, ..., m,) we will employ the notation
omf lmlf
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For z,w € B, the reproducing kernel on A2 (B,,) is given by

o 1
K1(u )(Z) = 1- <Z7w>)n+o¢+l'

If (-,-)o denotes the inner product in L2(B,,dv,), then (h, K}y = h(w), for every h €
A% (B,,) and w € B,,. In this paper, we use || - ||o,p to denote the norm in LP(B,,, dvy).
Let P, be the weighted Bergman orthogonal projection from L?(B,,, dv,) onto A2 (B, ), which

is given by )
(Pag)0) = (9. K)o = | 0() pmssmmr v 2)

n

for g € L*(B,,,dv,) and w € B,,. For f € L'(B,,dv,), the Toeplitz operator with symbol f is
defined by

(%Wm=%UWW=AJVWd@WWMM%

for h € H*(B,,). Clearly, Ty is densely defined on A% (B,,).
)

Using the reproducing property of Kl(ua , we have

1

(@2 = (K@) )y _— [la) = -
HKw ||o¢,2 - <Kw 7K’w >a - K’w (’U}) - (1 _ |w|2)”+°‘+1 :

Thus, for z,w € B,,, the normalized reproducing kernel is given by
(1 —[w]?)

(1= (z,w))rrott

For w € B,,, let ¢,, be the automorphism of B,, given by

z— Pz(w) - SzQz(w)
1—{(w,z) ’

n+a+1
2

kL) (2) =

w

v, (w) = z €B,,

where s, = y/1 — |z|2, P, is the orthogonal projection from C™ onto the one dimensional subspace

[2] generated by z, and @, is the orthogonal projection from C™ onto C™ & [z]. It is clear that

(w, 2)

|22

P (w) = 1|L;|2 z, z€C", Q.(w)=w— z, z € B,.

We can see that ¢, (0) = w and ! = ¢,,. The function ,, has the real Jacobian equal to
e (L= fwP)m
|@w(z)| - |1 _ <ij>|2n+2'
Thus we have the change-of-variable formula
/ h(pw (2)) [k (2)dva(2) = / h(u)dva (u),
B, Bn
for every h € L'(B,,dv,). It follows from above that the mapping U h = (h o @u,)ki is an
isometry on A% (B,,) :

I\U&a)hl\i,zz/ Ih(ww(Z))Flk&a)(Z)|2dva(2):/ [h(w)]*dva (u) = [[A]3 2,

n n

for all h € A%(B,,). Using the identity
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we have, for any f,g € A%(B,

FUC gy = / F(2)(g0 @) (K (2)dval2)

- / (f 0 0u) VKD NN dva(X) = U1, g)a.

So Uls,a) is an adjoint operator.

Since @y, 0 ¢, = id, we see that
(U (ULIR)(2) = (UG R) (0w (2))KGY (2) = h(2)kS) (0o (2))RGY (2) = h(2),

for all z € B, and h € A2(B,). Thus (UL)~! = US, and hence UL is unitary on A2(B,,).
Clearly, Ui is a bounded operator on A2 (B,,).

For S a bounded operator on AE(B,,) for 1 < p < oo, we define S, by S, = Ul SsUl® . The
Berezin transform of S is the function S on B,, defined by

S(2) = (SKL™, k),
where (f,g) = [ fgdva(z), whenever fg € L'(Bn,dva). Let f denote Ty and let
BT ={feL':|fllpr = su]BE) |f] < oo}
zeb,

In [1], Miao and Zheng proved that a operator S on the Bergman space of the unit disk is
compact if and only if the Berezin transform of S vanishes on the boundary of the unit disk if .S
satisfies some integrable conditions. In this paper we extend the result to the general setting of
the weighted Bergman space of the unit ball.

Throughout the paper we use p’ to denote the conjugate of p, i.e., (1/p) + (1/p') = 1, for

1 < p < o0, and use p; to denote min{p, p’}. The main results of the paper are stated as follows.

Theorem 1.1 Suppose o > —1, 1 < p < 0o and S is a bounded operator on AP (B,,) such that

sup ||S:1|am < 00, sup |[Si1am < o0
z€B, z€B,

for m > max{3,3(n + o +1)/2(a + 1)(p1 — 1)}. Then S is compact on A (B,,) if and only if
S(z) — 0 as z — OB,,.

Theorem 1.2 Suppose o > —1 and S is a bounded operator on A% (B,,) such that

z€B, z€By

for m > max{3,3(n+a+1)/2(a«+1)}. Then S is compact on A2(B,,) if and only if S(z) — 0

as z — 0B,,.

Theorem 1.3 Suppose a > —1, 1 < p < oo and S is a finite sum of operators of the form
Ty, ---Ty,, where each f; € BT. Then S is compact on AP (B,) if and only if S(z) — 0 as
z — 0B,.
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2. The Berezin transform

The Berezin transform of a bounded operator on Bergman space A2 (B,,) plays an important
role and is one of the most useful tools in the study of Toeplitz operators.

For z,w € B,,, the distance in the Bergman metric on the unit ball is given by

Sl T4 s (w)]
Blz,w) = 5 log T——— o]

Let D(z,7) denote the Bergman metric disk with center z and radius r. Thus
D(z,r) ={weB, : f(z,w) <r}, z€B,, r>0.

We recall a positive Borel measure u on B,, is a Carleson measure if there exist a constant
C > 0 and p > 0 such that, for all f in AZ(B,,),

/B P <0 / ()P dua(2).

n

The following Lemma 2.1 implies that a Carleson measure is independent of p.

Lemma 2.1 Supposep > 0,r >0, a > —1, and p is a positive Borel measure on B,,. Then the
following conditions are equivalent:

(a) For all f in AP (B,,), there exists a constant C' > 0 such that

/B P <0 / ()P dua(2).

n

(b) For all a € B,,, there exists a constant C > 0 such that

/ 5 () Pdu(z) < C.

n

(c) For all a € By, there exists a constant C' > 0 such that
u(D(a,r)) < C(1 = [af*)" 1+,

Lemma 2.2 Suppose a > —1 and f € L'(B,,,dv,). Then f € BT if and only if = |f|dv, is

a Carleson measure on B,,.

Proof Since

F1() = Tk, K)o / / (1) K4 () (1)l () () ()
— [ @K @)Pduaw),

n

by Lemma 2.1 (b), the proof is completed. O

Lemma 2.3 Supposea > —1,1 <p < o0,z € B, and f € BT. Then Ty is bounded on A? (B,,)
and there is a constant C' such that |T||la,p < C|/f|B7-

Proof Tt is well known that the dual of A% (B,) is A2 (B,). For u,v € H>®(B,), by Holder’s
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inequality and Fubini’s theorem,

(Tyu, v)a // 1_ nlaﬂdv() 2)dva(z /f o(w)dva (w).

Thus
(Tyu, v}l < / | Fllulleldva < ( / [uf? | f]dva) /7 / [of?'| £|dva) /7
B, B, B,
—( / fufPdp) /7 / [of? dja) 7,
B

n Bn

where dpu = | f|dv,. By Lemmas 2.1 and 2.2, there exists a constant C' such that

(Tru,v)a| < Cllfl|Brlle]apllvllay

for u,v € H*(B,,), which shows that T is bounded on A2 (B,,) and ||T|la,p < C| fllBT-

Lemma 2.4 If S is a bounded linear operator on AP (B,), « > —1 and 1 < p < oo, then
S(ip:(w)) = Sa(w), z,w € By,
Proof From the definition of the Berezin transform, we have

S (w) = (S:hE, k() o = (SULED, ULRED) o = (S((kE 0 02 )k), (k) 0 0. )k

Using the identity

() _ (1 B <va>)n+a+1
e=(w) 1 — (2, w)|ntatl

(kY 0 02) kLY,

we obtain

3 _ap@ () — (z,w))"rotl o
S(p=(w)) = (Sky (), K

Stwe = T gyt | (UK 0 @)k, (K 0 02 ) k)

Lemma 2.5 For any z € B,,, if f € BT and p > 1, then on A?(B,,), Tfo,, Ul = Uza)Tj

Proof Since for any u € A (B,,) and v € H*(B,,), <u U(O‘) > = (Uz(a)u,@a, we have for any
u,w € HBy), (U Ty, U)o = (Tyu,v)a = [, flp=(w))ulps (w))olp: (w)) K (w) Pdug (w)
= (Tfop. U, U v),. Note that H>®(B,) is dense in AZ(IBBn) and U is surjective on
H®(B,,). The proof is completed. O

—_~

Lemma 2.6 Suppose f € LY(B,,dv,), z € B, and a > —1, then fo . = f o p..

—_~—
—_~—

Proof From Lemmas 2.4 and 2.5, we have f o ¢, = f; o, =(T}), = Uz(a)TfUz(a) = 7/”;; =
foe..

Lemma 2.7 Suppose a > —1,1 < p < oo and f € BT, z € B,, then Ty, is bounded on
AP (B,,) and there is a constant C' independent of z such that ||Tfep,|ap < C||fll BT

Proof By Lemma 2.6, ||f o . |57 = sup,cs, | 0 .l(w) = sup,cp, [F1(:(w)) = | £z, thus
foyw, € BT. According to Lemma 2.3, the proof of the lemma is completed. O
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Lemma 2.8 Let o > —1, and S be a finite sum of operators of the form Ty, ---TY, , where each
fj € BT. Then for every p € (1,00),

sup [|S:1]|ap <00, sup [|Si1]a,p < 0.
z€B, z€B,

Proof Without loss of generality we may assume that S =Ty, ---T%,. Then S, = Ul sut) =
U U U T, U U T U = T4, 0. Thyop. -+ Thoop.. By Lemma 2.7, ||S21]lap =
ITHow.Trop. - Troop.Ulap < Clfillar---|Ifallr. Clearly, each f; € BT and ||fj|sr =
Il fillBr- Thus [|Si U ap = 1T7,00.TF, 1op. " Thop. Ulep < Cllfillsr - | fullBr-

3. Some lemmas

This section takes up some basic lemmas needed for the main theorem. The following lemma
is the Theorem 1.12 in [2].

Lemma 3.1 Suppose c is real and t > —1. Then the integral

(1 = |w]*)*do(w)
JC = 9 Bnu
+(2) /IBn [T — (2, w)[rHittte z e

has the following asymptotic properties.
(i) If ¢ <0, then J.+ is bounded in B,
(ii)) If ¢ =0, then

1
Jc)t(Z) ~ log 1—7|Z|27

(iii) If ¢ >0, then J..(2) ~ (1 — |2]?)7¢, |2| = 1~.

Lemma 3.2 Supposea > —1,1<p<oo,0<a<a+landl<s<min{(a+1)/a,(n+1+
a)/(n+a+1—a)}. Then there exists a constant C' such that if S is a bounded operator on

AP (B,,), then
[(SKL)(w)| ClIS:1l 4.
B2 PO g (w) € st (3.1)
/Bn (1 —|w[?)e (1—1z[2)e
for all z € B,, and
I(SEL)(w)] ClSi1y, o
B2 PO g (2) < o loes (3.2)
/Bn (1—1z[2) (1 —Jwf?)e

for all w € B,,.

Proof To prove (3.1), fix z € B,,. From the definition of S, and Uz(a), we have

s SUL S (Sel) o)kt
ST (A - [zP)ted D2 T (1 o) nret D/ T (1 - o) (nkatD/2
Thus
(SEL) (w)] B 1 / 1(521) (0= (w)) || (w))]
/]B APy ) = T ppeer f, C—fupye vel@)
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In the last integral, make the change of variable w = ¢, (\) to obtain

(SEE) @) (o 1 (D] - (00D e 39 2
L e ) = e LG o P
Using the identities

1 o (=[P =AP)
kl(ua)(z)v 1- |90z(/\)| = |1 — <)\,Z>|2 )

(SEE) @) (oo [(S:1)(V)|dva (V)
/Bn @ qwpy = G / (L= AR = (A, )[rFesi=2e

Applying Holder’s inequality to the integral above, we get

(SEL) (w)] A, dva(N) 1/
/ (1 — [wP)e S SEER (/ R <A,z>|<n+a+1>s-2as) '

Thus (3.1) follows from Lemma 3.1. To prove (3.2), replace S by S* in (3.1), interchange w and

kG (pu(2)) =

we have

dvg (w)

n

z in (3.1) and then use the equation
(S"KE)() = (8K, Ko = (K, SK(V)a = SKI™ (w). (3:3)
The following Schur’s test in [3] is well known.

Lemma 3.3 Suppose (X, u) is a measure space, 1 < p < oo, and 1/p+ 1/p’ = 1. For a

measurable function H(x,y) consider the integral operator

v) = /X H(z, ) f (4)duly).

If there exist a positive function h on X and a positive constant C' such that

[ 1) nw) du) < Cina)y’
for almost all x € X, and
[ G n@rduta) < cantey
for almost all y € X, then the operator T is bounded on LP(X, p) with || T, < (C1)/#" (Cy)'/.

Lemma 3.4 Let o> —1 and 1 < p < 0o and S be a bounded operator on A? (B,,). If

Cy = sup [[S:1][a,m < 00,Co = sup [|S71][a,m < 00

z€B, zeby

for m > max{3,3(n+ a+1)/2(a+ 1)(p1 — 1)}, then there is a constant C' such that
[Sllap < CC)YP(C)V.
Proof For f € A2 (B,,) and w € B,,, we have

(SP)w) = (SF, K)o = / F(2)(57ES) (2)dva / () (SK@) (1) ().

To finish the proof, we just need to find the right test function h(z) and apply Lemma 3.3.
Choose h(z) = 1/(1 — [z[?)?, where 8 = 2(a 4+ 1)(p1 — 1)/3p1 and p1 = min{p,p'}. It is easy to
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see that 0 < 8 < min{(a + 1)/p, (o + 1)/p'}, then 0 < max{8p,Bp'} < a + 1. It also follows

from a simple computation that

in{ 3(n+a+1) 3} 5
. ca+l  (n+a+1) B . 3(n+a+1)—2a+1)(p—1) 2" p<2
min{ p v(n+a+1_5p)}_ min 3n+a+1) §} p>2
3n+a+1)—2(a+1)" 27 -

> min{ 3n+a+1) 3}'

3(n+a+1)—2(a+1)(p—1)"2
Similarly, we can show that

a+1 n+a+1)
B’ T (n+a+1-pp)

3(n+a+1) 3
3n+a+1)—2(a+1)(p—1)2

} > min{

min{

.

n+aoa+1 . n+a+1
Let s =m’. Thenm = s'. Form>max{3,%} 1<s<m1n{%,3n+a+l() J;;+i)(pl 1)}.

Thus from Lemma 3.2, we have

/ [(SK L) (w))[h(2)" dva(2) < C|| S 1o h(w)”

n

/B |(SEL (w))|h(w)Pdva (w) < C|lS:1|s h(2)?.

The conclusion of the proposition now follows from Lemma 3.3.

4. Proof of main results

Lemma 4.1 Suppose a > —1 and 1 < p < oo, then
(a) | K)o is equivalent to (1 — |z|2)~(FetD/p" for all z € B,,.
(b) KK, — 0 weakly in AE(B,) as z — OB,,.

Proof (a) Note that

1
Klp K(®) Pdu, :/ Pdug
1K, = [ 1w Pduaw) e )

_ / 1 — Jw|?|*dv(w)
= 5. |1 — <Z, w>|p(n+a+1).

Applying Lemma 3.1 gives

(n+a+1>

1K i ~ (1 = [2%)

(b) Let g € H*(B,,). Then

K ntott

g, ———Yal ~ lg(2)| - (1 = |2]?) " =0,
1S o

as |z| — 1. Since H®(B,) is dense in A? (B,), K /| K{|la, — 0 weakly in AP(B,) as
z — 0B,,.
See Ex. 7 on Page 181 of [3] for the following lemma.
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Lemma 4.2 Suppose 1 < p < co and K(z,w) is a measurable function on X x X such that

/X (/X |K(z,w)|10dv(w))p/_1dv(z) < .

Then the integral operator T defined by

/f K (2, w)dv(z)

is compact on LP.
To write the Berezin transform S (z) precisely, we need a power series formula for the Berezin

transform of a bounded operator S on A2 (B,,). From the definition of the reproducing kernel we

get
N (1 _ |Z|2)(n+a+1)/2 e oo
4O (w) = (G g = (RO 52 Gt
’ k=0
where Cy j, = ("+a+1)'k'i("+a+k). Considering the multinomial formula
N!
e Y M
|P|=N
we obtain

S(z) = (SE) k@), = (1 — |22t (S K, K(“>>a

=(1- |z|2)"+°‘+1<5’i0a & Z —uﬂzV ZCal Z Yo

k=0 lvI=k 1=0 18]= l
k!
= (1 - n+a+1 Z Oa koal Z Z ZVZB.
k,1=0 =k 1 = l
The following lemma is key to the proof of Theorem 1.1. While the way of the proof of Lemma

4.3 is basically adapted from Lemma 14 of [1], substantial amount of extra work is necessary for

the setting of weighted Bergman spaces of the unit ball.

Lemma 4.3 Let o > —1 and S be a bounded operator on AF,(B,,) for some p € (1,00) such
that

sup [|S:1|a,m < 00
z€B,

for some m > 1. Then S(z) — 0 as z — OB, if and only if for every t € [1,m), ||S.1]as — 0 as
z — 0B,.

Proof Suppose that for every t € [1,m), ||S:1]|a,s — 0 as z — IB,,. In particular, ||S;1]|a,1 — 0
as z — OB,. Thus [S(2)] = [(SES, &)a| = [(SULYL, UM )0 | = (81, 1)a] < [[S:1]laq — 0
as z — OB,,. Suppose S(z) — 0 as z — dB,,. Fix t € [1,m). We will show that [|S,1]4 — 0 as
z— OB,. For z € B, v = (71,725 ---»Vn), B = (81,82, -- -, Bn), Vi, Bi € Z4, we have
(S, w”)a| = [(SULw?, ULwh) o] = |(1 = [2[)" S (w0 . KY), wf 0 0. K(V)a|
< (1= 12" Sllagpllw” 0 0 K [laplw” 0 oo K |ap
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< (1= 12" S asp K o I KLl < ClS Nl = M,

where the last inequality comes from Lemma 4.1(a).

First we show that (S.1, wﬁ>a — 0 as z — 0B, for every multi-index (. If this is not true,
then there is a sequence zj, € B,, such that (S,, 1,w%), — agg, as |zx| — 1 for some nonzero
constant agg, and some By = (Bo1, Boz; - - - » Bon), Boi € Z1. We have showed that |(S,w?, w?),|
is uniformly bounded for z € B,, and v = (71,72, , ) 8= (51,02, -+, Bn)s Vi Bi € Zt.

Without loss of generality we may assume that for each v, 8 and some constant a.g,

(S, w7, w5>a — a~g. For z, A € B, by Lemma 2.4, we have

S.(N) = S(e-(\) = (1= [A]? ”*““ankcaz Z Zﬁ'Sw W NN (4.0)

k,1=0 Ivl= k7 R

For each A € B,,, it is easy to see that ¢, (\) — B, as z; — 0B,. Thus S(¢., (A)) — 0 as
z, — OB,, for each \ € B,,. Since

Z > [CanCa wmﬂ (S.w?, w) |

k,1=0 |y|=k |B|=l

< i S S (CanCare Lara) (807, 0%l

| |
RA=0 ||k | 8= sl
S R -
OIDIDD Ca»kcavlq@MI”IAIB = M[1L— (M| + -+ A ])) 2ot D)
k=0 |y|=k | 8| =L
the power series above converges absolutely. Replacing z by zx in (4.1) and taking the limit as

2z — OB, we have

(1 — [N?)ntott Z CokCal - Z M Z anm)ﬁ =0

k,1=0 =k B1=t

for each A € B,,. Let

an kCal Z M Z a’yﬁ)\’)’)\ﬁ

lvl= K " 18l= l
Then f(A) =0 for all A € B,,. This gives
o8I+ £
INBONY
for each ~, 8. On the other hand, we have for each v, 8
ol f k! y

oxvoxy V) = CarCarly gy
In particular, agg, = 0. This is a contradiction. Hence we obtain lim,_.gp, (S, 1, w5>a =0.
For A € B,,, we have

1

(1 — (w /\>)n+0¢+1 >O‘ = <Szl’ Z Cayk(<w7 )‘>)k>o¢

k=0

(S:1)(A) = (-1,




Compact operators on weighted Bergman spaces of the unit ball 93

= <Sz1,ica,k > —uﬂm a_z > cak S LY )o X,
k=0

lvI= k) k=0 |v|=Fk
Since

ZZ |cak— (8.1, w") M|<Z > |Cak—)\ (5.1, w")q|

k=0 |~|=k k=0 |~|=k
<MZ Z Cak—I/\I'Y* ML= (|A1] + -+ + | Ap))] - FotD
k=0 |y|=k

for each fixed A € B,,, we can see the power series above converges uniformly for z € B,,. This
gives lim,_sp, (S.1)(A) = 0 for each A € B,,. Thus lim,_,gp, |(S:1)(\)|* = 0 for each A € B,, and
€ [1,m). Let s =m/t. Then s > 1. Thus

[ SO o (3) = 8112 < sup -1 < o

This implies that {|S.1|'}.ep, is uniformly integrable. By Ex.10 (Vitali’s Theorem) on Page 133
a,t = 0.

of [4], lim,_,sm,

Proof of Theorem 1.1 If S is compact on AZ (B,,), then by Lemma 4.1 (b), <SKZ(°‘)/HKZ(°‘) e, ps
K K ap)a — 0 as z — 0B,. By Lemma 4.1(a), it is casy to see that S(z) is equivalent
to (SKZQ)/HKZO‘)HQ,Z,,Kz(a)/HKza)Ha)pﬁa for z € B,,. Thus S(z) — 0 as z — B,,.

Suppose that S(z) — 0 as z — dB,,. By Lemma 4.3 we have that 1S:1]|a,t — 0 as z — OB,
for every t € [1,m). We will show that S is compact on AP (B,,). Fix ¢ such that max{3,3(n +
a+1)/2(a+1)(p1 — 1)} <t < m in the rest of the proof.

For f € A2 (B,,) and w € B,,, we have from the proof of Lemma 3.4,

(SH(w)= | FE)SK)(w)dva(2).

For 0 < r < 1, define an operator S, on AE(B,,) by
(S = [ FESI) v ).

In other words, S, is the integral operator with kernel (SK2)(w)x,s, (2). We will use Lemma
4.2 to show that S, is compact on A2. Let

/ / I(SE@)( XT]B()|pdva(w))(p/_1)dva(z).

By Lemma 4.1(a),

1) = (SEE) w)Pdva ()’ dva(2)
L

n n

’ ’ ’ dv (Z)
() e\
< [I511%,p /an B8, pdva(2) < CIISIIE,, /TBn A= e)rart <

Thus from Lemma 4.2, S, is compact on AP (B,). Hence to prove that S is compact, we only
need to show that ||S — Sy|lap = 0asr—1".
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If r € (0,1), then S — S, is the integral operator with kernel (SK)(w)xs,\,, (), as can be
seen from above. The proof of Lemma 3.4 indicates that [|S — S,||a., < C(C1)/?(C2)'/?", where

Cy = sup{||S:1la : 7 < |z| < 1},Co = sup{||Si1||la,: : 2 € By }.

We have showed above that C; — 0 as r — 17. The hypothesis of the theorem gives that
Cy < co. Thus ||S — Srllap — 0 as 7 — 17, completing the proof. O

Proof of Theorem 1.3 Suppose S is a finite sum of operators of the form 7%, ---T%, , where
each f; € BT. By Lemmas 2.3 and 2.8, we have that S is bounded on A2 (B,,) for 1 < p < o0
and

sup ”Szl”a,m < 00, sup ”Szlna,m < 00,
z€B, z€B,

for all 1 < m < oo. Hence Theorem 1.3 follows from Theorem 1.1. O
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