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Abstract Consider the semiparametric varying-coefficient heteroscedastic partially linear model

Yi = Xτ

i β +Zτ

i α(Ti)+σiei, 1 ≤ i ≤ n, where σ2

i = f(Ui), β is a p×1 column vector of unknown

parameter, (Xi, Zi, Ti, Ui) are random design points, Yi are the response variables, α(·) is a

q-dimensional vector of unknown functions, ei are random errors. For both cases that f(·) is

known and unknown, we propose the empirical log-likelihood ratio statistics for the parameter β.

For each case, a nonparametric version of Wilks’ theorem is derived. The results are then used

to construct confidence regions of the parameter. Simulation studies are carried out to assess

the performance of the empirical likelihood method.

Keywords Empirical likelihood; heteroscedastic partially linear model; varying-coefficient

model; local linear method; confidence region.
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1. Introduction

Regression analysis is one of the most mature and widely applied branches of statistics.

Various regression models (such as parametric regressions, nonparametric regressions and semi-

parametric regressions) have been extensively studied by many researchers. Recently, there has

been increasing interest and activity in the general area of varying-coefficient partially linear

model in statistics which has the following form (see Fan and Huang (2005)):

Y = Xτβ + Zτα(T ) + ε, (1.1)

where Y is the response, (X, Z) ∈ Rp×Rq and T ∈ R are regressors, β = (β1, . . . , βp)
τ is a vector

of p-dimensional unknown parameters, α(T ) = (α1(T ), . . . , αq(T ))τ is a q-dimensional vector of

unknown functions and ε is the random error.

Obviously, model (1.1) includes many usual parametric, semiparametric, nonparametric and

varying-coefficient regression models. For example, when α(·) ≡ α where α is a constant vector,
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model (1.1) reduces to the usual linear regression model. When q = 1 and Z = 1, model (1.1)

becomes the famous partially linear regression model, which was proposed by Engle et al. (1986)

to study the effect of weather on electricity demand. The partially linear regression model has

attracted considerable attention in the last decade and various methods and techniques have

been proposed and studied (for example, kernel method; spline method; local polynomial type

estimator; series estimator; two-stage estimator; and others). A survey of the estimation and

application of partially linear regression model can be found in the monograph of Härdle et al.

(2000). When β = 0, i.e., the parametric component is removed, model (1.1) reduces to the

varying-coefficient regression model, which has been widely studied in the literature as well; see,

for example, the work of Hastie and Tibshirani (1993), Fan and Zhang (1999) and Huang et al.

(2002) among others.

It is well known that there are some striking advantages with the empirical likelihood (EL)

method proposed by Owen (1988,1990) in the construction of confidence regions and intervals for

unknown parameter. For example, the EL based inference does not involve covariance estimation

and the EL method uses only the data to determine the shape and orientation of confidence

regions. The EL method has been applied to partially linear model when the errors are assumed

to be independent and identically distributed (i.i.d.), see Shi and Lau (2000), and Wang and Jing

(1999, 2003). Meanwhile, when the errors are not i.i.d., the EL method has been successfully

applied to partially linear EV model, e.g. Fan and Liang (2010) applied the EL method to

partially linear model with linear process errors; Fan et al. (2010) proposed the empirical log-

likelihood ratio for the parametric parts and the nonparametric version of the Wilks’ theorems

was derived in heteroscedastic partially linear model with martingale difference errors. Lu (2009)

made empirical-likelihood-based inference for the parameters in heteroscedastic partially linear

models.

Model (1.1) has been extensively studied by many authors. For example, Zhang et al. (2002)

developed the procedures for estimation of the unknown parameters β and the unknown functions

α(·). Li et al. (2002) proposed a local least-squares method with a kernel weight function to

estimate the model (1.1). They also used this model to estimate the production function of

the nonmetal mineral industry in China. Fan and Huang (2005) proposed a profile least-squares

technique for estimating parametric component and the asymptotic normality of the profile least-

squares estimator was derived. Recently, You and Zhou (2006) used the EL method to study the

confidence regions construction for β in model (1.1) when the errors are i.i.d. However, in many

cases, the homoscedastic assumption for the errors is strict and has limited applications and

heteroscedasticity is often found in residuals from both cross-sectional and time series modeling

in applications. It is well known that if the errors are heteroscedastic, the least-squares estimator

of β is inefficient and the conventional estimator of the covariance matrix is usually inconsistent.

Heteroscedasticity has been applied to the partially linear model by many researchers, see Baltagi

(1995), Carroll (1982), You and Chen (2005), You et al. (2007) and Fan et al. (2010) among others.

Motivated by the above, in this paper, we assume the error in model (1.1) is heteroscedastic and

a function (known or unknown) of random variables. To the best of our knowledge, this point
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has not been discussed in the literature.

Suppose that {Yi, Xi, Zi, Ti, 1 ≤ i ≤ n} is a sample from (Y, X, Z, T ) in the model (1.1) with

ε =
√

f(U)e, where f(·) is a function defined on a compact subset Ω of the real line R, i.e.,

Yi = Xτ
i β + Zτ

i α(Ti) + εi, 1 ≤ i ≤ n, (1.2)

where εi =
√

f(Ui)ei := σiei, Xi = (Xi1, . . . , Xip)
τ . The model (1.2) belongs to semiparametric

varying-coefficient heteroscedastic partially linear regression model. Let {Xi, Zi, Ti, Ui, ei, 1 ≤
i ≤ n} be i.i.d. random variables with E(ei|Xi, Zi, Ti, Ui) = 0 a.s. and Var(ei|Xi, Zi, Ti, Ui) = 1

a.s.

The rest of this paper is organized as follows. The empirical log-likelihood ratio for β is

proposed in Section 2. Assumption conditions and main results are given in Section 3. Simulation

studies are conducted in Section 4. The proofs of the main results are relegated to Section 5.

2. Empirical likelihood of the parametric components

In this section we construct the empirical likelihood confidence region of the parameter vector

β when f is known and unknown, respectively. To apply the empirical likelihood method to

the semiparametric varying-coefficient heteroscedastic partially linear model, we have to give

estimators of αj(·) (j = 1, . . . , q) and f(·).
Our basic idea is as follows: without considering heteroscedasticity, suppose β is known, then

the model (1.2) can be reduced to a varying-coefficient regression model which can be written as

Yi −
p∑

j=1

Xijβj =

q∑

j=1

Zijαj(Ti) + εi, 1 ≤ i ≤ n, (2.1)

where Xij and Zij are the jth elements of Xi and Zi, respectively.

Now, apply a local linear regression technique to estimate the varying coefficient functions

{αj(·), j = 1, . . . , q} in (2.1). For t in a small neighborhood of t0, one can approximate αj(t)

locally by a linear function

αj(t) ≈ αj(t0) + α′
j(t0)(t − t0) ≡ aj + bj(t − t0), j = 1, . . . , q,

where α′
j(t) = ∂αj(t)/∂t. This leads to the following weighted local least-squares problem: find

{(aj , bj), j = 1, . . . , q} to minimize

n∑

i=1

{(
Yi −

p∑

j=1

Xijβj

)
−

q∑

j=1

[aj + bj(Ti − t)]Zij

}2

Kh1
(Ti − t), (2.2)

where Kh1
(·) = K(·/h1)/h1, K(·) is a kernel function and h1 = h1n is a sequence of positive

numbers tending to zero, called bandwidth. Simple calculation yields

(α̂1(t), . . . , α̂q(t), h1b̂1(t), . . . , h1b̂q(t))
τ = (Dτ

t wtDt)
−1Dτ

t wt(Y − Xβ),
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where

X =





Xτ
1

...

Xτ
n



 =





X11 · · · X1p

...
. . .

...

Xn1 · · · Xnp



 , Dt =





Zτ
1

T1−t
h1

Zτ
1

...
...

Zτ
n

Tn−t
h1

Zτ
n



 ,

Y = (Y1, . . . , Yn)τ and wt = diag(Kh1
(T1 − t), . . . , Kh1

(Tn − t)).

When the function f(Uk) = σ2
k is unknown, the local linear estimator of f(·) is defined by

f̂n(·) = µ̂, where

(µ̂, ν̂) = arg min
µ,ν

n∑

i=1

{[
Yi −

p∑

j=1

Xijβj −
q∑

j=1

α̂j(Ti)Zij

]2 − µ − ν(Ui − u)
}2

Kh2
(Ui − u).

Then we get the estimator of σ2
k,

σ̂2
nk = f̂n(Uk) =

n∑

i=1

Wh2i(Uk)
(
Yi −

p∑

j=1

Xijβj −
q∑

j=1

α̂j(Ti)Zij

)2

, (2.3)

where h2 = h2n is a bandwidth and Wh2i(u) = Uh2i(u)/
∑n

j=1 Uh2j(u) with Uh2i(u) = Kh2
(Ui−

u){Sh2,2(u) − (Ui − u)Sh2,1(u)}, Sh2,l(u) = 1
nh2

∑n
i=1 K

(
Ui−u

h2

)
(Ui − u)l, l = 0, 1, 2.

Let

Ỹi = Yi −
n∑

k=1

SikYk, X̃ij = Xij −
n∑

k=1

SikXkj ,

where Sik is the (i, k)th component of matrix S with

S =





(Zτ
1 0τ

q )(Dτ
T1

wT1
DT1

)−1Dτ
T1

wT1

...

(Zτ
n 0τ

q )(Dτ
Tn

wTn
DTn

)−1Dτ
Tn

wTn



 .

In order to introduce two auxiliary random variables which will be used to define the empirical

log-likelihood ratio functions, as to model (1.2), let d2
n(β) = 1

n

∑n
i=1 σ−2

i

[
(Yi −Xτ

i β−Zτ
i α̂(Ti)

]2
.

An estimator of the true parameter β0 should make d2
n(β) attain minimum, hence we have

n∑

i=1

σ−2
i

[
X̃i(Yi − Xτ

i β − Zτ
i α̂(Ti))

]
= 0.

We now introduce two auxiliary random variables Λki(β) (k = 1, 2) under the conditions that

f is known and unknown, respectively,

Λ1i(β) = σ−2
i X̃i(Yi − Xτ

i β − Zτ
i α̂(Ti)) = σ−2

i X̃i(Ỹi − X̃τ
i β), (2.4)

Λ2i(β) = σ̂−2
ni X̃i(Yi − Xτ

i β − Zτ
i α̂(Ti)) = σ̂−2

ni X̃i(Ỹi − X̃τ
i β). (2.5)

Similarly to Owen (1990), we define an empirical log-likelihood ratio function under the

conditions that f is known and unknown, respectively, as follows.

Lkn(β) = −2 max
{ n∑

i=1

log(npki) :

n∑

i=1

pkiΛki(β) = 0, pki ≥ 0,

n∑

i=1

pki = 1
}
.
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By the Lagrange multiplier method, one can obtain that pki = 1
n[1+λτ

k
Λki(β)] , and Lkn(β) can be

represented as

Lkn(β) = 2
n∑

i=1

log{1 + λτ
kΛki(β)}, k = 1, 2, (2.6)

where λk(β) is determined by

1

n

n∑

i=1

Λki(β)

1 + λτ
kΛki(β)

= 0, k = 1, 2. (2.7)

We will show in the next section that if β is the true parameter vector, Λkn(β) (k = 1, 2) is

asymptotically χ2-distributed when f is known and unknown, respectively.

3. The asymptotic results

In this section, we establish the nonparametric Wilks’ theorem for Λkn(β) (k = 1, 2) when f

is known and unknown, respectively. Let C denote positive constants whose values may vary at

each occurrence. Before formulating the main results, we first give the following assumptions.

(A1) The random variables T and U both have a bounded support Ω; The density functions

pT (t) of T and pU (u) of U both are Lipschitz continuous and bounded away from 0 on Ω.

(A2) The q× q matrix Γ(T )=̂E(ZZτ |T ) is nonsingular for each T ∈ Ω. E(XXτ |T ), Γ−1(T )

and Φ(T )=̂E(ZXτ |T ) are all Lipschitz continuous.

(A3) There is an s > 2 such that E‖X‖2s < ∞, E‖Z‖2s < ∞, E‖U‖2s < ∞, E|e|2s < ∞,

and for some δ < 2 − s−1 there is n2δ−1h1 → ∞.

(A4) {αj(·), j = 1, . . . , q} and f(·) have the continuous second derivative in Ω and 0 < m0 ≤
min1≤i≤n f(Ui) ≤ max1≤i≤n f(Ui) ≤ M0 < ∞ a.s.

(A5) The kernel K(v) is a symmetric probability density function with a continuous deriva-

tive on its support [−1, 1].

(A6) The bandwidth h1 satisfies nh2
1/ log2 n → ∞ and nh8

1 → 0.

(A7) The bandwidths h1 and h2 satisfy that n1− 3

2s h1/ log2 n → ∞, n3/sh8
1 log2 n = O(1),

nh5
2 = O(1), nh

s/(s−2)
2 → ∞, n1−1/sh

1/2
1 h2/ log3/2 n → ∞ and n−(1/2−1/s)h2

1h
−1
2 log n = O(1).

Remark 2.1 Assumptions (A1)–(A7), while looking a bit lengthy, are actually quite mild and

can be easily satisfied. (A1)–(A5) can be found in Fan and Huang (2005) and Fan et al. (2010).

The technical conditions of (A6) and (A7) are easily satisfied. For example, when s = 3, we can

choose h1 = h2 = Cn−1/4.

Theorem 3.1 Suppose that (A1)–(A6) hold. For model (1.2), if β0 is the true value of the

parameter β, then L1n(β0)
d→ χ2

p, where χ2
p is a standard chi-square random variable with p

degrees of freedom and
d→ stands for convergence in distribution.

Theorem 3.2 Suppose that (A1)-(A7) hold. If β0 is the true value of the parameter β in model

(1.2), then L2n(β0)
d→ χ2

p.

Remark 2.2 By using Theorems 3.1 and 3.2, an approximate 1 − α level confidence region for
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β0 can be taken as Ikα = {β : Lkn(β) ≤ cα}, k = 1, 2 under the conditions that f(·) is known

and unknown, respectively, where cα is chosen to satisfy P (χ2
p ≤ cα) = 1 − α.

4. Simulation studies

In this section, we report some Monte Carlo experiments for the proposed EL method of

varying-coefficient heteroscedastic partially linear model (1.2) in the cases p = 1 and p = 2.

First, we conduct a simulation study with p = 1. For simplicity we consider the following

semiparametric varying-coefficient heteroscedastic partially linear model:

Yi = Xiβ0 + Zτ
i α(Ti) +

√
f(Ui)ei,

where β0 = 1. Take f(u) = 1−0.5·sin(4πu) when f(·) is known. When f(·) is unknown, we utilize

(2.3) to estimate f(·). The design points Xi ∼ N(1, 1), the covariate Ti is uniformly distributed

on [0, 1], Ui ∼ N(0, 1), ei ∼ N(0, 1), the nonparametric component α(t) = (α1(t), α2(t))
τ with

q = 2 in which Zi1 and Zi2 are normal random variables with mean 1 and variance 1, and the

coefficient functions are given as α1(t) = sin(2πt) and α2(t) = t/(1 + t).

In the simulation below, let K(t) be bi-weight kernel function K(t) = 15
16 (1 − t2)2I{|t| ≤ 1}

and h1 = h2 = n−1/5. The sample sizes n are chosen to be 20, 50 and 100, respectively. The

coverage probabilities and the average lengths of the confidence intervals are calculated based

on 1000 samples of simulated data. The nominal levels are taken to be α = 0.10, 0.05. Some

representative coverage probabilities and average lengths of confidence intervals are reported in

Tables 1 and 2 when f is known and unknown, respectively.

n
α = 0.10 α = 0.05

CP AL CP AL

20 0.780 0.5782 0.853 0.6254

50 0.863 0.4145 0.920 0.5087

100 0.881 0.2631 0.928 0.3127

Table 1 Coverage probabilities (CP) and average lengths (AL): when f(·) is known and β0 = 1

n
α = 0.10 α = 0.05

CP AL CP AL

20 0.778 0.5788 0.833 0.6282

50 0.852 0.4158 0.913 0.5136

100 0.865 0.2846 0.924 0.3502

Table 2 Coverage probabilities (CP) and average lengths (AL): when f(·) is unknown and β0 = 1

Next, we conduct the simulation for the model (1.2) in the case p = 2. Consider the following

semiparametric varying-coefficient heteroscedastic partially linear model:

Yi = Xτ
i β0 + Zτ

i α(Ti) +
√

f(Ui)ei,
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where β0 = (1, 1)τ , Xi i.i.d. ∼ N(1, I2), where I2 is the 2 × 2 unit matrix. The other settings

are the same as the above p = 1 case.

When the sample sizes n are chosen to be 20, 50 and 100, the coverage probabilities of the

confidence regions of β0 are calculated from 500 runs and the nominal levels are taken to be

α = 0.10 and 0.05, respectively. The representative coverage probabilities of confidence regions

are reported in Table 3. On the other hand, when the sample size n = 50, we plot the confidence

region for β0 which satisfies Lkn(β) ≤ cα(k = 1, 2). Here cα is the (1 − α)-quantile of standard

chi-square distribution with 2 degrees of freedom with α = 0.10 and 0.05. The confidence regions

of β0 are presented in Figures 1 and 2 when f is known and unknown, respectively.

From Tables 1–3, we see the EL method performs well in size for known and unknown f . It

can be seen that the coverage probabilities of the confidence intervals (regions) tend to increase

and the average lengths decrease as the sample size n becomes larger. At the same time, it is clear

that the confidence intervals (regions) in the case for known f have bigger coverage probabilities

and shorter average lengths than those in the case for unknown f . Figures 1 and 2 show that

the confidence regions of β0 with α = 0.05 are wider than those with α = 0.10 for known and

unknown f .

n
α = 0.10 α = 0.05

f known f unknown f known f unknown

20 0.778 0.776 0.851 0.831

50 0.856 0.845 0.917 0.912

100 0.878 0.862 0.925 0.920

Table 3 Coverage probabilities: when β0 = (1, 1)τ and f(·) is known and unknown respectively

5. Proofs of the main results

For convenience and simplicity, let cn = {(nh1)
−1 log n}1/2 + h2

1, µk =
∫

tkK(t)dt, and

vk =
∫

tkK2(t)d t, k = 0, 1, 2, 4. {j1, . . . , jn} stands for any permutation of {1, . . . , n}.

Lemma 5.1 ([16, Lemma 1]) Let {ζi, . . . , ζn} be i.i.d. random variables with Eζ1 = 0, and

E|ζ1|r ≤ C < ∞ for some r > 1. Suppose that {aij , 1 ≤ i, j ≤ n} is a series of real numbers such

that max1≤j≤n

∑n
i=1 |aij | ≤ C < ∞. Set dn = max1≤i,j≤n |aij |. Then max1≤j≤n |∑n

i=1 aijζi| =

O((n1/rdn ∨ d
1/2
n ) log n) a.s.

Lemma 5.2 Let {ζi, . . . , ζn} be i.i.d. random variables.

(i) If Eζ1 = 0 and E|ζ1|3 < ∞, then max1≤m≤n |∑m
i=1 ξji

| = O(n1/2 log n) a.s.

(ii) If E|ζ1|s is bounded for s > 1, then max1≤i≤n |ζi| = o(n1/s) a.s.

(i) in Lemma 5.2 is a particular situation of Lemma 4 in Sun et al. (2002) and the proof of (ii)

in Lemma 5.2 can be found in Shi and Lau (2000).

Lemma 5.3 Suppose that (A1)–(A6) hold. Then as n → ∞ there hold uniformly in T ∈ Ω

Dτ
T wT DT = npT (T )Γ(T ) ⊗ diag(1, µ2){1 + Op(cn)},
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Dτ
T wT X = npT (T )Φ(T ) ⊗ (1, 0)τ{1 + Op(cn)},

Dτ
T wT M = npT (T )Γ(T ) ⊗ (1, 0)τα(T ){1 + Op(cn)},

where ⊗ is the Cronecker product. See the proof of Lemma 2 in Fan and Huang (2005).
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Figure 1 The plots of confidence regions for β0 = (β1, β2)

τ = (1, 1)τ when f is known
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Figure 2 The plots of confidence regions for β0 = (β1, β2)
τ = (1, 1)τ when f is unknown

Lemma 5.4 Under the conditions of Theorem 3.1, we have

1√
n

n∑

i=1

Λ1i(β0)
d→ N(0, Σ), (5.1)

1

n

n∑

i=1

Λ1i(β0)Λ
τ
1i(β0)

p→ Σ, (5.2)

max
1≤i≤n

‖Λ1i(β0)‖ = op(n
1/2), (5.3)

λ1 = Op(n
−1/2), (5.4)

where Σ = E{f−1/2(U)(X − Φτ (T )Γ−1(T )Z)}⊗2. Here A⊗2 = AAτ . Note that

Σ = E(f−1(U))
{
E(XXτ) − E

[
Φ(T )τΓ(T )−1Φ(T )

]}

if U is independent of (X, Z, T ).
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Proof Put M =
(
ατ (T1)Z1, . . . , α

τ (Tn)Zn

)τ
and ε = (ε1, . . . , εn)τ . By the definition of Λ1i(β0)

and Lemma A.4 in Fang and Huang (2005), we can derive that

1√
n

n∑

i=1

Λ1i(β0) =
1√
n

n∑

i=1

σ−2
i

(
Xi − XτSi

)(
εi − ετSi + Zτ

i α(Ti) − M τSi

)

=
1√
n

n∑

i=1

σ−2
i

(
Xi − Φτ (Ti)Γ

−1(Ti)Zi

)
εi + op(1)

=
1√
n

n∑

i=1

f−1/2(Ui)
(
Xi − Φτ (Ti)Γ

−1(Ti)Zi

)
ei + op(1)

:=
1√
n

n∑

i=1

ηin + op(1). (5.5)

Obviously, ηin are i.i.d. random vectors with Eηin = 0 and Cov(ηin) = Σ. Then, by the

multivariate central limit theorem, we have

1√
n

n∑

i=1

ηin
d→ N(0, Σ). (5.6)

Therefore, by (5.5) and (5.6), we obtain (5.1).

By (5.5) and Cov(ηin) = Σ, we can easily prove (5.2). From (A4) and Lemma 5.3 in You

and Zhou (2006), we can derive (5.3). Using (5.2) and (5.3), we can easily get (5.4). 2

Proof of Theorem 3.1 Applying the Taylor expansion, from (2.6) and Lemma 5.4, we obtain

that

L1n(β0) = 2
n∑

i=1

{λτ
1Λ1i(β0) − [λτ

1Λ1i(β0)]
2/2} + op(1). (5.7)

By (2.7), it follows that

0 =
1

n

n∑

i=1

Λ1i(β0)

1 + λτ
1Λ1i(β0)

=
1

n

n∑

i=1

Λ1i(β0) −
1

n

n∑

i=1

Λ1i(β0)Λ
τ
1i(β0)λ1 +

1

n

n∑

i=1

Λ1i(β0)[λ
τ
1Λ1i(β0)]

2

1 + λτ
1Λ1i(β0)

. (5.8)

In view of Lemma 5.4, we have

∥∥∥
1

n

n∑

i=1

Λ1i(β0)[λ
τ
1Λ1i(β0)]

2

1 + λτ
1Λ1i(β0)

∥∥∥ ≤ 1

n

n∑

i=1

‖Λ1i(β0)‖3‖λ1‖2

|1 + λτ
1Λ1i(β0)|

≤ ‖λ1‖2 max
1≤i≤n

‖Λ1i(β0)‖
1

n

n∑

i=1

‖Λ1i(β0)‖2 = Op(n
−1)op(n

1/2)Op(1) = op(n
−1/2),

which, together with (5.8), yields that
∑n

i=1[λ
τ
1Λ1i(β0)]

2 =
∑n

i=1 λτ
1Λ1i(β0) + op(1) and

λ1 =
[ n∑

i=1

Λ1i(β0)Λ
τ
1i(β0)

]−1 n∑

i=1

Λ1i(β0) + op(n
−1/2).
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Then, by (5.7), we have

L1n(β0) =
( 1√

n

n∑

i=1

Λ1i(β0)
)τ( 1

n

n∑

i=1

Λ1i(β0)Λ
τ
1i(β0)

)−1( 1√
n

n∑

i=1

Λ1i(β0)
)

+ op(1),

which, combining with Lemma 5.4, yields that L1n(β0)
d→ χp. 2

Lemma 5.5 Assume that (A1), (A4), (A5) and (A7) hold, we have

max
1≤k≤n

∣∣∣f(Uk) −
n∑

i=1

Wh2i(Uk)f(Ui)
∣∣∣ = Op(h

2
2).

Proof Note that the kernel K(·) in (A5), Ui in (A1) and h2 in (A7) satisfy Conditions 1, 2 and

7 in Xiao et al. (2003), hence Lemma 5.5 holds by (A.14) in Xiao et al. (2003). 2

Lemma 5.6 Under the conditions of Theorem 3.2, we have

max
1≤k≤n

|f̂n(Uk) − f(Uk)| = Op(an),

where an = (nh2)
−1/2 log n + n1/sc2

n + n−( 1

2
− 1

2s
)h−1

2 cn log n.

Proof Write

f̂n(Uk) − f(Uk) =

n∑

i=1

Wh2i(Uk)(Yi − Xτ
i β − α̂τ (Ti)Zi)

2 − f(Uk)

=
[ n∑

i=1

Wh2i(Uk)σ2
i e2

i − f(Uk)
]

+

n∑

i=1

Wh2i(Uk)
[
ατ (Ti)Zi − α̂τ (Ti)Zi

]2

+

2

n∑

i=1

Wh2i(Uk)
[
ατ (Ti)Zi − α̂τ (Ti)Zi

]
σiei

:=A1n(Uk) + A2n(Uk) + A3n(Uk).

Obviously,

max
1≤k≤n

|A1n(Uk)| ≤ max
1≤k≤n

∣∣∣
n∑

i=1

Wh2i(Uk)f(Ui)(e
2
i − 1)

∣∣∣ + max
1≤k≤n

∣∣∣f(Uk) −
n∑

i=1

Wh2i(Uk)f(Ui)
∣∣∣

:= A11n + A12n.

By Lemma 8.3 in Chiou and Müller (1999), we have

Wh2j(u) =
1

nh2
K

(Uj − u

h2

)/
pU (u) + O

( 1

n

)
a.s.,

which implies that

max
1≤i,j≤n

|Wh2j(Ui)| = O((nh2)
−1) a.s. (5.9)

by (A1) and (A5), and

sup
u∈Ω

n∑

j=1

|Wh2j(u)| ≤ sup
u∈Ω

C

nh2

∣∣∣
n∑

j=1

K
(Uj − u

h2

)
− E

n∑

j=1

K
(Uj − u

h2

)∣∣∣+

sup
u∈Ω

C

nh2

n∑

j=1

E
[
K

(Uj − u

h2

)]
+ O(1)
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:=K1n + K2n + O(1) a.s.

From (A1) and (A5), it is easy to verify that K2n = O(1). In view of the finite cover theorem and

Bernstein’s Inequality (cf. Härdle et al. (2000), Page 183), from (A1), (A5) and (A7) it follows

that K1n = o(1) a.s. Therefore

sup
0≤u≤1

n∑

j=1

∣∣Wh2j(u)
∣∣ = O(1) a.s. (5.10)

Thus, from (5.9), (5.10), Lemma 5.1, (A3) and (A7), we can obtain

A11n = O
((

n−(1−1/s)h−1
2 ∨ (nh2)

−1/2
)
log n

)
= O

(
(nh2)

−1/2 log n
)

a.s.,

which, together with (A7) and Lemma 5.5, yields that

max
1≤k≤n

|A1n(Uk)| = Op

(
(nh2)

−1/2 log n
)
.

According to Theorem 3.5 in You and Chen (2006), we have

max
1≤j≤q

max
1≤i≤n

∣∣α̂j(Ti) − αj(Ti)
∣∣ = O(cn) a.s. (5.11)

Note that max1≤i≤n ‖Zi‖ = o(n1/2s) a.s. by (A3) and Lemma 5.2. Then, from (A3) and (5.9)–

(5.11) by using the Abel inequality (see Härdle, Liang and Gao (2000), page 183), we find

max
1≤k≤n

|A2n(Uk)| ≤ max
1≤j≤q

max
1≤i≤n

∣∣α̂j(Ti) − αj(Ti)
∣∣2 · max

1≤i≤n
‖Zi‖2 · max

1≤k≤n

n∑

i=1

|Wh2i(Uk)|

=o(n1/sc2
n) a.s.

max
1≤k≤n

|A3n(Uk)| ≤2 · max
1≤j≤q

max
1≤i≤n

∣∣α̂j(Ti) − αj(Ti)
∣∣ · max

1≤i≤n
‖Zi‖ · max

1≤i≤n
|σi| max

1≤i,k≤n
|Wh2i(Uk)|·

max
1≤m≤n

∣∣∣
m∑

i=1

eji

∣∣∣ = o
(
n−( 1

2
− 1

2s
)h−1

2 cn log n
)

a.s.

Thus, we obtain that max1≤k≤n |f̂n(Uk) − f(Uk)| = Op(an). 2

Lemma 5.7 Under the conditions of Theorem 3.2, we have

1√
n

n∑

i=1

Λ2i(β0)
d→ N(0, Σ), (5.12)

1

n

n∑

i=1

Λ2i(β0)Λ
τ
2i(β0)

p→ Σ, (5.13)

max
1≤i≤n

‖Λ2i(β0)‖ = op(n
1/2), (5.14)

λ2 = Op(n
−1/2). (5.15)

Proof We only prove (5.12) and (5.13) here, since the proofs of (5.14) and (5.15) are similar to

those of (5.3) and (5.4). We first establish (5.12). It is easy to see that n−1/2
∑n

i=1 Λ1i(β0)
d→

N(0, Σ) under the conditions of Theorem 3.2. Thus, it suffices to show that n−1/2
∑n

i=1(Λ1i(β0)−
Λ2i(β0))

p→ 0. Let σ̈ni = σ−2
i − σ̂−2

ni . By (A4) and Lemma 5.6 we have

max
1≤i≤n

|σ̈ni| = Op(an). (5.16)
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Observe that

1√
n

n∑

i=1

(Λ1i(β0) − Λ2i(β0)) =
1√
n

n∑

i=1

σ̈niX̃i(Ỹi − X̃τ
i β0)

=
1√
n

n∑

i=1

σ̈niX̃iσiei +
1√
n

n∑

i=1

σ̈niX̃iZ
τ
i (α(Ti) − α̂(Ti))

:= B1n + B2n.

Note that max1≤i≤n ‖X̃i‖ = o(n1/2s) a.s. Then, from (A3), (A6), (A7), (5.11), (5.16) and Lemma

5.2, by using the Abel inequality, we can derive that

‖B1n‖ ≤ Cn−1/2 max
1≤i≤n

|σ̈ni| · max
1≤i≤n

‖X̃i‖ · max
1≤m≤n

∣∣∣
m∑

i=1

eji

∣∣∣ = op(n
1

2s an log n) = op(1),

‖B2n‖ ≤ Cn−1/2 max
1≤i≤n

|σ̈ni| · max
1≤i≤n

‖X̃i‖ · max
1≤i≤n

∥∥α(Ti) − α̂(Ti)
∥∥ · max

1≤m≤n

∥∥∥
m∑

i=1

Zji

∥∥∥

= op

(
n

1

2s ancn log n
)

= op(1).

Hence, (5.12) is verified.

As to (5.13), in view of (5.2), it suffices to show that

n−1
n∑

i=1

(
Λ2i(β0)Λ

τ
2i(β0) − Λ1i(β0)Λ

τ
1i(β0)

) p→ 0. (5.17)

Denote σ̆ni = σ−4
i − σ̂−4

ni . (A4) and Lemma 5.6 imply that

max
1≤i≤n

|σ̆ni| = Op(an). (5.18)

We write

1

n

n∑

i=1

(
Λ2i(β0)Λ

τ
2i(β0) − Λ1i(β0)Λ

τ
1i(β0)

)
=

1

n

n∑

i=1

σ̆niX̃iX̃
τ
i (Ỹi − X̃τ

i β0)
2

=
1

n

n∑

i=1

σ̆niX̃iX̃
τ
i σ2

i e2
i +

1

n

n∑

i=1

σ̆niX̃iX̃
τ
i

[
Zτ

i (α(Ti) − α̂(Ti))
]2

+

2

n

n∑

i=1

σ̆niX̃iX̃
τ
i Zτ

i [α(Ti) − α̂(Ti)]σiei

:= R1n + R2n + R3n.

From Lemma 5.3 and simple calculation, it is easy to see that

(Zτ
i , 0τ

q )(Dτ
Ti

wTi
DTi

)−1Dτ
Ti

wTi
X = Zτ

i Γ−1(Ti)Φ(Ti){1 + Op(cn)}, (5.19)

which together with (A3), (A6), (A7), Lemma 5.3 and the Abel inequality yields that, for any

p × 1 vector a,

|aτR1na| =n−1
∣∣∣aτ

n∑

i=1

σ̆ni

[
Xi − Φτ (Ti)Γ

−1(Ti)Zi + Op(cn)‖Zi‖
]
·

[
Xi − Φτ (Ti)Γ

−1(Ti)Zi + Op(cn)‖Zi‖
]τ

σ2
i e2

i a

∣∣∣
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≤Cn−1 max
1≤i≤n

|σ̆ni| · max
1≤i≤n

‖Xi‖ · max
1≤i≤n

e2
i · max

1≤m≤n

∥∥∥
m∑

i=1

Xji

∥∥∥

=op

(
n−( 1

2
− 3

2s
)an log n

)
= op(1).

Thus, we obtain that R1n = op(1). Similarly, by (5.11), we can easily get R2n = op(1) and

R3n = op(1). This completes the proof of Lemma 5.7. 2

Proof of Theorem 3.2 According to Lemma 5.7 and following the arguments in the proof of

Theorem 3.1, one can easily verify Theorem 3.2. 2
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