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Abstract Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the

vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be

the set of colors of vertex u and edges incident to u under f . For an IE-total coloring f of G

using k colors, if C(u) 6= C(v) for any two different vertices u and v of V (G), then f is called

a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The

minimum number of colors required for a VDIET coloring of G is denoted by χie
vt(G), and it is

called the VDIET chromatic number of G. We will give VDIET chromatic numbers for complete

bipartite graph K4,n (n ≥ 4), Kn,n (5 ≤ n ≤ 21) in this article.
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1. Introduction and preliminaries

The vertex distinguishing proper edge coloring and point distinguishing general edge coloring

were studied in [1-5, 8-9] and [7, 10-14], respectively.

For a total coloring (proper or not) f of G and a vertex v of G, denote by Cf (v), or simply

C(v) if no confusion arises, the set of colors used to color the vertex v as well as the edges incident

to v. Let C(v) be the complementary set of C(v) in the set of all colors we used. Obviously,

|C(v)| ≤ dG(v) + 1 and the equality holds if the total coloring is proper.

For a proper total coloring, if C(u) 6= C(v), i.e., C(u) 6= C(v) for any two distinct vertices u

and v, then the coloring is called vertex-distinguishing (proper) total coloring and the minimum

number of colors required for a vertex-distinguishing (proper) total coloring is denoted by χvt(G).

This concept has been considered in [6, 15]. The following conjecture was given in [15].

Conjecture 1 Suppose G is a simple graph and nd is the number of vertices of degree d,
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δ ≤ d ≤ ∆. Let k be the minimum positive integer such that
(

k
d+1

)

≥ nd for all d such that

δ ≤ d ≤ ∆. Then χvt(G) = k or k + 1.

From [15] we know that the above conjecture is valid for complete graph, complete bipartite

graph, path and cycle, etc.

The total coloring of a graph G such that no two adjacent vertices receive the same color is

called an IE- total coloring of a graph G. If f is an IE- total coloring of graph G using k colors

and ∀u, v ∈ V (G), u 6= v, we have C(u) 6= C(v), then f is called k-vertex-distinguishing IE-total

coloring, or k-VDIET coloring. The minimum number k for which G has a vertex-distinguishing

IE-total coloring using k colors is denoted by χie
vt(G) and called the vertex-distinguishing IE-total

chromatic number of graph G. The following proposition is obviously true.

Proposition 1 χie
vt(G) ≤ χvt(G).

For a graph G, let ni denote the number of the vertices of degree i, δ ≤ i ≤ ∆. Let

ξ(G) = min{k|

(

k

1

)

+

(

k

2

)

+ · · · +

(

k

s

)

+

(

k

s + 1

)

≥ nδ + nδ+1 + · · · + ns, δ ≤ s ≤ ∆}.

Obviously, we have χie
vt(G) ≥ ξ(G). We will consider the VDIET colorings of complete

bipartite graph K4,n (n ≥ 4) and Kn,n (5 ≤ n ≤ 21) in this paper.

2. Vertex distinguishing IE-total chromatic numbers of K4,n

Lemma 1 For 4 ≤ n ≤ 7, K4,n has a 4-VDIET coloring.

Proof We give a VDIET coloring of K4,n with colors 1, 2, 3, 4 as follows. Let u1, u2, u3, u4

receive color 1. Let S1 = ({4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {2, 3, 4}). Let C(vj) be the

j-th term of S1, j = 1, 2, . . . , n. Assign 4 to v1 and all its incident edges. Assign 2 to v2,

u1v2, and u3v2 and assign 1 to u2v2, u4v2; Assign 3 to v3 and 1 to all incident edges of v3;

Assign 2 to v4 and 4 to all incident edges of v4; Assign 3 to v5 and 4 to all incident edges

of v5 (when n ≥ 5). Color u1v6, u2v6, u3v6, u4v6, v6 by 3, 1, 2, 1, 3, respectively (when n ≥ 6).

Color u1v7, u2v7, u3v7, u4v7, v7 by 2, 3, 2, 4, 2, respectively (if n = 7). For the resulting coloring,

C(u1) = {1, 2, 3, 4}, C(u2) = {1, 3, 4}, C(u3) = {1, 2, 4} and C(u4) = {1, 4}. So the resulting

coloring is 4-VDIET coloring of K4,n. 2

Lemma 2 K4,n has a 5-VDIET coloring for 8 ≤ n ≤ 23.

Proof Arrange all the subsets of {1, 2, 3, 4, 5}, except for ∅, {1}, {2}, {3}, {2, 3}, {1, 2, 3, 4, 5},

{1, 3, 4, 5}, {1, 2, 4, 5}, {1, 4, 5}, as follows.

S2 = ({4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 2, 4},

{1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5}).

We give a 5-VDIET coloring as follows. Let u1, u2, u3, u4 receive color 1. Let C(u1) =

{1, 2, 3, 4, 5}, C(u2) = {1, 3, 4, 5}, C(u3) = {1, 2, 4, 5}, C(u4) = {1, 4, 5}. Let C(vj) be the j-th

term of S2, j = 1, 2, . . . , n. Obviously, C(ui) ∩ C(vj) 6= ∅, 1 ≤ i ≤ 4, 1 ≤ j ≤ n. Assign 4

to v1 and all its incident edges and assign 5 to v2 and all its incident edges. Color u1v3, u2v3,
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u3v3, u4v3 and v3 by 2, 1, 2, 1 and 2, respectively. Color u1v4, u2v4, u3v4, u4v4 and v4 by 3, 3, 1, 1

and 3, respectively. For j ≥ 5, if C(vj) = {1, b}, then color vj by b and u1vj , u2vj , u3vj , u4vj by 1.

If C(vj) = {2, b}, b = 4 or 5, then color vj by 2 and u1vj , u2vj , u3vj , u4vj by b. If C(vj) = {a, b},

2 < a < b, then color vj , u1vj , u2vj by a and u3vj , u4vj by b. If C(vj) = {a, b, c} 6= {1, 2, 3},

1 ≤ a < b < c ≤ 5, then color vj by b, u1vj by a, u2vj , u3vj , u4vj by c. If C(vj) = {1, 2, 3},

then color vj by 2, color u1vj by 3, and color u2vj , u3vj , u4vj by 1. If C(vj) = {a, b, c, d},

a < b < c < d, then let u1vj , u2vj , u3vj , u4vj and vj receive b, c, a, d and d.

It is easy to verify that the resulting coloring is the required coloring. 2

Lemma 3 If 24 ≤ n ≤ 55, then K4,n has 6-VDIET coloring.

Proof We give a sequence of all subsets of {1, 2, 3, 4, 5, 6}, except for ∅, {1}, {2}, {3}, {2, 3},

{1, 2, 3, 4, 5, 6}, {1, 3, 4, 5, 6}, {1, 2, 4, 5, 6}, {1, 4, 5, 6}, as follows.

S3 = ({4}, {5}, {6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5},

{3, 6}, {4, 5}, {4, 6}, {5, 6}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6},

{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5},

{3, 4, 6}, {3, 5, 6}, {4, 5, 6}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6},

{1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}, {1, 2, 3,

4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {2, 3, 4, 5, 6}).

The first 5 subsets of S3 are {4}, {5}, {6}, {1, 2}, {1, 3}, respectively. Obviously, S3 has 55

terms (each term is a subset). Now we give a 6-VDIET coloring of K4,n as follows.

Let u1, u2, u3, u4 receive color 1. Let C(u1) = {1, 2, 3, 4, 5, 6}, C(u2) = {1, 3, 4, 5, 6}, C(u3) =

{1, 2, 4, 5, 6}, C(u4) = {1, 4, 5, 6}. Let C(vj) be the j-th term of S3, j = 1, 2, . . . , n. We color

vj and its incident edges by j + 3, j = 1, 2, 3. We color u1v4, u2v4, u3v4, u4v4, v4 by 2, 1, 2, 1 and

2, respectively. We color u1v5, u2v5, u3v5, u4v5, v5 by 3, 3, 1, 1 and 3, respectively. For j ≥ 6, if

C(vj) = {a, b}, a < b, then assign a to u1vj , and b to u2vj , u3vj , u4vj and vj .

If C(vj) = {1, a, b}, 1 < a < b, then assign 1 to u2vj , u3vj , u4vj , and assign a and b to

u1vj and vj , respectively. If C(vj) = {a, b, c}, 2 ≤ a < b < c, then assign c to u2vj , u3vj , u4vj ,

and assign a and b to u1vj and vj , respectively. If C(vj) = {1, 2, a, b}, 3 ≤ a < b, then assign

a, 1, 2, 1, b to u1vj , u2vj , u3vj , u4vj , and vj , respectively. If C(vj) = {a, b, c, d}, a < b < c < d,

a > 1 or a = 1, b > 2, then assign a, b, c, d, d to u1vj , u2vj , u3vj , u4vj , and vj , respectively. If

C(vj) = {1, 2, 3, a, b}, then assign 1, 3, 2, a, b to u1vj , u2vj , u3vj , u4vj , and vj , respectively. If

C(vj) = {2, 3, 4, 5, 6}, then assign 2, 3, 4, 5, 6 to u1vj , u2vj , u3vj , u4vj , and vj , respectively.

It can be easily verified that the above coloring is a 6-VDIET coloring of K4,n, where 24 ≤

n ≤ 55. 2

Lemma 4 If 56 ≤ n ≤ 115, then K4,n has a 7-VDIET coloring. If
(

k−1

1

)

+
(

k−1

2

)

+· · ·+
(

k−1

5

)

−4 <

n ≤
(

k
1

)

+
(

k
2

)

+ · · · +
(

k
5

)

− 4, where k ≥ 8, then K4,n has a k-VDIET coloring.

Proof We give an order for all 1-combinations, 2-combinations, 3-combinations, 4-combinations

and 5-combinations of {1, 2, . . . , k}, except for, {1}, {2}, {3}, {2, 3} such that the first k−1 terms

are {4}, {5}, . . . , {k}, {1, 2}, {1, 3}, respectively. Obviously the resulting sequence, denoted by S4,
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has
(

k
1

)

+
(

k
2

)

+
(

k
3

)

+
(

k
4

)

+
(

k
5

)

− 4 terms (each term is a subset).

We give a coloring of K4,n as follows.

Let u1, u2, u3, u4 receive color 1. Let C(u1) = {1, 2, . . . , k}, C(u2) = C(u1) − {2}, C(u3) =

C(u1) − {3}, C(u4) = C(u1) − {2, 3}. Let C(vj) be the j-th term of S4, j = 1, 2, . . . , n. Let vj

and its incident edges receive j + 3, j = 1, 2, . . . , k − 3. Let u1vk−2, u2vk−2, u3vk−2, u4vk−2, vk−2

receive 2, 1, 2, 1 and 2. Let u1vk−1, u2vk−1, u3vk−1, u4vk−1, vk−1 receive 3, 3, 1, 1, 3.

For j ≥ k, if C(vj) = {a, b}, then assign a to u1vj and b to u2vj , u3vj , u4vj and vj . If

C(vj) = {1, a, b}, 1 < a < b, then assign 1 to u2vj , u3vj , u4vj and assign a and b to u1vj and

vj , respectively. If C(vj) = {a, b, c}, 2 ≤ a < b < c, then assign c to u2vj , u3vj , u4vj and

assign a and b to u1vj and vj , respectively. If C(vj) = {1, 2, a, b}, 3 ≤ a < b, then assign

a, 1, 2, 1, b to u1vj , u2vj , u3vj , u4vj and vj , respectively. If C(vj) = {a, b, c, d}, a < b < c < d,

a > 1 or a = 1, b > 2, then assign a, b, c, d, d to u1vj , u2vj , u3vj , u4vj and vj , respectively. If

C(vj) = {1, 2, a, b, c}, then assign 1, a, 2, b, c to u1vj , u2vj , u3vj , u4vj and vj , respectively. If

C(vj) = {a, b, c, d, e}, a < b < c < d < e, a > 1 or a = 1, b > 2, then assign a, b, c, d, e to

u1vj , u2vj , u3vj , u4vj and vj , respectively.

It is easy to verify that the resulting coloring is a k-VDIET coloring of K4,n. 2

Lemma 5 If 4 ≤ n ≤ 11, then ξ(K4,n) = 4; If 12 ≤ n ≤ 27, then ξ(K4,n) = 5; If 28 ≤ n ≤ 59,

then ξ(K4,n) = 6.

Proof This lemma is obviously true. 2

Theorem 1 For 4 ≤ n ≤ 58, we have

χie
vt(K4,n) =























4, 4 ≤ n ≤ 7;

5, 8 ≤ n ≤ 23;

6, 24 ≤ n ≤ 55;

7, 56 ≤ n ≤ 58.

Proof (a) When 4 ≤ n ≤ 7, χie
vt(K4,n) ≥ ξ(K4,n) = 4 by Lemma 5. By Lemma 1, we know that

χie
vt(K4,n) = 4.

(b) When 8 ≤ n ≤ 11, χie
vt(K4,n) ≥ ξ(K4,n) = 4 by Lemma 5. Assume that K4,n has a

VDIET coloring g with colors 1, 2, 3, 4. Obviously, |C(ui)| ≥ 2, i = 1, 2, 3, 4.

(1) The colors of u1, u2, u3, u4 are the same. We may suppose that g(u1) = g(u2)=g(u3) =

g(u4) = 1. C(vj) 6= {1} (for the vertex coloring is proper). There exist l, t ∈ {2, 3, 4}, such

that l < t, {l} 6= C(vj) 6= {t}, j = 1, 2, . . . , n, for otherwise there will be two same sets among

the sets C(u1), C(u2), C(u3), C(u4). If {p} is the color set of some vj , p ∈ {1, 2, 3, 4} − {1, t, l},

then {1, p} ⊆ C(ui), 1 ≤ i ≤ 4. So {C(u1), C(u2), C(u3), C(u4)} = {{1, 2, 3, 4}, {1, 2, 3, 4} −

{l}, {1, 2, 3, 4}− {t}, {1, 2, 3, 4}− {l, t}}. Thus {l, t} is not the color set of any vertex. Thereby

{1}, {l}, {t}, {l, t} are not the color set of any vertex. The number of subsets of {1, 2, 3, 4},

except for ∅, {1}, {l}, {t}, {l, t}, is 11, but the number of vertices of K4,n is n + 4 ≥ 12. This is

a contradiction. If C(vj) 6= {p}, 1 ≤ j ≤ n, then ∅, {1}, {l}, {t}, {p} are not the color set of any

vertex. We also get a contradiction.
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(2) There are just two distinct elements in {g(u1), g(u2), g(u3), g(u4)}, say g(u1) = 1, g(u2) =

2, g(u3), g(u4) ∈ {1, 2}. Then C(ui) 6= {1}, {2}, i = 1, 2, 3, 4; C(vj) 6= {1}, {2}, {1, 2}, j =

1, 2, . . . , n. Obviously, there exists l ∈ {3, 4}, such that C(vj) 6= {l}, j = 1, 2, . . . , n. If there

exists exactly one l ∈ {3, 4}, such that C(vj) 6= {l}, j = 1, 2, . . . , n, say l = 3, then 4 ∈ C(ui), i =

1, 2, 3, 4. So ∅, {1}, {2}, {3}, {1, 2} are not the color set of any vertex. This is a contradiction.

If {3} 6= C(vj) 6= {4}, 1 ≤ j ≤ n, then ∅, {1}, {2}, {3}, {4} are not the color set of any vertex.

This is also a contradiction.

(3) There are just three distinct elements in {g(u1), g(u2), g(u3), g(u4)}, say g(ui) = i,

i = 1, 2, 3, g(u4) ∈ {1, 2, 3}. If C(vj) 6= {4}, j = 1, 2, . . . , n, then ∅, {1}, {2}, {3}, {4} are not the

color set of any vertex. This is a contradiction. If C(vj0 ) = {4} for some j0 ∈ {1, 2, . . . , n}, then

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} are not the color set of any vertex. This is also a

contradiction.

(4) The colors of vertex u1, u2, u3, u4 are distinct. Without loss of generality, we assume

that g(ui) = i, i = 1, 2, 3, 4, then ∅, {1}, {2}, {3}, {4} are not the color set of any vertex. This

is a contradiction. Thus K4,n has no 4-VDIET coloring. So χie
vt(K4,n) ≥ 5. Combining this with

Lemma 2, we know that χie
vt(K4,n) = 5, if n = 8, . . . , 11.

(c) When 12 ≤ n ≤ 23, we know that χie
vt(K4,n) = 5 by Lemmas 2 and 5.

(d) When n = 24, 25, 26, 27, we have χie
vt(K4,n) ≥ 5. Assume that K4,n has a VDIET coloring

using colors 1, 2, 3, 4, 5. Completely similar to the proof of the result that K4,n has no 4-VDIET

coloring if 8 ≤ n ≤ 11 in (b), we can show that K4,n has no 5-VDIET coloring if 24 ≤ n ≤ 27.

So χie
vt(K4,n) ≥ 6, and combining this with Lemma 3 gives χie

vt(K4,n) = 6.

(e) When 28 ≤ n ≤ 55, we can prove that χie
vt(K4,n) = 6 by Lemmas 3 and 5.

(f) Suppose n = 56, 57, 58. From Lemma 5 we know that χie
vt(K4,n) ≥ 6. Completely similar

to the proof of the result that K4,n has no 4-VDIET coloring if 8 ≤ n ≤ 11 in (b), we can show

that K4,n has no 6-VDIET coloring if n = 56, 57, 58, so χie
vt(K4,n) ≥ 7. Combining this with

Lemma 4, we know that χie
vt(K4,n) = 7.

The proof is completed. 2

Theorem 2 If
(

k−1

1

)

+
(

k−1

2

)

+ · · · +
(

k−1

5

)

− 4 < n ≤
(

k
1

)

+
(

k
2

)

+ · · · +
(

k
5

)

− 4, k ≥ 7, then

χie
vt(K4,n) = k.

Proof Assume that K4,n has a (k − 1)-VDIET coloring g.

Case 1 The colors of u1, u2, u3, u4 are the same. We may assume that g(u1) = g(u2)=g(u3) =

g(u4) = 1. Obviously, we have that C(vj) 6= {1}, j = 1, 2, . . . , n. There exist two colors

l, t ∈ {2, 3, . . . , k − 1}, such that {l} 6= C(vj) 6= {t}, j = 1, 2, . . . , n, for otherwise there exists

a color in {2, 3, . . . , k − 1}, say 2, such that C(ui) ⊇ {1, 3, 4, . . . , k − 1}, i = 1, 2, 3, 4. So

C(u1), C(u2), C(u3), C(u4) are all equal to {1, 3, 4, . . . , k − 1} or {1, 2, 3, 4, . . . , k − 1}. This is a

contradiction.

Without loss of generality, suppose {2} 6= C(vj) 6= {3}.

(1) {4}, {5}, . . . , {k − 1} are all the color sets of some vj ’s, j = 1, 2, . . . , n. Then C(ui) ⊇
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{1, 4, 5, . . . , k−1}, and {C(u1), C(u2), C(u3), C(u4)} = {{1, 4, 5, . . . , k−1}, {1, 2, 4, 5, . . . , k−1},

{1, 3, 4, 5, . . . , k − 1}, {1, 2, 3, 4, 5, . . . , k − 1}}. So {2, 3} is not the color set of any vertex vj .

Thus {1}, {2}, {3}, {2, 3} are not available for any vj . And
(

k−1

1

)

+
(

k−1

2

)

+ · · ·+
(

k−1

5

)

− 4(< n)

subsets cannot distinguish n vertices v1, v2, . . . , vn. This is a contradiction.

(2) ∃r ∈ {4, 5, . . . , k − 1}, such that C(vj) 6= {r}, 1 ≤ j ≤ n. Then {1}, {2}, {3}, {r} are

not available for any vj . It is also a contradiction.

Case 2 There are only two different colors among g(u1), g(u2), g(u3), g(u4). Without loss

of generality we assume that g(u1) = 1, g(u2) = 2, g(u3), g(u4) ∈ {1, 2}. If for each r ∈

{3, 4, . . . , k − 1}, {r} is a color set of some vertex vj , then C(ui) ⊇ {3, 4, . . . , k − 1}. Hence

each C(ui), i = 1, 2, 3, 4, is equal to one of the following sets {1, 3, 4, . . . , k − 1}, {2, 3, 4, . . . , k −

1}, {1, 2, 3, 4, . . . , k − 1}. Three subsets cannot distinguish 4 vertices u1, u2, u3, u4, this is a

contradiction. If there exists r ∈ {3, 4, . . . , k − 1}, such that {r} is not a color set of any vertex

vj , then {1}, {2}, {1, 2}, {r} are not available for any vertex vj , j = 1, 2, . . . , n. The number

of available subsets (for vj) is at most
(

k−1

1

)

+
(

k−1

2

)

+ · · · +
(

k−1

5

)

− 4. But we have n vertices

v1, v2, . . . , vn, leading to a contradiction.

Case 3 In {g(u1), g(u2), g(u3), g(u4)}, there are at least three different colors. Without loss of

generality we assume that g(ui) = i, i = 1, 2, 3. Then {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

are not the color sets of any vertex vj , 1 ≤ j ≤ n. So the number of available subsets (for vj)

is at most
(

k−1

1

)

+
(

k−1

2

)

+ · · · +
(

k−1

5

)

− 7 <
(

k−1

1

)

+
(

k−1

2

)

+ · · · +
(

k−1

5

)

− 4 < n. This is a

contradiction.

So K4,n has no VDIET coloring using (k − 1) colors. i.e., χie
vt(K4,n) ≥ k. From this result

and Lemma 4, we know that χie
vt(K4,n) = k. The proof is completed. 2

3. Vertex distinguishing IE-total chromatic numbers of Kn,n with 5 ≤
n ≤ 21

Theorem 3 For complete graph K5,5, we have χie
vt(K5,5) = 4.

Proof Obviously, χie
vt(K5,5) ≥ ξ(K5,5) = 4. In order to complete the proof of this theorem, we

give a VDIET coloring using 4 colors 1, 2, 3, 4 as follows.

Let u1, u2, u3, u4, u5 receive color 1. Let C(u1) = {1, 2, 3, 4}, C(u2) = {1, 2, 4}, C(u3) =

{1, 2, 3}, C(u4) = {1, 3, 4}, C(u5) = {1, 4}; C(v1) = {1, 2}, C(v2) = {1, 3}, C(v3) = {3, 4},

C(v4) = {2, 4}, C(v5) = {2, 3, 4}.

For i = 1, 2, 3, 4, 5, we assign color 2 to uiv1 if 2 ∈ C(ui) ∩ C(v1) and assign color 1 to uiv1

otherwise. We assign 3 to uiv2 if 3 ∈ C(ui) ∩ C(v2) and assign color 1 to uiv2 otherwise. We

assign color 4 to uiv3 if 4 ∈ C(ui)∩C(v3) and assign color 3 to uiv3 otherwise. And then we color

u1v4, u2v4, u3v4, u4v4, u5v4 by 2, 4, 2, 4 and 4, respectively and color u1v5, u2v5, u3v5, u4v5, u5v5

by 2, 4, 2, 3 and 4, respectively. We assign 2, 3, 4, 2, 3 to vertices v1, v2, v3, v4 and v5, respectively.

It is easy to verify that the resulting coloring is 4-VDIET coloring of K5,5.

The proof is completed. 2
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Lemma 6 K6,6 and K7,7 has no 4-VDIET coloring.

Proof Assume that Kn,n has a 4-VDIET coloring g, n = 6, 7.

Case 1 The colors of u1, u2, . . . , un are the same. Without loss of generality, we assume

g(ui) = 1, i = 1, 2, . . . , n.

(1) |C(ui)| ≥ 2, i = 1, 2, . . . , n. Otherwise the color set of each vertex contains 1, but the

number of subsets of {1, 2, 3, 4} which contain 1 is only 8. Eight subsets cannot distinguish 12

vertices or 14 vertices.

(2) C(vj) 6= {1}, j = 1, 2, . . . , n. This is obvious for no two adjacent vertices receive the

same color.

(3) |C(vj)| ≥ 2, j = 1, 2, . . . , n. Otherwise C(vj0 ) = {l}, j0 ∈ {1, 2, . . . , n}, l ∈ {2, 3, 4}.

Then {1, l} ⊆ C(ui), i = 1, 2, . . . , n. But the number of subsets of {1, 2, 3, 4} which contain {1, l}

is 4. These 4 subsets cannot distinguish u1, u2, . . . , un. So the number of subsets of {1, 2, 3, 4}

which contain at least 2 elements is 11 and the number of vertices of Kn,n is 2n ≥ 12. This is a

contradiction.

Case 2 There are just two different elements in {g(u1), g(u2), . . . , g(un)}.

We may assume g(ui) = i, i = 1, 2.

(1) C(vj) 6= {1}, {2}, {1, 2}, j = 1, 2, . . . , n.

(2) |C(vj)| ≥ 2, j = 1, 2, . . . , n. Otherwise if some |C(vj0 )| = 1, say C(vj0 ) = {3}, then each

C(ui), i = 1, 2, . . . , n, is one of the following subsets: {1, 3}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}, {2, 3},

{2, 3, 4}. We immediately obtain a contradiction if n = 7. In the case n = 6, each C(vj) is not

among the above 6 subsets or the complementary subsets of the above 6 subsets in {1, 2, 3, 4}.

So each C(vj) is one of the following sets: {3}, {3, 4}, {1, 2, 4}. This is a contradiction.

(3) C(ui) 6= {3}, {4}, i = 1, 2, . . . , n.

(4) If some C(ui1) = {1} and some C(ui2) = {2}, then {1, 2} ⊆ C(vj), 1 ≤ j ≤ n. The

number of subsets of {1, 2, 3, 4} which contain 1 and 2 is 4. Four subsets cannot distinguish n

vertices v1, v2, . . . , vn(n = 6, 7). This is a contradiction. If C(ui) 6= {1}, {2}, i = 1, 2, . . . , n, then

∅, {1}, {2}, {3}, {4} are not the color set of any vertex. But the number of subsets of {1, 2, 3, 4}

which contain at least 2 elements is 11. Eleven subsets cannot distinguish 2n(≥ 12) vertices.

This is a contradiction. If C(ui) 6= {1}, i = 1, 2, . . . , n, and some C(ui0) = {2}, then the color set

of each vertex is not equal to ∅, {1}, {3}, {4}, {3, 4}. Note that in this case 2 ∈ C(vj), 1 ≤ j ≤ n.

This is a contradiction. We can also get a contradiction in the case C(ui) 6= {2}, 1 ≤ i ≤ n, and

some C(ui0) = {1}.

Case 3 There are just 3 different elements in {g(u1), g(u2), . . . , g(un)}. In this case the colors

of v1, v2, . . . , vn are the same. So similarly to Case 1, we can obtain a contradiction (we only

exchange u and v in Case 1).

Case 4 There are just 4 different elements in {g(u1), g(u2), . . . , g(un)}. In this case the color

of v1 must be in {g(u1), g(u2), . . . , g(un)}. This is a contradiction. 2
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Theorem 4 If 6 ≤ n ≤ 11, then χie
vt(Kn,n) = 5.

Proof From Lemma 6 we know χie
vt(Kn,n) ≥ 5, if n = 6, 7. And χie

vt(Kn,n) ≥ ξ(Kn,n) = 5,

n = 8, 9, 10, 11. So we only need to give a 5-VDIET coloring of Kn,n, when 6 ≤ n ≤ 11.

Case 1 6 ≤ n ≤ 10. Let

A = ({1, 2, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4}, {1, 3, 4, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4},

{1, 3, 5}, {1, 4, 5}),

B = ({1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 2, 3}, {3, 4, 5}, {2, 4, 5}, {2, 3, 5}, {2, 3, 4}, {4, 5}).

Let C(ui) be the i-th term of A , and C(vi) be the i-th term of B, i = 1, 2, . . . , n. Let

u1, u2, . . . , un receive color 1, and vertex vj receive a color in C(vj) − {1}, j = 1, 2, . . . , n. For

1 ≤ i ≤ n, 1 ≤ j ≤ 4, if j + 1 ∈ C(ui) ∩ C(vj), then assign j + 1 to uivj ; if j + 1∈C(ui) ∩ C(vj),

then assign 1 to uivj . For 1 ≤ i ≤ 5, 5 ≤ j ≤ n, if i ∈ C(ui) ∩ C(vj), then assign i to uivj ; if

i∈C(ui) ∩ C(vj), then assign a color in C(ui) ∩ C(vj) to uivj . For 6 ≤ i ≤ n, 5 ≤ j ≤ n, we

assign a color in C(ui) ∩ C(vj) to uivj .

We can verify that the above coloring is a 5-VDIET coloring of Kn,n, when 6 ≤ n ≤ 10.

Case 2 n = 11.

Let C(u1) = {1, 2, 3, 4, 5}, C(u2) = {1, 2, 3, 4}, C(u3) = {1, 2, 3, 5}, C(u4) = {1, 2, 4, 5},

C(u5) = {1, 3, 4, 5}, C(u6) = {1, 3, 4}, C(u7) = {2, 3, 4, 5}, C(u8) = {2, 3, 5}, C(u9) = {2, 4, 5},

C(u10) = {1, 2, 5}, C(u11) = {2, 5}. Let C(v1) = {1, 5}, C(v2) = {2, 3}, C(v3) = {3, 5}, C(v4) =

{2, 4}, C(v5) = {4, 5}, C(v6) = {1, 2, 3}, C(v7) = {1, 2, 4}, C(v8) = {1, 3, 5}, C(v9) = {1, 4, 5},

C(v10) = {2, 3, 4}, C(v11) = {3, 4, 5}.

We give a 5-VDIET coloring of K11,11 according to the above color sets.

Let u1, u2, u3, u4, u5, u6 receive color 1 and u7, u8, u9, u10, u11 receive color 2. For each i =

1, 2, . . . , 11, we color uiv1 by 1 if 1 ∈ C(ui)∩C(v1) and color uiv1 by 5 otherwise; We color uiv2

by 2 if 2 ∈ C(ui) ∩C(v2) and color uiv2 by 3 otherwise; We color uiv3 by 3 if 3 ∈ C(ui) ∩C(v3)

and color uiv3 by 5 otherwise; We color uiv4 by 4 if 4 ∈ C(ui) ∩ C(v4) and color uiv4 by 2

otherwise; We color uiv5 by 5 if 5 ∈ C(ui) ∩ C(v5) and color uiv5 by 4 otherwise. For each

i = 1, 2, 3, 4, 5, j = 6, 7, . . . , 11, we assign i to edge uivj if i ∈ C(ui) ∩ C(vj) and assign a

color in C(ui) ∩ C(vj) to uivj if i∈C(ui) ∩ C(vj). For each i = 6, 7, . . . , 11, j = 6, 7, . . . , 11, we

assign a color in C(ui) ∩ C(vj) to edge uivj . For each j = 1, 2, . . . , 11, we color vj by a color in

C(vj) − {1, 2}.

The above coloring is the required coloring. 2

Lemma 7 Kn,n has no 5-VDIET coloring if n = 12, 13, 14, 15.

Proof Assume that Kn,n has a 5-VDIET coloring g with colors 1, 2, 3, 4, 5 and n ∈ {12, 13, 14, 15}.

Case 1 The colors of u1, u2, . . . , un are the same. We may suppose g(ui) = 1, i = 1, 2, . . . , n.

The complementary subset of each C(ui) in {1, 2, 3, 4, 5} is not the color set of any vertex,

1 ≤ i ≤ n. So we have at most 25 − n ≤ 25 − 12 = 20 available subsets. This is a contradiction.
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Case 2 There are just two different elements in {g(u1), g(u2), . . . , g(un)}. We may suppose

g(u1) = 1, g(u2) = 2.

(1) C(vj) 6= {1}, {2}, {1, 2}, 1 ≤ j ≤ n, C(ui) 6= {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5},

1 ≤ i ≤ n.

(2) C(vj) 6= {3}, {4}, {5}, 1 ≤ j ≤ n. Otherwise if some C(vj0 ) = {5}, then each C(ui) is

one of the following sets: {1, 5}, {2, 5}, {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {1, 2, 3, 5},

{1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}. We immediately get a contradiction when n =

13, 14, 15. When n = 12, any one of the complementary subsets of the above 12 subsets in

{1, 2, 3, 4, 5} is not the color set of any vertex. This is also a contradiction.

(3) |C(ui)| ≥ 2, 1 ≤ i ≤ n. Otherwise if some C(ui0) = {1}, then any one of the 7

nonempty subsets of {3, 4, 5} is not the color set of any vertex. In this case for i = 1, 2, . . . , n,

C(ui) 6= {2}(For otherwise each C(vj) ⊇ {1, 2} and the number of subsets of {1, 2, 3, 4, 5} which

contain 1 and 2 is 8 and we have n(≥ 12) vertices v1, v2, . . . , vn). Except for ∅, {2} and nonempty

subsets of {3, 4, 5}, we have 23 subsets of {1, 2, 3, 4, 5} left. Such 23 subsets cannot distinguish

2n(≥ 24) vertices. This is also a contradiction.

Now we give two facts before further discussion.

Fact 1. For 1 ≤ i, j ≤ n, we have C(ui) ∩ C(vj) 6= ∅.

Fact 2. If A ⊆ {1, 2, 3, 4, 5} is a color set of some ui (or vi), then each subset B of

{1, 2, 3, 4, 5}− A is also a color set of some uj (or vj) when B is a color set of some vertex.

(4) C(ui) 6= {1, 2}, 1 ≤ i ≤ n. Otherwise if some C(ui0) = {1, 2}, then from Fact 1 we know

that {3, 4, 5}, {3, 4}, {3, 5}, {4, 5} as well as 0-subsets, 1-subsets of {1, 2, 3, 4, 5} are not the color

set of any vertex. Thus the number of the remaining subsets is 22. This is a contradiction.

(5) From the foregoing discussion we know that each color set belongs to 2{1,2,3,4,5} −

{∅, {1, 2}, {1}, {2}, {3}, {4}, {5}}. So we can obtain a contradiction if n = 13, 14, 15 and we

can obtain the color sets of all vertices of K12,12 by deleting exactly one set in 2{1,2,3,4,5} −

{∅, {1, 2}, {1}, {2}, {3}, {4}, {5}}. Let S = {{1, 3}, {2, 4, 5}, {1, 4}, {2, 3, 5}, {1, 5}, {2, 3, 4}, {2, 3},

{1, 4, 5}, {2, 4}, {1, 3, 5}, {2, 5}, {1, 3, 4}, {3, 4}, {1, 2, 5}, {3, 5}, {1, 2, 4}, {4, 5}, {1, 2, 3}}. There

are 18 sets in S. When n = 12, by Fact 2 we know that there are at least 16 subsets in S which

are all the color sets of vj ’s. This is a contradiction.

Case 3 There are just 3 or 4 different elements in {g(u1), g(u2), . . . , g(un)}. Then there are 1

or 2 different elements in {g(v1), g(v2), . . . , g(vn)}. Similarly to Case 1 or Case 2, we can get a

contradiction (we only exchange u and v in Case 1 or Case 2).

Case 4 There are just 5 different elements in {g(u1), g(u2), . . . , g(un)}. Then the color of v1

must be in {g(u1), g(u2), . . . , g(un)}. This is a contradiction.

The proof is completed. 2

Theorem 5 If 12 ≤ n ≤ 21, then χie
vt(Kn,n) = 6.

Proof From Lemma 7, we know that χie
vt(Kn,n) ≥ 6, if n = 12, 13, 14, 15. But χie

vt(Kn,n) ≥ 6,

if n = 16, 17, . . . , 21. Thus we only need to show that Kn,n has a 6-VDIET coloring with colors
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1, 2, 3, 4, 5, 6, if 12 ≤ n ≤ 21. Let A = ({1, 2, 3, 4, 5, 6}, {1, 2, 4, 5, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 4, 6},

{1, 2, 3, 4, 5}, {1, 3, 4, 5, 6}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {1, 2, 3, 4}, {1, 2, 3, 5},

{1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6});

B = ({1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4},

{3, 4, 5, 6}, {2, 4, 5, 6}, {2, 3, 5, 6}, {2, 3, 4, 6}, {2, 3, 4, 5}, {4, 5, 6}, {3, 5, 6}, {3, 4, 6}, {3, 4, 5},

{2, 5, 6}, {2, 3, 4, 5, 6}).

We will color the vertices and edges of Kn,n according to the given color sets of all vertices. Let

u1, u2, . . . , un receive color 1. Let C(u1), C(u2), . . . , C(un) be the first n terms of A , respectively

and C(v1), C(v2), . . . , C(vn) be the first n terms of B, respectively. For i = 1, 2, . . . , n, j =

1, 2, 3, 4, 5, if j + 1 ∈ C(ui) ∩ C(vj), then assign j + 1 to uivj ; if j + 1∈C(ui) ∩ C(vj), then

assign 1 to uivj . For i = 1, 2, 3, 4, 5, 6, 6 ≤ j ≤ n, if i ∈ C(ui) ∩ C(vj), then assign i to uivj ; if

i∈C(ui)∩C(vj), then assign one color in C(ui)∩C(vj) to uivj . For i = 7, 8, . . . , n, j = 6, 7, . . . , n,

we assign one color in C(ui)∩C(vj) to uivj . For 1 ≤ j ≤ n, let vj receive a color in C(vj)−{1}.

Obviously, the above coloring is what we need. The proof is completed. 2

By the method used in the proof of the above theorem, we can easily obtain the following

proposition.

Proposition 6 Suppose k ≥ 4, n ≥ 4. If ⌈ 2
k−1−2

3
⌉ < n ≤ ⌈ 2

k−2

3
⌉, then χie

vt(Kn,n) ≤ k.
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