Remarks on Vertex-Distinguishing IE-Total Coloring of Complete Bipartite Graphs $K_{4, n}$ and $K_{n, n}$

Xiang'en CHEN*, Xiaoqing XIN, Wenyu HE
College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, P. R. China

Abstract

Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let $C(u)$ be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if $C(u) \neq C(v)$ for any two different vertices u and v of $V(G)$, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by $\chi_{v t}^{i e}(G)$, and it is called the VDIET chromatic number of G. We will give VDIET chromatic numbers for complete bipartite graph $K_{4, n}(n \geq 4), K_{n, n}(5 \leq n \leq 21)$ in this article.

Keywords graphs; IE-total coloring; vertex-distinguishing IE-total coloring; vertex-distinguishing IE-total chromatic number; complete bipartite graph.

MR(2010) Subject Classification 05C15

1. Introduction and preliminaries

The vertex distinguishing proper edge coloring and point distinguishing general edge coloring were studied in [1-5, 8-9] and [7, 10-14], respectively.

For a total coloring (proper or not) f of G and a vertex v of G, denote by $C_{f}(v)$, or simply $C(v)$ if no confusion arises, the set of colors used to color the vertex v as well as the edges incident to v. Let $\bar{C}(v)$ be the complementary set of $C(v)$ in the set of all colors we used. Obviously, $|C(v)| \leq d_{G}(v)+1$ and the equality holds if the total coloring is proper.

For a proper total coloring, if $C(u) \neq C(v)$, i.e., $\bar{C}(u) \neq \bar{C}(v)$ for any two distinct vertices u and v, then the coloring is called vertex-distinguishing (proper) total coloring and the minimum number of colors required for a vertex-distinguishing (proper) total coloring is denoted by $\chi_{v t}(G)$. This concept has been considered in [6,15]. The following conjecture was given in [15].

Conjecture 1 Suppose G is a simple graph and n_{d} is the number of vertices of degree d,

[^0]$\delta \leq d \leq \Delta$. Let k be the minimum positive integer such that $\binom{k}{d+1} \geq n_{d}$ for all d such that $\delta \leq d \leq \Delta$. Then $\chi_{v t}(G)=k$ or $k+1$.

From [15] we know that the above conjecture is valid for complete graph, complete bipartite graph, path and cycle, etc.

The total coloring of a graph G such that no two adjacent vertices receive the same color is called an IE- total coloring of a graph G. If f is an IE- total coloring of graph G using k colors and $\forall u, v \in V(G), u \neq v$, we have $C(u) \neq C(v)$, then f is called k-vertex-distinguishing IE-total coloring, or k-VDIET coloring. The minimum number k for which G has a vertex-distinguishing IE-total coloring using k colors is denoted by $\chi_{v t}^{i e}(G)$ and called the vertex-distinguishing IE-total chromatic number of graph G. The following proposition is obviously true.

Proposition $1 \chi_{v t}^{i e}(G) \leq \chi_{v t}(G)$.
For a graph G, let n_{i} denote the number of the vertices of degree $i, \delta \leq i \leq \Delta$. Let

$$
\xi(G)=\min \left\{k \left\lvert\,\binom{ k}{1}+\binom{k}{2}+\cdots+\binom{k}{s}+\binom{k}{s+1} \geq n_{\delta}+n_{\delta+1}+\cdots+n_{s}\right., \delta \leq s \leq \Delta\right\}
$$

Obviously, we have $\chi_{v t}^{i e}(G) \geq \xi(G)$. We will consider the VDIET colorings of complete bipartite graph $K_{4, n}(n \geq 4)$ and $K_{n, n}(5 \leq n \leq 21)$ in this paper.

2. Vertex distinguishing IE-total chromatic numbers of $K_{4, n}$

Lemma 1 For $4 \leq n \leq 7, K_{4, n}$ has a 4 -VDIET coloring.
Proof We give a VDIET coloring of $K_{4, n}$ with colors 1, 2, 3, 4 as follows. Let $u_{1}, u_{2}, u_{3}, u_{4}$ receive color 1. Let $\mathcal{S}_{1}=(\{4\},\{1,2\},\{1,3\},\{2,4\},\{3,4\},\{1,2,3\},\{2,3,4\})$. Let $C\left(v_{j}\right)$ be the j-th term of $\mathcal{S}_{1}, j=1,2, \ldots, n$. Assign 4 to v_{1} and all its incident edges. Assign 2 to v_{2}, $u_{1} v_{2}$, and $u_{3} v_{2}$ and assign 1 to $u_{2} v_{2}, u_{4} v_{2}$; Assign 3 to v_{3} and 1 to all incident edges of v_{3}; Assign 2 to v_{4} and 4 to all incident edges of v_{4}; Assign 3 to v_{5} and 4 to all incident edges of v_{5} (when $n \geq 5$). Color $u_{1} v_{6}, u_{2} v_{6}, u_{3} v_{6}, u_{4} v_{6}, v_{6}$ by $3,1,2,1,3$, respectively (when $n \geq 6$). Color $u_{1} v_{7}, u_{2} v_{7}, u_{3} v_{7}, u_{4} v_{7}, v_{7}$ by $2,3,2,4,2$, respectively (if $n=7$). For the resulting coloring, $C\left(u_{1}\right)=\{1,2,3,4\}, C\left(u_{2}\right)=\{1,3,4\}, C\left(u_{3}\right)=\{1,2,4\}$ and $C\left(u_{4}\right)=\{1,4\}$. So the resulting coloring is 4 -VDIET coloring of $K_{4, n}$.

Lemma $2 K_{4, n}$ has a 5 -VDIET coloring for $8 \leq n \leq 23$.
Proof Arrange all the subsets of $\{1,2,3,4,5\}$, except for $\emptyset,\{1\},\{2\},\{3\},\{2,3\},\{1,2,3,4,5\}$, $\{1,3,4,5\},\{1,2,4,5\},\{1,4,5\}$, as follows.
$\mathcal{S}_{2}=(\{4\},\{5\},\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\},\{1,2,3\},\{1,2,4\}$, $\{1,2,5\},\{1,3,4\},\{1,3,5\},\{2,3,4\},\{2,3,5\},\{2,4,5\},\{3,4,5\},\{1,2,3,4\},\{1,2,3,5\},\{2,3,4,5\})$.

We give a 5 -VDIET coloring as follows. Let $u_{1}, u_{2}, u_{3}, u_{4}$ receive color 1 . Let $C\left(u_{1}\right)=$ $\{1,2,3,4,5\}, C\left(u_{2}\right)=\{1,3,4,5\}, C\left(u_{3}\right)=\{1,2,4,5\}, C\left(u_{4}\right)=\{1,4,5\}$. Let $C\left(v_{j}\right)$ be the j-th term of $\mathcal{S}_{2}, j=1,2, \ldots, n$. Obviously, $C\left(u_{i}\right) \cap C\left(v_{j}\right) \neq \emptyset, 1 \leq i \leq 4,1 \leq j \leq n$. Assign 4 to v_{1} and all its incident edges and assign 5 to v_{2} and all its incident edges. Color $u_{1} v_{3}, u_{2} v_{3}$,
$u_{3} v_{3}, u_{4} v_{3}$ and v_{3} by $2,1,2,1$ and 2 , respectively. Color $u_{1} v_{4}, u_{2} v_{4}, u_{3} v_{4}, u_{4} v_{4}$ and v_{4} by $3,3,1,1$ and 3 , respectively. For $j \geq 5$, if $C\left(v_{j}\right)=\{1, b\}$, then color v_{j} by b and $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ by 1 . If $C\left(v_{j}\right)=\{2, b\}, b=4$ or 5 , then color v_{j} by 2 and $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ by b. If $C\left(v_{j}\right)=\{a, b\}$, $2<a<b$, then color $v_{j}, u_{1} v_{j}, u_{2} v_{j}$ by a and $u_{3} v_{j}, u_{4} v_{j}$ by b. If $C\left(v_{j}\right)=\{a, b, c\} \neq\{1,2,3\}$, $1 \leq a<b<c \leq 5$, then color v_{j} by $b, u_{1} v_{j}$ by $a, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ by c. If $C\left(v_{j}\right)=\{1,2,3\}$, then color v_{j} by 2 , color $u_{1} v_{j}$ by 3 , and color $u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ by 1 . If $C\left(v_{j}\right)=\{a, b, c, d\}$, $a<b<c<d$, then let $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and v_{j} receive b, c, a, d and d.

It is easy to verify that the resulting coloring is the required coloring.
Lemma 3 If $24 \leq n \leq 55$, then $K_{4, n}$ has 6 -VDIET coloring.
Proof We give a sequence of all subsets of $\{1,2,3,4,5,6\}$, except for $\emptyset,\{1\},\{2\},\{3\},\{2,3\}$, $\{1,2,3,4,5,6\},\{1,3,4,5,6\},\{1,2,4,5,6\},\{1,4,5,6\}$, as follows.
$\mathcal{S}_{3}=(\{4\},\{5\},\{6\},\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,4\},\{2,5\},\{2,6\},\{3,4\},\{3,5\}$, $\{3,6\},\{4,5\},\{4,6\},\{5,6\},\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,4\},\{1,3,5\},\{1,3,6\}$, $\{1,4,5\},\{1,4,6\},\{1,5,6\},\{2,3,4\},\{2,3,5\},\{2,3,6\},\{2,4,5\},\{2,4,6\},\{2,5,6\},\{3,4,5\}$, $\{3,4,6\},\{3,5,6\},\{4,5,6\},\{1,2,3,4\},\{1,2,3,5\},\{1,2,3,6\},\{1,2,4,5\},\{1,2,4,6\},\{1,2,5,6\}$, $\{1,3,4,5\},\{1,3,4,6\},\{1,3,5,6\},\{2,3,4,5\},\{2,3,4,6\},\{2,3,5,6\},\{2,4,5,6\},\{3,4,5,6\},\{1,2,3$, $4,5\},\{1,2,3,4,6\},\{1,2,3,5,6\},\{2,3,4,5,6\})$.

The first 5 subsets of \mathcal{S}_{3} are $\{4\},\{5\},\{6\},\{1,2\},\{1,3\}$, respectively. Obviously, \mathcal{S}_{3} has 55 terms (each term is a subset). Now we give a 6 -VDIET coloring of $K_{4, n}$ as follows.

Let $u_{1}, u_{2}, u_{3}, u_{4}$ receive color 1 . Let $C\left(u_{1}\right)=\{1,2,3,4,5,6\}, C\left(u_{2}\right)=\{1,3,4,5,6\}, C\left(u_{3}\right)=$ $\{1,2,4,5,6\}, C\left(u_{4}\right)=\{1,4,5,6\}$. Let $C\left(v_{j}\right)$ be the j-th term of $\mathcal{S}_{3}, j=1,2, \ldots, n$. We color v_{j} and its incident edges by $j+3, j=1,2,3$. We color $u_{1} v_{4}, u_{2} v_{4}, u_{3} v_{4}, u_{4} v_{4}, v_{4}$ by $2,1,2,1$ and 2 , respectively. We color $u_{1} v_{5}, u_{2} v_{5}, u_{3} v_{5}, u_{4} v_{5}, v_{5}$ by $3,3,1,1$ and 3 , respectively. For $j \geq 6$, if $C\left(v_{j}\right)=\{a, b\}, a<b$, then assign a to $u_{1} v_{j}$, and b to $u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and v_{j}.

If $C\left(v_{j}\right)=\{1, a, b\}, 1<a<b$, then assign 1 to $u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$, and assign a and b to $u_{1} v_{j}$ and v_{j}, respectively. If $C\left(v_{j}\right)=\{a, b, c\}, 2 \leq a<b<c$, then assign c to $u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$, and assign a and b to $u_{1} v_{j}$ and v_{j}, respectively. If $C\left(v_{j}\right)=\{1,2, a, b\}, 3 \leq a<b$, then assign $a, 1,2,1, b$ to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$, and v_{j}, respectively. If $C\left(v_{j}\right)=\{a, b, c, d\}, a<b<c<d$, $a>1$ or $a=1, b>2$, then assign a, b, c, d, d to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$, and v_{j}, respectively. If $C\left(v_{j}\right)=\{1,2,3, a, b\}$, then assign $1,3,2, a, b$ to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$, and v_{j}, respectively. If $C\left(v_{j}\right)=\{2,3,4,5,6\}$, then assign $2,3,4,5,6$ to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$, and v_{j}, respectively.

It can be easily verified that the above coloring is a 6 -VDIET coloring of $K_{4, n}$, where $24 \leq$ $n \leq 55$.

Lemma 4 If $56 \leq n \leq 115$, then $K_{4, n}$ has a 7 -VDIET coloring. If $\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{5}-4<$ $n \leq\binom{ k}{1}+\binom{k}{2}+\cdots+\binom{k}{5}-4$, where $k \geq 8$, then $K_{4, n}$ has a k-VDIET coloring.

Proof We give an order for all 1-combinations, 2-combinations, 3-combinations, 4-combinations and 5 -combinations of $\{1,2, \ldots, k\}$, except for, $\{1\},\{2\},\{3\},\{2,3\}$ such that the first $k-1$ terms are $\{4\},\{5\}, \ldots,\{k\},\{1,2\},\{1,3\}$, respectively. Obviously the resulting sequence, denoted by \mathcal{S}_{4},
has $\binom{k}{1}+\binom{k}{2}+\binom{k}{3}+\binom{k}{4}+\binom{k}{5}-4$ terms (each term is a subset).
We give a coloring of $K_{4, n}$ as follows.
Let $u_{1}, u_{2}, u_{3}, u_{4}$ receive color 1. Let $C\left(u_{1}\right)=\{1,2, \ldots, k\}, C\left(u_{2}\right)=C\left(u_{1}\right)-\{2\}, C\left(u_{3}\right)=$ $C\left(u_{1}\right)-\{3\}, C\left(u_{4}\right)=C\left(u_{1}\right)-\{2,3\}$. Let $C\left(v_{j}\right)$ be the j-th term of $\mathcal{S}_{4}, j=1,2, \ldots, n$. Let v_{j} and its incident edges receive $j+3, j=1,2, \ldots, k-3$. Let $u_{1} v_{k-2}, u_{2} v_{k-2}, u_{3} v_{k-2}, u_{4} v_{k-2}, v_{k-2}$ receive $2,1,2,1$ and 2 . Let $u_{1} v_{k-1}, u_{2} v_{k-1}, u_{3} v_{k-1}, u_{4} v_{k-1}, v_{k-1}$ receive $3,3,1,1,3$.

For $j \geq k$, if $C\left(v_{j}\right)=\{a, b\}$, then assign a to $u_{1} v_{j}$ and b to $u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and v_{j}. If $C\left(v_{j}\right)=\{1, a, b\}, 1<a<b$, then assign 1 to $u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and assign a and b to $u_{1} v_{j}$ and v_{j}, respectively. If $C\left(v_{j}\right)=\{a, b, c\}, 2 \leq a<b<c$, then assign c to $u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and assign a and b to $u_{1} v_{j}$ and v_{j}, respectively. If $C\left(v_{j}\right)=\{1,2, a, b\}, 3 \leq a<b$, then assign $a, 1,2,1, b$ to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and v_{j}, respectively. If $C\left(v_{j}\right)=\{a, b, c, d\}, a<b<c<d$, $a>1$ or $a=1, b>2$, then assign a, b, c, d, d to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and v_{j}, respectively. If $C\left(v_{j}\right)=\{1,2, a, b, c\}$, then assign $1, a, 2, b, c$ to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and v_{j}, respectively. If $C\left(v_{j}\right)=\{a, b, c, d, e\}, a<b<c<d<e, a>1$ or $a=1, b>2$, then assign a, b, c, d, e to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}$ and v_{j}, respectively.

It is easy to verify that the resulting coloring is a k-VDIET coloring of $K_{4, n}$.
Lemma 5 If $4 \leq n \leq 11$, then $\xi\left(K_{4, n}\right)=4$; If $12 \leq n \leq 27$, then $\xi\left(K_{4, n}\right)=5$; If $28 \leq n \leq 59$, then $\xi\left(K_{4, n}\right)=6$.

Proof This lemma is obviously true.
Theorem 1 For $4 \leq n \leq 58$, we have

$$
\chi_{v t}^{i e}\left(K_{4, n}\right)= \begin{cases}4, & 4 \leq n \leq 7 \\ 5, & 8 \leq n \leq 23 \\ 6, & 24 \leq n \leq 55 \\ 7, & 56 \leq n \leq 58\end{cases}
$$

Proof (a) When $4 \leq n \leq 7$, $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq \xi\left(K_{4, n}\right)=4$ by Lemma 5 . By Lemma 1, we know that $\chi_{v t}^{i e}\left(K_{4, n}\right)=4$.
(b) When $8 \leq n \leq 11$, $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq \xi\left(K_{4, n}\right)=4$ by Lemma 5 . Assume that $K_{4, n}$ has a VDIET coloring g with colors $1,2,3,4$. Obviously, $\left|C\left(u_{i}\right)\right| \geq 2, i=1,2,3,4$.
(1) The colors of $u_{1}, u_{2}, u_{3}, u_{4}$ are the same. We may suppose that $g\left(u_{1}\right)=g\left(u_{2}\right)=g\left(u_{3}\right)=$ $g\left(u_{4}\right)=1 . C\left(v_{j}\right) \neq\{1\}$ (for the vertex coloring is proper). There exist $l, t \in\{2,3,4\}$, such that $l<t,\{l\} \neq C\left(v_{j}\right) \neq\{t\}, j=1,2, \ldots, n$, for otherwise there will be two same sets among the sets $C\left(u_{1}\right), C\left(u_{2}\right), C\left(u_{3}\right), C\left(u_{4}\right)$. If $\{p\}$ is the color set of some $v_{j}, p \in\{1,2,3,4\}-\{1, t, l\}$, then $\{1, p\} \subseteq C\left(u_{i}\right), 1 \leq i \leq 4$. So $\left\{C\left(u_{1}\right), C\left(u_{2}\right), C\left(u_{3}\right), C\left(u_{4}\right)\right\}=\{\{1,2,3,4\},\{1,2,3,4\}-$ $\{l\},\{1,2,3,4\}-\{t\},\{1,2,3,4\}-\{l, t\}\}$. Thus $\{l, t\}$ is not the color set of any vertex. Thereby $\{1\},\{l\},\{t\},\{l, t\}$ are not the color set of any vertex. The number of subsets of $\{1,2,3,4\}$, except for $\emptyset,\{1\},\{l\},\{t\},\{l, t\}$, is 11 , but the number of vertices of $K_{4, n}$ is $n+4 \geq 12$. This is a contradiction. If $C\left(v_{j}\right) \neq\{p\}, 1 \leq j \leq n$, then $\emptyset,\{1\},\{l\},\{t\},\{p\}$ are not the color set of any vertex. We also get a contradiction.
(2) There are just two distinct elements in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), g\left(u_{3}\right), g\left(u_{4}\right)\right\}$, say $g\left(u_{1}\right)=1, g\left(u_{2}\right)=$ $2, g\left(u_{3}\right), g\left(u_{4}\right) \in\{1,2\}$. Then $C\left(u_{i}\right) \neq\{1\},\{2\}, i=1,2,3,4 ; C\left(v_{j}\right) \neq\{1\},\{2\},\{1,2\}, j=$ $1,2, \ldots, n$. Obviously, there exists $l \in\{3,4\}$, such that $C\left(v_{j}\right) \neq\{l\}, j=1,2, \ldots, n$. If there exists exactly one $l \in\{3,4\}$, such that $C\left(v_{j}\right) \neq\{l\}, j=1,2, \ldots, n$, say $l=3$, then $4 \in C\left(u_{i}\right), i=$ $1,2,3,4$. So $\emptyset,\{1\},\{2\},\{3\},\{1,2\}$ are not the color set of any vertex. This is a contradiction. If $\{3\} \neq C\left(v_{j}\right) \neq\{4\}, 1 \leq j \leq n$, then $\emptyset,\{1\},\{2\},\{3\},\{4\}$ are not the color set of any vertex. This is also a contradiction.
(3) There are just three distinct elements in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), g\left(u_{3}\right), g\left(u_{4}\right)\right\}$, say $g\left(u_{i}\right)=i$, $i=1,2,3, g\left(u_{4}\right) \in\{1,2,3\}$. If $C\left(v_{j}\right) \neq\{4\}, j=1,2, \ldots, n$, then $\emptyset,\{1\},\{2\},\{3\},\{4\}$ are not the color set of any vertex. This is a contradiction. If $C\left(v_{j_{0}}\right)=\{4\}$ for some $j_{0} \in\{1,2, \ldots, n\}$, then $\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$ are not the color set of any vertex. This is also a contradiction.
(4) The colors of vertex $u_{1}, u_{2}, u_{3}, u_{4}$ are distinct. Without loss of generality, we assume that $g\left(u_{i}\right)=i, i=1,2,3,4$, then $\emptyset,\{1\},\{2\},\{3\},\{4\}$ are not the color set of any vertex. This is a contradiction. Thus $K_{4, n}$ has no 4 -VDIET coloring. So $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq 5$. Combining this with Lemma 2, we know that $\chi_{v t}^{i e}\left(K_{4, n}\right)=5$, if $n=8, \ldots, 11$.
(c) When $12 \leq n \leq 23$, we know that $\chi_{v t}^{i e}\left(K_{4, n}\right)=5$ by Lemmas 2 and 5 .
(d) When $n=24,25,26,27$, we have $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq 5$. Assume that $K_{4, n}$ has a VDIET coloring using colors $1,2,3,4,5$. Completely similar to the proof of the result that $K_{4, n}$ has no 4-VDIET coloring if $8 \leq n \leq 11$ in (b), we can show that $K_{4, n}$ has no 5 -VDIET coloring if $24 \leq n \leq 27$. So $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq 6$, and combining this with Lemma 3 gives $\chi_{v t}^{i e}\left(K_{4, n}\right)=6$.
(e) When $28 \leq n \leq 55$, we can prove that $\chi_{v t}^{i e}\left(K_{4, n}\right)=6$ by Lemmas 3 and 5 .
(f) Suppose $n=56,57,58$. From Lemma 5 we know that $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq 6$. Completely similar to the proof of the result that $K_{4, n}$ has no 4 -VDIET coloring if $8 \leq n \leq 11$ in (b), we can show that $K_{4, n}$ has no 6 -VDIET coloring if $n=56,57,58$, so $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq 7$. Combining this with Lemma 4, we know that $\chi_{v t}^{i e}\left(K_{4, n}\right)=7$.

The proof is completed.
Theorem 2 If $\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{5}-4<n \leq\binom{ k}{1}+\binom{k}{2}+\cdots+\binom{k}{5}-4, k \geq 7$, then $\chi_{v t}^{i e}\left(K_{4, n}\right)=k$.

Proof Assume that $K_{4, n}$ has a $(k-1)$-VDIET coloring g.
Case 1 The colors of $u_{1}, u_{2}, u_{3}, u_{4}$ are the same. We may assume that $g\left(u_{1}\right)=g\left(u_{2}\right)=g\left(u_{3}\right)=$ $g\left(u_{4}\right)=1$. Obviously, we have that $C\left(v_{j}\right) \neq\{1\}, j=1,2, \ldots, n$. There exist two colors $l, t \in\{2,3, \ldots, k-1\}$, such that $\{l\} \neq C\left(v_{j}\right) \neq\{t\}, j=1,2, \ldots, n$, for otherwise there exists a color in $\{2,3, \ldots, k-1\}$, say 2 , such that $C\left(u_{i}\right) \supseteq\{1,3,4, \ldots, k-1\}, i=1,2,3,4$. So $C\left(u_{1}\right), C\left(u_{2}\right), C\left(u_{3}\right), C\left(u_{4}\right)$ are all equal to $\{1,3,4, \ldots, k-1\}$ or $\{1,2,3,4, \ldots, k-1\}$. This is a contradiction.

Without loss of generality, suppose $\{2\} \neq C\left(v_{j}\right) \neq\{3\}$.
(1) $\{4\},\{5\}, \ldots,\{k-1\}$ are all the color sets of some v_{j} 's, $j=1,2, \ldots, n$. Then $C\left(u_{i}\right) \supseteq$
$\{1,4,5, \ldots, k-1\}$, and $\left\{C\left(u_{1}\right), C\left(u_{2}\right), C\left(u_{3}\right), C\left(u_{4}\right)\right\}=\{\{1,4,5, \ldots, k-1\},\{1,2,4,5, \ldots, k-1\}$, $\{1,3,4,5, \ldots, k-1\},\{1,2,3,4,5, \ldots, k-1\}\}$. So $\{2,3\}$ is not the color set of any vertex v_{j}. Thus $\{1\},\{2\},\{3\},\{2,3\}$ are not available for any v_{j}. And $\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{5}-4(<n)$ subsets cannot distinguish n vertices $v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction.
(2) $\exists r \in\{4,5, \ldots, k-1\}$, such that $C\left(v_{j}\right) \neq\{r\}, 1 \leq j \leq n$. Then $\{1\},\{2\},\{3\},\{r\}$ are not available for any v_{j}. It is also a contradiction.

Case 2 There are only two different colors among $g\left(u_{1}\right), g\left(u_{2}\right), g\left(u_{3}\right), g\left(u_{4}\right)$. Without loss of generality we assume that $g\left(u_{1}\right)=1, g\left(u_{2}\right)=2, g\left(u_{3}\right), g\left(u_{4}\right) \in\{1,2\}$. If for each $r \in$ $\{3,4, \ldots, k-1\},\{r\}$ is a color set of some vertex v_{j}, then $C\left(u_{i}\right) \supseteq\{3,4, \ldots, k-1\}$. Hence each $C\left(u_{i}\right), i=1,2,3,4$, is equal to one of the following sets $\{1,3,4, \ldots, k-1\},\{2,3,4, \ldots, k-$ $1\},\{1,2,3,4, \ldots, k-1\}$. Three subsets cannot distinguish 4 vertices $u_{1}, u_{2}, u_{3}, u_{4}$, this is a contradiction. If there exists $r \in\{3,4, \ldots, k-1\}$, such that $\{r\}$ is not a color set of any vertex v_{j}, then $\{1\},\{2\},\{1,2\},\{r\}$ are not available for any vertex $v_{j}, j=1,2, \ldots, n$. The number of available subsets (for v_{j}) is at most $\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{5}-4$. But we have n vertices $v_{1}, v_{2}, \ldots, v_{n}$, leading to a contradiction.

Case 3 In $\left\{g\left(u_{1}\right), g\left(u_{2}\right), g\left(u_{3}\right), g\left(u_{4}\right)\right\}$, there are at least three different colors. Without loss of generality we assume that $g\left(u_{i}\right)=i, i=1,2,3$. Then $\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$ are not the color sets of any vertex $v_{j}, 1 \leq j \leq n$. So the number of available subsets (for v_{j}) is at most $\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{5}-7<\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{5}-4<n$. This is a contradiction.

So $K_{4, n}$ has no VDIET coloring using $(k-1)$ colors. i.e., $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq k$. From this result and Lemma 4, we know that $\chi_{v t}^{i e}\left(K_{4, n}\right)=k$. The proof is completed.

3. Vertex distinguishing IE-total chromatic numbers of $K_{n, n}$ with $5 \leq$

 $n \leq 21$Theorem 3 For complete graph $K_{5,5}$, we have $\chi_{v t}^{i e}\left(K_{5,5}\right)=4$.
Proof Obviously, $\chi_{v t}^{i e}\left(K_{5,5}\right) \geq \xi\left(K_{5,5}\right)=4$. In order to complete the proof of this theorem, we give a VDIET coloring using 4 colors $1,2,3,4$ as follows.

Let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ receive color 1 . Let $C\left(u_{1}\right)=\{1,2,3,4\}, C\left(u_{2}\right)=\{1,2,4\}, C\left(u_{3}\right)=$ $\{1,2,3\}, C\left(u_{4}\right)=\{1,3,4\}, C\left(u_{5}\right)=\{1,4\} ; C\left(v_{1}\right)=\{1,2\}, C\left(v_{2}\right)=\{1,3\}, C\left(v_{3}\right)=\{3,4\}$, $C\left(v_{4}\right)=\{2,4\}, C\left(v_{5}\right)=\{2,3,4\}$.

For $i=1,2,3,4,5$, we assign color 2 to $u_{i} v_{1}$ if $2 \in C\left(u_{i}\right) \cap C\left(v_{1}\right)$ and assign color 1 to $u_{i} v_{1}$ otherwise. We assign 3 to $u_{i} v_{2}$ if $3 \in C\left(u_{i}\right) \cap C\left(v_{2}\right)$ and assign color 1 to $u_{i} v_{2}$ otherwise. We assign color 4 to $u_{i} v_{3}$ if $4 \in C\left(u_{i}\right) \cap C\left(v_{3}\right)$ and assign color 3 to $u_{i} v_{3}$ otherwise. And then we color $u_{1} v_{4}, u_{2} v_{4}, u_{3} v_{4}, u_{4} v_{4}, u_{5} v_{4}$ by $2,4,2,4$ and 4 , respectively and color $u_{1} v_{5}, u_{2} v_{5}, u_{3} v_{5}, u_{4} v_{5}, u_{5} v_{5}$ by $2,4,2,3$ and 4 , respectively. We assign $2,3,4,2,3$ to vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5}, respectively.

It is easy to verify that the resulting coloring is 4 -VDIET coloring of $K_{5,5}$.
The proof is completed.

Lemma $6 \quad K_{6,6}$ and $K_{7,7}$ has no 4-VDIET coloring.
Proof Assume that $K_{n, n}$ has a 4-VDIET coloring $g, n=6,7$.
Case 1 The colors of $u_{1}, u_{2}, \ldots, u_{n}$ are the same. Without loss of generality, we assume $g\left(u_{i}\right)=1, i=1,2, \ldots, n$.
(1) $\left|C\left(u_{i}\right)\right| \geq 2, i=1,2, \ldots, n$. Otherwise the color set of each vertex contains 1 , but the number of subsets of $\{1,2,3,4\}$ which contain 1 is only 8 . Eight subsets cannot distinguish 12 vertices or 14 vertices.
(2) $C\left(v_{j}\right) \neq\{1\}, j=1,2, \ldots, n$. This is obvious for no two adjacent vertices receive the same color.
(3) $\left|C\left(v_{j}\right)\right| \geq 2, j=1,2, \ldots, n$. Otherwise $C\left(v_{j_{0}}\right)=\{l\}, j_{0} \in\{1,2, \ldots, n\}, l \in\{2,3,4\}$. Then $\{1, l\} \subseteq C\left(u_{i}\right), i=1,2, \ldots, n$. But the number of subsets of $\{1,2,3,4\}$ which contain $\{1, l\}$ is 4 . These 4 subsets cannot distinguish $u_{1}, u_{2}, \ldots, u_{n}$. So the number of subsets of $\{1,2,3,4\}$ which contain at least 2 elements is 11 and the number of vertices of $K_{n, n}$ is $2 n \geq 12$. This is a contradiction.

Case 2 There are just two different elements in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{n}\right)\right\}$.
We may assume $g\left(u_{i}\right)=i, i=1,2$.
(1) $C\left(v_{j}\right) \neq\{1\},\{2\},\{1,2\}, j=1,2, \ldots, n$.
(2) $\left|C\left(v_{j}\right)\right| \geq 2, j=1,2, \ldots, n$. Otherwise if some $\left|C\left(v_{j_{0}}\right)\right|=1$, say $C\left(v_{j_{0}}\right)=\{3\}$, then each $C\left(u_{i}\right), i=1,2, \ldots, n$, is one of the following subsets: $\{1,3\},\{1,2,3\},\{1,3,4\},\{1,2,3,4\},\{2,3\}$, $\{2,3,4\}$. We immediately obtain a contradiction if $n=7$. In the case $n=6$, each $C\left(v_{j}\right)$ is not among the above 6 subsets or the complementary subsets of the above 6 subsets in $\{1,2,3,4\}$. So each $C\left(v_{j}\right)$ is one of the following sets: $\{3\},\{3,4\},\{1,2,4\}$. This is a contradiction.
(3) $C\left(u_{i}\right) \neq\{3\},\{4\}, i=1,2, \ldots, n$.
(4) If some $C\left(u_{i_{1}}\right)=\{1\}$ and some $C\left(u_{i_{2}}\right)=\{2\}$, then $\{1,2\} \subseteq C\left(v_{j}\right), 1 \leq j \leq n$. The number of subsets of $\{1,2,3,4\}$ which contain 1 and 2 is 4 . Four subsets cannot distinguish n vertices $v_{1}, v_{2}, \ldots, v_{n}(n=6,7)$. This is a contradiction. If $C\left(u_{i}\right) \neq\{1\},\{2\}, i=1,2, \ldots, n$, then $\emptyset,\{1\},\{2\},\{3\},\{4\}$ are not the color set of any vertex. But the number of subsets of $\{1,2,3,4\}$ which contain at least 2 elements is 11 . Eleven subsets cannot distinguish $2 n(\geq 12)$ vertices. This is a contradiction. If $C\left(u_{i}\right) \neq\{1\}, i=1,2, \ldots, n$, and some $C\left(u_{i_{0}}\right)=\{2\}$, then the color set of each vertex is not equal to $\emptyset,\{1\},\{3\},\{4\},\{3,4\}$. Note that in this case $2 \in C\left(v_{j}\right), 1 \leq j \leq n$. This is a contradiction. We can also get a contradiction in the case $C\left(u_{i}\right) \neq\{2\}, 1 \leq i \leq n$, and some $C\left(u_{i_{0}}\right)=\{1\}$.

Case 3 There are just 3 different elements in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{n}\right)\right\}$. In this case the colors of $v_{1}, v_{2}, \ldots, v_{n}$ are the same. So similarly to Case 1 , we can obtain a contradiction (we only exchange u and v in Case 1).

Case 4 There are just 4 different elements in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{n}\right)\right\}$. In this case the color of v_{1} must be in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{n}\right)\right\}$. This is a contradiction.

Theorem 4 If $6 \leq n \leq 11$, then $\chi_{v t}^{i e}\left(K_{n, n}\right)=5$.
Proof From Lemma 6 we know $\chi_{v t}^{i e}\left(K_{n, n}\right) \geq 5$, if $n=6,7$. And $\chi_{v t}^{i e}\left(K_{n, n}\right) \geq \xi\left(K_{n, n}\right)=5$, $n=8,9,10,11$. So we only need to give a 5 -VDIET coloring of $K_{n, n}$, when $6 \leq n \leq 11$.

Case $16 \leq n \leq 10$. Let
$\mathscr{A}=(\{1,2,3,4,5\},\{1,2,4,5\},\{1,2,3,5\},\{1,2,3,4\},\{1,3,4,5\},\{1,2,4\},\{1,2,5\},\{1,3,4\}$, $\{1,3,5\},\{1,4,5\})$,
$\mathscr{B}=(\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,2,3\},\{3,4,5\},\{2,4,5\},\{2,3,5\},\{2,3,4\},\{4,5\})$.
Let $C\left(u_{i}\right)$ be the i-th term of \mathscr{A}, and $C\left(v_{i}\right)$ be the i-th term of $\mathscr{B}, i=1,2, \ldots, n$. Let $u_{1}, u_{2}, \ldots, u_{n}$ receive color 1 , and vertex v_{j} receive a color in $C\left(v_{j}\right)-\{1\}, j=1,2, \ldots, n$. For $1 \leq i \leq n, 1 \leq j \leq 4$, if $j+1 \in C\left(u_{i}\right) \cap C\left(v_{j}\right)$, then assign $j+1$ to $u_{i} v_{j}$; if $j+1 \bar{\in} C\left(u_{i}\right) \cap C\left(v_{j}\right)$, then assign 1 to $u_{i} v_{j}$. For $1 \leq i \leq 5,5 \leq j \leq n$, if $i \in C\left(u_{i}\right) \cap C\left(v_{j}\right)$, then assign i to $u_{i} v_{j}$; if $i \bar{\in} C\left(u_{i}\right) \cap C\left(v_{j}\right)$, then assign a color in $C\left(u_{i}\right) \cap C\left(v_{j}\right)$ to $u_{i} v_{j}$. For $6 \leq i \leq n, 5 \leq j \leq n$, we assign a color in $C\left(u_{i}\right) \cap C\left(v_{j}\right)$ to $u_{i} v_{j}$.

We can verify that the above coloring is a 5 -VDIET coloring of $K_{n, n}$, when $6 \leq n \leq 10$.
Case $2 n=11$.
Let $C\left(u_{1}\right)=\{1,2,3,4,5\}, C\left(u_{2}\right)=\{1,2,3,4\}, C\left(u_{3}\right)=\{1,2,3,5\}, C\left(u_{4}\right)=\{1,2,4,5\}$, $C\left(u_{5}\right)=\{1,3,4,5\}, C\left(u_{6}\right)=\{1,3,4\}, C\left(u_{7}\right)=\{2,3,4,5\}, C\left(u_{8}\right)=\{2,3,5\}, C\left(u_{9}\right)=\{2,4,5\}$, $C\left(u_{10}\right)=\{1,2,5\}, C\left(u_{11}\right)=\{2,5\}$. Let $C\left(v_{1}\right)=\{1,5\}, C\left(v_{2}\right)=\{2,3\}, C\left(v_{3}\right)=\{3,5\}, C\left(v_{4}\right)=$ $\{2,4\}, C\left(v_{5}\right)=\{4,5\}, C\left(v_{6}\right)=\{1,2,3\}, C\left(v_{7}\right)=\{1,2,4\}, C\left(v_{8}\right)=\{1,3,5\}, C\left(v_{9}\right)=\{1,4,5\}$, $C\left(v_{10}\right)=\{2,3,4\}, C\left(v_{11}\right)=\{3,4,5\}$.

We give a 5 -VDIET coloring of $K_{11,11}$ according to the above color sets.
Let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ receive color 1 and $u_{7}, u_{8}, u_{9}, u_{10}, u_{11}$ receive color 2 . For each $i=$ $1,2, \ldots, 11$, we color $u_{i} v_{1}$ by 1 if $1 \in C\left(u_{i}\right) \cap C\left(v_{1}\right)$ and color $u_{i} v_{1}$ by 5 otherwise; We color $u_{i} v_{2}$ by 2 if $2 \in C\left(u_{i}\right) \cap C\left(v_{2}\right)$ and color $u_{i} v_{2}$ by 3 otherwise; We color $u_{i} v_{3}$ by 3 if $3 \in C\left(u_{i}\right) \cap C\left(v_{3}\right)$ and color $u_{i} v_{3}$ by 5 otherwise; We color $u_{i} v_{4}$ by 4 if $4 \in C\left(u_{i}\right) \cap C\left(v_{4}\right)$ and color $u_{i} v_{4}$ by 2 otherwise; We color $u_{i} v_{5}$ by 5 if $5 \in C\left(u_{i}\right) \cap C\left(v_{5}\right)$ and color $u_{i} v_{5}$ by 4 otherwise. For each $i=1,2,3,4,5, j=6,7, \ldots, 11$, we assign i to edge $u_{i} v_{j}$ if $i \in C\left(u_{i}\right) \cap C\left(v_{j}\right)$ and assign a color in $C\left(u_{i}\right) \cap C\left(v_{j}\right)$ to $u_{i} v_{j}$ if $i \bar{\in} C\left(u_{i}\right) \cap C\left(v_{j}\right)$. For each $i=6,7, \ldots, 11, j=6,7, \ldots, 11$, we assign a color in $C\left(u_{i}\right) \cap C\left(v_{j}\right)$ to edge $u_{i} v_{j}$. For each $j=1,2, \ldots, 11$, we color v_{j} by a color in $C\left(v_{j}\right)-\{1,2\}$.

The above coloring is the required coloring.
Lemma $7 K_{n, n}$ has no 5-VDIET coloring if $n=12,13,14,15$.
Proof Assume that $K_{n, n}$ has a 5 -VDIET coloring g with colors $1,2,3,4,5$ and $n \in\{12,13,14,15\}$.
Case 1 The colors of $u_{1}, u_{2}, \ldots, u_{n}$ are the same. We may suppose $g\left(u_{i}\right)=1, i=1,2, \ldots, n$.
The complementary subset of each $C\left(u_{i}\right)$ in $\{1,2,3,4,5\}$ is not the color set of any vertex, $1 \leq i \leq n$. So we have at most $2^{5}-n \leq 2^{5}-12=20$ available subsets. This is a contradiction.

Case 2 There are just two different elements in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{n}\right)\right\}$. We may suppose $g\left(u_{1}\right)=1, g\left(u_{2}\right)=2$.
(1) $C\left(v_{j}\right) \neq\{1\},\{2\},\{1,2\}, 1 \leq j \leq n, C\left(u_{i}\right) \neq\{3\},\{4\},\{5\},\{3,4\},\{3,5\},\{4,5\},\{3,4,5\}$, $1 \leq i \leq n$.
(2) $C\left(v_{j}\right) \neq\{3\},\{4\},\{5\}, 1 \leq j \leq n$. Otherwise if some $C\left(v_{j_{0}}\right)=\{5\}$, then each $C\left(u_{i}\right)$ is one of the following sets: $\{1,5\},\{2,5\},\{1,2,5\},\{1,3,5\},\{1,4,5\},\{2,3,5\},\{2,4,5\},\{1,2,3,5\}$, $\{1,2,4,5\},\{1,3,4,5\},\{2,3,4,5\},\{1,2,3,4,5\}$. We immediately get a contradiction when $n=$ $13,14,15$. When $n=12$, any one of the complementary subsets of the above 12 subsets in $\{1,2,3,4,5\}$ is not the color set of any vertex. This is also a contradiction.
(3) $\left|C\left(u_{i}\right)\right| \geq 2,1 \leq i \leq n$. Otherwise if some $C\left(u_{i_{0}}\right)=\{1\}$, then any one of the 7 nonempty subsets of $\{3,4,5\}$ is not the color set of any vertex. In this case for $i=1,2, \ldots, n$, $C\left(u_{i}\right) \neq\{2\}$ (For otherwise each $C\left(v_{j}\right) \supseteq\{1,2\}$ and the number of subsets of $\{1,2,3,4,5\}$ which contain 1 and 2 is 8 and we have $n(\geq 12)$ vertices $\left.v_{1}, v_{2}, \ldots, v_{n}\right)$. Except for $\emptyset,\{2\}$ and nonempty subsets of $\{3,4,5\}$, we have 23 subsets of $\{1,2,3,4,5\}$ left. Such 23 subsets cannot distinguish $2 n(\geq 24)$ vertices. This is also a contradiction.

Now we give two facts before further discussion.
Fact 1. For $1 \leq i, j \leq n$, we have $C\left(u_{i}\right) \cap C\left(v_{j}\right) \neq \emptyset$.
Fact 2. If $A \subseteq\{1,2,3,4,5\}$ is a color set of some u_{i} (or v_{i}), then each subset B of $\{1,2,3,4,5\}-A$ is also a color set of some u_{j} (or v_{j}) when B is a color set of some vertex.
(4) $C\left(u_{i}\right) \neq\{1,2\}, 1 \leq i \leq n$. Otherwise if some $C\left(u_{i_{0}}\right)=\{1,2\}$, then from Fact 1 we know that $\{3,4,5\},\{3,4\},\{3,5\},\{4,5\}$ as well as 0 -subsets, 1 -subsets of $\{1,2,3,4,5\}$ are not the color set of any vertex. Thus the number of the remaining subsets is 22 . This is a contradiction.
(5) From the foregoing discussion we know that each color set belongs to $2^{\{1,2,3,4,5\}}-$ $\{\emptyset,\{1,2\},\{1\},\{2\},\{3\},\{4\},\{5\}\}$. So we can obtain a contradiction if $n=13,14,15$ and we can obtain the color sets of all vertices of $K_{12,12}$ by deleting exactly one set in $2^{\{1,2,3,4,5\}}$ $\{\emptyset,\{1,2\},\{1\},\{2\},\{3\},\{4\},\{5\}\}$. Let $\mathcal{S}=\{\{1,3\},\{2,4,5\},\{1,4\},\{2,3,5\},\{1,5\},\{2,3,4\},\{2,3\}$, $\{1,4,5\},\{2,4\},\{1,3,5\},\{2,5\},\{1,3,4\},\{3,4\},\{1,2,5\},\{3,5\},\{1,2,4\},\{4,5\},\{1,2,3\}\}$. There are 18 sets in \mathcal{S}. When $n=12$, by Fact 2 we know that there are at least 16 subsets in \mathcal{S} which are all the color sets of v_{j} 's. This is a contradiction.

Case 3 There are just 3 or 4 different elements in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{n}\right)\right\}$. Then there are 1 or 2 different elements in $\left\{g\left(v_{1}\right), g\left(v_{2}\right), \ldots, g\left(v_{n}\right)\right\}$. Similarly to Case 1 or Case 2 , we can get a contradiction (we only exchange u and v in Case 1 or Case 2).

Case 4 There are just 5 different elements in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{n}\right)\right\}$. Then the color of v_{1} must be in $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{n}\right)\right\}$. This is a contradiction.

The proof is completed.
Theorem 5 If $12 \leq n \leq 21$, then $\chi_{v t}^{i e}\left(K_{n, n}\right)=6$.
Proof From Lemma 7 , we know that $\chi_{v t}^{i e}\left(K_{n, n}\right) \geq 6$, if $n=12,13,14,15$. But $\chi_{v t}^{i e}\left(K_{n, n}\right) \geq 6$, if $n=16,17, \ldots, 21$. Thus we only need to show that $K_{n, n}$ has a 6 -VDIET coloring with colors
$1,2,3,4,5,6$, if $12 \leq n \leq 21$. Let $\mathscr{A}=(\{1,2,3,4,5,6\},\{1,2,4,5,6\},\{1,2,3,5,6\},\{1,2,3,4,6\}$, $\{1,2,3,4,5\},\{1,3,4,5,6\},\{1,3,5\},\{1,3,6\},\{1,4,5\},\{1,4,6\},\{1,5,6\},\{1,2,3,4\},\{1,2,3,5\}$, $\{1,2,3,6\},\{1,2,4,5\},\{1,2,4,6\},\{1,2,5,6\},\{1,3,4,5\},\{1,3,4,6\},\{1,3,5,6\},\{1,4,5,6\})$;
$\mathscr{B}=(\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,4\}$, $\{3,4,5,6\},\{2,4,5,6\},\{2,3,5,6\},\{2,3,4,6\},\{2,3,4,5\},\{4,5,6\},\{3,5,6\},\{3,4,6\},\{3,4,5\}$, $\{2,5,6\},\{2,3,4,5,6\})$.

We will color the vertices and edges of $K_{n, n}$ according to the given color sets of all vertices. Let $u_{1}, u_{2}, \ldots, u_{n}$ receive color 1 . Let $C\left(u_{1}\right), C\left(u_{2}\right), \ldots, C\left(u_{n}\right)$ be the first n terms of \mathscr{A}, respectively and $C\left(v_{1}\right), C\left(v_{2}\right), \ldots, C\left(v_{n}\right)$ be the first n terms of \mathscr{B}, respectively. For $i=1,2, \ldots, n, j=$ $1,2,3,4,5$, if $j+1 \in C\left(u_{i}\right) \cap C\left(v_{j}\right)$, then assign $j+1$ to $u_{i} v_{j}$; if $j+1 \bar{\in} C\left(u_{i}\right) \cap C\left(v_{j}\right)$, then assign 1 to $u_{i} v_{j}$. For $i=1,2,3,4,5,6,6 \leq j \leq n$, if $i \in C\left(u_{i}\right) \cap C\left(v_{j}\right)$, then assign i to $u_{i} v_{j}$; if $i \bar{\in} C\left(u_{i}\right) \cap C\left(v_{j}\right)$, then assign one color in $C\left(u_{i}\right) \cap C\left(v_{j}\right)$ to $u_{i} v_{j}$. For $i=7,8, \ldots, n, j=6,7, \ldots, n$, we assign one color in $C\left(u_{i}\right) \cap C\left(v_{j}\right)$ to $u_{i} v_{j}$. For $1 \leq j \leq n$, let v_{j} receive a color in $C\left(v_{j}\right)-\{1\}$. Obviously, the above coloring is what we need. The proof is completed.

By the method used in the proof of the above theorem, we can easily obtain the following proposition.

Proposition 6 Suppose $k \geq 4, n \geq 4$. If $\left\lceil\frac{2^{k-1}-2}{3}\right\rceil<n \leq\left\lceil\frac{2^{k}-2}{3}\right\rceil$, then $\chi_{v t}^{i e}\left(K_{n, n}\right) \leq k$.

References

[1] P. N. BALISTER, B. BOLLOBÁS, R. H. SHELP. Vertex distinguishing colorings of graphs with $\Delta(G)=2$. Discrete Math., 2002, 252(1-3): 17-29.
[2] P. N. BALISTER, O. M. RIORDAN, R. H. SCHELP. Vertex-distinguishing edge colorings of graphs. J. Graph Theory, 2003, 42(2): 95-109.
[3] C. BAZGAN, A. HARKAT-BENHAMDINE, Hao LI, et al. On the vertex-distinguishing proper edge-colorings of graphs. J. Combin. Theory Ser. B, 1999, 75(2): 288-301.
[4] A. C. BURRIS, R. H. SCHELP. Vertex-distinguishing proper edge-colorings. J. Graph Theory, 1997, 26(2): 73-82.
[5] J. ČERNY, M. HORŇÁK, R. SOTÁK. Observability of a graph. Math. Slovaca, 1996, 46(1): 21-31.
[6] Xiang'en CHEN. Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cubes. Xibei Shifan Daxue Xuebao Ziran Kexue Ban, 2005, 41(5): 1-3.
[7] F. HARARY, M. PLANTHOLT. The Point-Distinguishing Chromatic Index. Wiley-Intersci. Publ., Wiley, New York, 1985.
[8] M. HORŇÁK, R. SOTÁK. Observability of complete multipartite graphs with equipotent parts. Ars Combin., 1995, 41: 289-301.
[9] M. HORŇÁK, R. SOTÁK. Asymptotic behaviour of the observability of Q_{n}. Discrete Math., 1997, 176: 139-148.
[10] M. HORŇÁK, R. SOTÁK. The fifth jump of the point-distinguishing chromatic index of $K_{n, n}$. Ars Combin., 1996, 42: 233-242.
[11] M. HORŇÁK, R. SOTÁK. Localization jumps of the point-distinguishing chromatic index of $K_{n, n}$. Discuss. Math. Graph Theory, 1997, 17: 243-251.
[12] M. HORŇÁK, N. ZAGAGLIA SALVI. On the point-distinguishing chromatic index of complete bipartite graphs. Ars Combin., 2006, 80: 75-85.
[13] N. ZAGAGLIA SALVI. On the point-distinguishing chromatic index of $K_{n, n}$. Ars Combin., 1988, 25(B): 93-104.
[14] N. ZAGAGLIA SALVI. On the value of the point-distinguishing chromatic index of $K_{n, n}$. Ars Combin., 1990, 29(B): 235-244.
[15] Zhongfu ZHANG, Pengxiang QIU, Baogen XU, et al. vertex-distinguishing total colorings of graphs. Ars Combin., 2008, 87: 33-45.

[^0]: Received June 28, 2010; Accepted August 10, 2011
 Supported by the National Natural Science Foundation of China (Grant Nos. 61163037; 61163054), the Scientific Research Project of Northwest Normal University (No. nwnu-kjcxgc-03-61), the Natural Foudation Project of Ningxia (No. NZ1154) and the Scientific Research Foudation Project of Ningxia University (No. (E):ndzr10-7).

 * Corresponding author

 E-mail address: chenxe@nwnu.edu.cn (Xiang'en CHEN); xinxq1203@163.com (Xiaoqing XIN); hewenyu518518@ 163.com (Wenyu HE)

