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Abstract Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the
vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be
the set of colors of vertex u and edges incident to uw under f. For an IE-total coloring f of G
using k colors, if C'(u) # C(v) for any two different vertices u and v of V(G), then f is called
a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The
minimum number of colors required for a VDIET coloring of G is denoted by x5 (G), and it is
called the VDIET chromatic number of G. We will give VDIET chromatic numbers for complete
bipartite graph Kan (n > 4), Knn (5 <n < 21) in this article.
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1. Introduction and preliminaries

The vertex distinguishing proper edge coloring and point distinguishing general edge coloring
were studied in [1-5,8-9] and [7,10-14], respectively.

For a total coloring (proper or not) f of G and a vertex v of G, denote by C¢(v), or simply
C'(v) if no confusion arises, the set of colors used to color the vertex v as well as the edges incident
to v. Let C(v) be the complementary set of C(v) in the set of all colors we used. Obviously,
|C(v)] < dg(v)+ 1 and the equality holds if the total coloring is proper.

For a proper total coloring, if C(u) # C(v), i.e., C(u) # C(v) for any two distinct vertices u
and v, then the coloring is called vertex-distinguishing (proper) total coloring and the minimum
number of colors required for a vertex-distinguishing (proper) total coloring is denoted by x.,+(G).

This concept has been considered in [6,15]. The following conjecture was given in [15].

Conjecture 1 Suppose G is a simple graph and ng is the number of vertices of degree d,
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k

0 < d < A. Let k be the minimum positive integer such that (d+1

§ <d<A. Then x,t(G) =k or k+ 1.

From [15] we know that the above conjecture is valid for complete graph, complete bipartite

) = ng for all d such that

graph, path and cycle, etc.

The total coloring of a graph G such that no two adjacent vertices receive the same color is
called an IE- total coloring of a graph G. If f is an IE- total coloring of graph G using k colors
and Yu,v € V(G), u # v, we have C(u) # C(v), then f is called k-vertex-distinguishing IE-total
coloring, or k-VDIET coloring. The minimum number k for which G has a vertex-distinguishing
IE-total coloring using k colors is denoted by () and called the vertex-distinguishing IE-total

chromatic number of graph G. The following proposition is obviously true.
Proposition 1 \/(GQ) < xu(G).
For a graph G, let n; denote the number of the vertices of degree i, § < i < A. Let

ﬂG%AmMHG>+<®+W~+G)+Ci¥)2m+nﬁrk~+mﬁ§S§A}

S

Obviously, we have x¢(G) > &(G). We will consider the VDIET colorings of complete
bipartite graph Ky ,, (n > 4) and K, », (5 <n < 21) in this paper.

2. Vertex distinguishing IE-total chromatic numbers of K,
Lemma 1 For4 <n <7, K4, has a 4-VDIET coloring.

Proof We give a VDIET coloring of K4, with colors 1, 2, 3, 4 as follows. Let w1, u2, us3, us
receive color 1. Let &1 = ({4},4{1,2},{1,3},{2,4},{3,4},{1,2,3},{2,3,4}). Let C(v;) be the
j-th term of &1, j = 1,2,...,n. Assign 4 to v; and all its incident edges. Assign 2 to v,
u1v2, and uzvy and assign 1 to usvs, ugqvs; Assign 3 to vz and 1 to all incident edges of ws;
Assign 2 to vgq and 4 to all incident edges of vy; Assign 3 to vs and 4 to all incident edges
of vy (when n > 5). Color ujvg, ugvg, usve, uavs, v by 3,1,2,1,3, respectively (when n > 6).
Color wujv7, ugvr, ugvz, ugvr, vr by 2,3,2,4,2, respectively (if n = 7). For the resulting coloring,
C(ur) = {1,2,3,4}, C(u2) = {1,3,4}, C(us) = {1,2,4} and C(uq) = {1,4}. So the resulting
coloring is 4-VDIET coloring of Ky ,,. O

Lemma 2 K, , has a 5-VDIET coloring for 8 <n < 23.

Proof Arrange all the subsets of {1,2,3,4,5}, except for 0, {1}, {2}, {3}, {2,3}, {1,2,3,4,5},
{1,3,4,5}, {1,2,4,5}, {1,4,5}, as follows.
S» = ({4}, {51, {121, {1, 3}, {1, 4}, {1,5}, {2, 4}, {2,5}, {3, 4}, {3,5}, {4,5}, {1, 2,3}, {1, 2,4},
{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,3,5}, {2,4,5},{3,4,5}, {1,2,3,4}, {1,2,3,5}, {2,3,4,5}).
We give a 5-VDIET coloring as follows. Let wug,us,us, us receive color 1. Let C(ui) =
{1,2,3,4,5}, C(u2) = {1,3,4,5}, C(us) = {1,2,4,5}, C(us) = {1,4,5}. Let C(v;) be the j-th
term of Sz, 7 = 1,2,...,n. Obviously, C(u;) N C(v;) # 0,1 <i<4,1<j<n. Assign4

to v and all its incident edges and assign 5 to v and all its incident edges. Color ujvs, ugvs,
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uzvs, ugvs and vg by 2,1,2,1 and 2, respectively. Color ujvy, uovy, ugvy, uqgvy and vy by 3,3,1,1
and 3, respectively. For j > 5, if C(v;) = {1, b}, then color v; by b and uiv;, ugv;, usv;, usv; by 1.
If C(vj) = {2,b}, b =4 or 5, then color v; by 2 and u1v;, ugv;, uzv,, usv; by b. If C(v;) = {a, b},
2 < a < b, then color v;,u1v;,u2v; by a and usv;,usv; by b. If C(v;) = {a,b,c} # {1,2,3},
1 <a<b<ec<b, then color v; by b, u1v; by a, usv;, usvj, uav; by c. If C(v;) = {1,2,3},
then color v; by 2, color uwiv; by 3, and color ugvj;, usv,,usv; by 1. If C(v;) = {a,b,c,d},
a <b<c<d, then let uivj, ugvy, usv;, ugv; and v; receive b, ¢, a,d and d.

It is easy to verify that the resulting coloring is the required coloring. O
Lemma 3 If24 <n <55, then K4, has 6-VDIET coloring.

Proof We give a sequence of all subsets of {1,2,3,4,5,6}, except for 0, {1}, {2}, {3}, {2,3},
{1,2,3,4,5,6}, {1,3,4,5,6}, {1,2,4,5,6}, {1,4,5,6}, as follows.

Sy = ({4}, {5}, {6}, {12}, {1,3}, {1,4}, {1,5}, {1,6}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5},
(3,6}, {4,5}, {4,6}, {56}, {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,3,4}, {1,3,5}, {1,3,6},
{1,4,5}, {1,4,6}, {1,5,6}, {2,3,4}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}, {2,5,6}, {3,4,5},
{3,4,6}, {3,5,6}, {4,5,6}, {1,2,3,4}, {1,2,3,5}, {1,2,3,6}, {1,2,4,5}, {1,2,4,6}, {1,2,5,6},
{1,3,4,5},{1,3,4,6},{1,3,5,6},{2,3,4,5},{2,3,4,6},{2,3,5,6}, {2,4,5,6},{3,4,5,6},{1,2,3,
4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {2,3,4,5,6}).

The first 5 subsets of S3 are {4}, {5}, {6}, {1,2}, {1, 3}, respectively. Obviously, S has 55
terms (each term is a subset). Now we give a 6-VDIET coloring of Ky, as follows.

Let w1, us, us, uyg receive color 1. Let C(uq) = {1,2,3,4,5,6}, C(uz) = {1,3,4,5,6}, C(us) =
{1,2,4,5,6}, C(ua) = {1,4,5,6}. Let C(v;) be the j-th term of Sz, j = 1,2,...,n. We color
v; and its incident edges by j + 3, j = 1,2,3. We color u1v4, u2v4, u3va, usv4,v4 by 2,1,2,1 and
2, respectively. We color uyvs, ugvs, usvs, uqvs, vs by 3,3,1,1 and 3, respectively. For j > 6, if
C(v;) = {a, b}, a < b, then assign a to uiv;, and b to usv;, usv;, usv; and v;.

If C(v;) = {1,a,b}, 1 < a < b, then assign 1 to ugvj, usv;, uqv;, and assign a and b to
uiv; and vy, respectively. If C(v;) = {a,b,c}, 2 < a < b < ¢, then assign ¢ to uv;, ugvj, usvj,
and assign a and b to uiv; and vj, respectively. If C(v;) = {1,2,a,b}, 3 < a < b, then assign
a,1,2,1,b to u1v;, ugv;, usvj, usvj, and vj, respectively. If C(v;) = {a,b,¢,d}, a < b < ¢ < d,
a>1ora=1">b> 2, then assign a,b,c,d,d to uiv;,u2v;,usv;, usv;, and v;, respectively. If
C(v;) = {1,2,3,a,b}, then assign 1,3,2,a,b to u1v;, usv;, ugvj, uav;, and vj, respectively. If
C(v;) ={2,3,4,5,6}, then assign 2,3,4, 5,6 to u1v;, u2v;, usvj, usav;, and v;, respectively.

It can be easily verified that the above coloring is a 6-VDIET coloring of Ky ,,, where 24 <
n <55.0

Lemma 4 If56 < n < 115, then K4 ,, has a 7T-VDIET coloring. If (kzl)—i—(k;l)—i—- -+ (kgl) —4 <
n < (]1“) + (g) + -4 (]5“) — 4, where k > 8, then Ky, has a k-VDIET coloring.

Proof We give an order for all 1-combinations, 2-combinations, 3-combinations, 4-combinations
and 5-combinations of {1,2,...,k}, except for, {1}, {2}, {3}, {2, 3} such that the first k—1 terms
are {4}, {5},...,{k}, {1,2},{1, 3}, respectively. Obviously the resulting sequence, denoted by S,
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has (’1“) + (’;) + (g) + (Z) + (]5“) — 4 terms (each term is a subset).

We give a coloring of Ky ,, as follows.

Let uq,ug, us, ug receive color 1. Let C(uq) = {1,2,...,k}, C(uz) = C(u1) — {2}, C(u3) =
C(u1) — {3}, C(ua) = C(u1) — {2,3}. Let C(v;) be the j-th term of Ss, 7 =1,2,...,n. Let v,
and its incident edges receive j+3, 7 =1,2,...,k — 3. Let uyvg_2, usvg—2, UsvVi—_2, U4Vk—2, Vk—2
receive 2,1,2,1 and 2. Let wjvk_1, UgVp_1,U3Vg_1, U4Vk_1, Vg_1 Teceive 3,3,1,1, 3.

For j > k, if C(vj) = {a,b}, then assign a to u1v; and b to ugvj, usvj,usv; and v;. If
C(v;) = {1,a,b}, 1 < a < b, then assign 1 to uv;, uzvj, usv; and assign a and b to w;v; and
vj, respectively. If C(v;) = {a,b,c}, 2 < a < b < ¢, then assign ¢ to ugv;, uzv;, usv; and
assign a and b to uyv; and vj, respectively. If C(v;) = {1,2,a,b}, 3 < a < b, then assign
a,1,2,1,b to u1vj, ugvj, usvj, ugv; and v;, respectively. If C'(v;) = {a,b,¢,d}, a < b < ¢ < d,
a>1lora=1>b> 2, then assign a,b,c,d,d to ui1v;,usv;,u3v;, usv; and v;, respectively. If
C(v;) = {1,2,a,b,c}, then assign 1,a,2,b,¢ to uiv;, ugvj, usv;, uqv; and vj;, respectively. If
C(v;) = {a,b,c,d,e}, a <b<c<d<e a>1ora=1b> 2, then assign a,b,c,d, e to
U1Vj, U2Vj, U3Vj, u4v; and vj, respectively.

It is easy to verify that the resulting coloring is a k-VDIET coloring of Ky ,. O

Lemma 5 If4<n <11, then {(K4,) =4; If 12 <n < 27, then {(Ky,,) = 5; If 28 < n < 59,
then g(K41n) =6.

Proof This lemma is obviously true. O

Theorem 1 For 4 < n < 58, we have

4, 4<n<T;

) 5 8<n<23;
ZeKn _ ) — — ?
th( 4, ) 6, 24§TL§55,
7 56 < n < B8.

Proof (a) When 4 <n <7, x!(Ky,,) > &(K4,) =4 by Lemma 5. By Lemma 1, we know that
Xiﬁf(K&n) =4

(b) When 8 < n < 11, x'5(Kan) > &(Kspn) = 4 by Lemma 5. Assume that Ky, has a
VDIET coloring g with colors 1, 2, 3, 4. Obviously, |C'(u;)| > 2,4 =1,2,3,4.

(1) The colors of uy,uz,us, us are the same. We may suppose that g(uy) = g(uz)=g(us) =
g(ug) = 1. C(vj) # {1} (for the vertex coloring is proper). There exist I,¢ € {2,3,4}, such
that [ < ¢, {I} # C(v;) # {t}, j = 1,2,...,n, for otherwise there will be two same sets among
the sets C(u1), C(uz2), C(us),C(us). If {p} is the color set of some v;, p € {1,2,3,4} — {1,¢,1},
then {1,p} C C(u;), 1 < i < 4. So {C(u1),C(u2),C(u3z),Cluq)} = {{1,2,3,4},{1,2,3,4} —
{1},{1,2,3,4} — {t},{1,2,3,4} — {I,t}}. Thus {l,t} is not the color set of any vertex. Thereby
{1}, {I}, {t}, {l,t} are not the color set of any vertex. The number of subsets of {1,2,3,4},
except for 0, {1}, {l}, {t}, {,t}, is 11, but the number of vertices of K4, is n+4 > 12. This is
a contradiction. If C(v;) # {p}, 1 < j <mn, then 0, {1}, {I}, {t}, {p} are not the color set of any

vertex. We also get a contradiction.
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(2) There are just two distinct elements in {g(u1), g(uz2), g(us), g(ua)}, say g(ur) =1, g(uz) =
2,9(u3), g(us) € {1,2}. Then C(w) # {1},{2}, @ = 1,2,3,4; Clv;) # {1},{2},{1,2}, j =
1,2,...,n. Obviously, there exists | € {3,4}, such that C(v;) # {l},7 = 1,2,...,n. If there
exists exactly one [ € {3,4}, such that C'(v;) # {I}, 7 =1,2,...,n,say [ = 3, then 4 € C(w;),i =
1,2,3,4. So 0,{1}, {2}, {3}, {1,2} are not the color set of any vertex. This is a contradiction.
If {3} # C(v;) # {4}, 1 < j < n, then 0,{1}, {2}, {3}, {4} are not the color set of any vertex.
This is also a contradiction.

(3) There are just three distinct elements in {g(u1),g(u2),g(us), g(u4a)}, say g(u;) = 1,
i=1,2,3, g(us) € {1,2,3}. It C(v;) #{4},5 =1,2,...,n, then 0, {1}, {2}, {3}, {4} are not the
color set of any vertex. This is a contradiction. If C(v;,) = {4} for some jo € {1,2,...,n}, then
0,{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} are not the color set of any vertex. This is also a
contradiction.

(4) The colors of vertex uy,us, us, uy are distinct. Without loss of generality, we assume
that g(u;) =14, 1 =1,2,3,4, then 0, {1}, {2}, {3}, {4} are not the color set of any vertex. This
is a contradiction. Thus K4, has no 4-VDIET coloring. So X (K ) > 5. Combining this with
Lemma 2, we know that xi¢(K,,) =5, if n =38,...,11.

(c) When 12 < n < 23, we know that x(K4,) =5 by Lemmas 2 and 5.

(d) When n = 24, 25,26, 27, we have x5 (K4 ,) > 5. Assume that K4, has a VDIET coloring
using colors 1, 2, 3, 4, 5. Completely similar to the proof of the result that K4 ,, has no 4-VDIET
coloring if 8 < n < 11 in (b), we can show that K4, has no 5-VDIET coloring if 24 < n < 27.
So X% (K4,) > 6, and combining this with Lemma 3 gives x5 (K4,,) = 6.

(e) When 28 < n < 55, we can prove that ‘(K ,) = 6 by Lemmas 3 and 5.

(f) Suppose n = 56,57,58. From Lemma 5 we know that (K, ,) > 6. Completely similar
to the proof of the result that K, , has no 4-VDIET coloring if 8 <n < 11 in (b), we can show
that K4, has no 6-VDIET coloring if n = 56,57,58, so x%(K4,) > 7. Combining this with
Lemma 4, we know that xi%(Ky4,) = 1.

The proof is completed. O

Theorem 2 If (kzl) + (kgl) + -+ (kgl) —4<n< (]1“) + (’;) + -+ (]5“) — 4,k > 7, then
Xii(sz,n) = k.

Proof Assume that K4, has a (k — 1)-VDIET coloring g.

Case 1 The colors of uy,ug, us, us are the same. We may assume that g(u1) = g(uz)=g(us) =
g(ug) = 1. Obviously, we have that C(v;) # {1}, 7 = 1,2,...,n. There exist two colors
It € {2,3,...,k — 1}, such that {I} # C(v;) # {t}, j = 1,2,...,n, for otherwise there exists
a color in {2,3,...,k — 1}, say 2, such that C(u;) 2 {1,3,4,...,k — 1}, i = 1,2,3,4. So
C(u1),C(u2), C(us),C(uyg) are all equal to {1,3,4,...,k—1} or {1,2,3,4,...,k —1}. Thisis a
contradiction.

Without loss of generality, suppose {2} # C(v;) # {3}.

(1) {4},{5},...,{k — 1} are all the color sets of some v;’s, j = 1,2,...,n. Then C(u;) 2
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{15 47 55 sy k— 1}7 and {O(ul)v C(“Q)a O(“’B)a O(U’4)} = {{15 47 55 sy k— 1}7 {17 25 47 55 LR k— 1}7
{1,3,4,5,...,k — 1}, {1,2,3,4,5,...,k — 1}}. So {2,3} is not the color set of any vertex v.
Thus {1}, {2}, {3}, {2, 3} are not available for any v;. And (*7") + (") +---+ (kgl) —4(<n)
subsets cannot distinguish n vertices vy, ve, ..., v,. This is a contradiction.

(2) 3Ir e {4,5,...,k — 1}, such that C(v;) # {r}, 1 < j <n. Then {1}, {2}, {3}, {r} are

not available for any v;. It is also a contradiction.

Case 2 There are only two different colors among g(u1),g(uz), g(us), g(ug). Without loss
of generality we assume that g(u1) = 1,g9(u2) = 2, g(us),g(us) € {1,2}. If for each r €
{3,4,...,k — 1}, {r} is a color set of some vertex v;, then C(u;) O {3,4,...,k — 1}. Hence
each C(u;), i = 1,2,3,4, is equal to one of the following sets {1,3,4,...,k— 1}, {2,3,4,...,k —
1}, {1,2,3,4,...,k — 1}. Three subsets cannot distinguish 4 vertices w1, us, us, us, this is a
contradiction. If there exists r € {3,4,...,k — 1}, such that {r} is not a color set of any vertex
vj, then {1}, {2}, {1,2}, {r} are not available for any vertex v;,j = 1,2,...,n. The number
of available subsets (for v;) is at most (kfl) + (kfl) + -+ (kgl) — 4. But we have n vertices

1 2
v1,V2,. .., Uy, leading to a contradiction.

Case 3 In {g(u1),g(u2),g(us),g(uqs)}, there are at least three different colors. Without loss of
generality we assume that g(u;) =i,i = 1,2,3. Then {1}, {2}, {3}, {1,2}, {1, 3}, {2,3}, {1,2,3}
are not the color sets of any vertex v;,1 < j < n. So the number of available subsets (for v;)
is at most (k;l) + (kgl) + (kgl) -7< (kil) + (kgl) + (kgl) —4 <n. Thisis a
contradiction.

So K4, has no VDIET coloring using (k — 1) colors. i.e., x¥$(K4,) > k. From this result
and Lemma 4, we know that xi¢ (K, ) = k. The proof is completed. O

3. Vertex distinguishing IE-total chromatic numbers of K, , with 5 <
n <21

Theorem 3 For complete graph Kj 5, we have ¢ (K5 5) = 4.

Proof Obviously, X! (K55) > £(Ks5) = 4. In order to complete the proof of this theorem, we
give a VDIET coloring using 4 colors 1, 2, 3, 4 as follows.

Let uq,usg,us, uq, us receive color 1. Let C(uy) = {1,2,3,4}, C(uz) = {1,2,4}, C(uz) =
{1,2,3}, Clua) = {1,3,4}, Clus) = {1,4}; C(v1) = {1,2}, C(v2) = {1,3}, C(uvs) = {3,4},
C(vg) = {2,4}, C(us) = {2,3,4}.

For i = 1,2,3,4,5, we assign color 2 to u;v; if 2 € C(u;) N C(vy) and assign color 1 to u;vy
otherwise. We assign 3 to w;vz if 3 € C(u;) N C(v2) and assign color 1 to u;ve otherwise. We
assign color 4 to u;vs if 4 € C(u;)NC(v3) and assign color 3 to u;vz otherwise. And then we color
UV, U2Vg, U3V4, U4V, UsVg DY 2,4,2.4 and 4, respectively and color uivs, usvs, Usvs, UgVs, UsUs
by 2,4,2,3 and 4, respectively. We assign 2, 3,4, 2, 3 to vertices v1, v9, v3,v4 and vs, respectively.

It is easy to verify that the resulting coloring is 4-VDIET coloring of K5 .

The proof is completed. O
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Lemma 6 Kg s and K77 has no 4-VDIET coloring.
Proof Assume that K, , has a 4-VDIET coloring g, n =6, 7.

Case 1 The colors of uj,ue,...,u, are the same. Without loss of generality, we assume
glu))=1,1=1,2,...,n.

(1) |C(uw;)] > 2,i=1,2,...,n. Otherwise the color set of each vertex contains 1, but the
number of subsets of {1,2,3,4} which contain 1 is only 8. Eight subsets cannot distinguish 12
vertices or 14 vertices.

(2) C(vj) # {1}, j = 1,2,...,n. This is obvious for no two adjacent vertices receive the
same color.

(3) |Cwy)| > 2,5 =1,2,...,n. Otherwise C(vj,) = {l}, jo € {1,2,...,n},l € {2,3,4}.
Then {1,1} C C(u;), i =1,2,...,n. But the number of subsets of {1, 2,3, 4} which contain {1,1}
is 4. These 4 subsets cannot distinguish w1, us, ..., u,. So the number of subsets of {1,2,3,4}
which contain at least 2 elements is 11 and the number of vertices of K, ,, is 2n > 12. This is a

contradiction.

Case 2 There are just two different elements in {g(u1), g(u2),...,g(un)}.

We may assume g(u;) =1, i = 1, 2.

(1) Cvj) #{1},{2},{1,2},5=1,2,...,n.

(2) |C(vj)] >2,5=1,2,...,n. Otherwise if some |C(v;,)| = 1, say C(vj,) = {3}, then each
C(u;),i=1,2,...,n, is one of the following subsets: {1, 3}, {1,2,3}, {1, 3,4}, {1,2,3,4}, {2,3},
{2,3,4}. We immediately obtain a contradiction if n = 7. In the case n = 6, each C(v;) is not
among the above 6 subsets or the complementary subsets of the above 6 subsets in {1,2,3,4}.
So each C(v;) is one of the following sets: {3},{3,4},{1,2,4}. This is a contradiction.

(3) C(u;) #{3},{4},i=1,2,...,n.

(4) If some C(u;,) = {1} and some C(u;,) = {2}, then {1,2} C C(v;), 1 < j < n. The
number of subsets of {1,2,3,4} which contain 1 and 2 is 4. Four subsets cannot distinguish n
vertices vy, va, ..., v,(n = 6,7). This is a contradiction. If C'(u;) # {1},{2},i=1,2,...,n, then
0,{1},{2},{3},{4} are not the color set of any vertex. But the number of subsets of {1,2, 3,4}
which contain at least 2 elements is 11. Eleven subsets cannot distinguish 2n(> 12) vertices.
This is a contradiction. If C'(u;) # {1},7=1,2,...,n, and some C(u;,) = {2}, then the color set
of each vertex is not equal to 0, {1}, {3}, {4}, {3,4}. Note that in this case 2 € C'(v;),1 < j < n.
This is a contradiction. We can also get a contradiction in the case C(u;) # {2},1 <i <n, and
some C(u;,) = {1}.

Case 3 There are just 3 different elements in {g(u1), g(u2),...,g(u,)}. In this case the colors
of vy, ve,...,v, are the same. So similarly to Case 1, we can obtain a contradiction (we only

exchange u and v in Case 1).

Case 4 There are just 4 different elements in {g(u1), g(uz),...,g(u,)}. In this case the color
of v1 must be in {g(u1), g(u2),...,g(un)}. This is a contradiction. O
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Theorem 4 If6 <n <11, then x'¢(K,.,) = 5.

Proof From Lemma 6 we know X% (K, ) > 5, if n = 6,7. And x!%(K,n) > &(Knn) = 5,
n =38§,9,10,11. So we only need to give a 5-VDIET coloring of K, ,,, when 6 <n < 11.

Case 1l 6 <n <10. Let

o = ({1,2,3,4,5},{1,2,4,5}, {1,2,3,5},{1,2,3,4}, {1,3,4,5},{1,2,4}, {1,2,5},{1,3,4},
{17375}7 {17475})7

%= ({1,2},{1,3}, {1,4},{1,5}, {1,2,3},{3,4,5}, {2,4,5},{2,3,5}, {2,3,4},{4,5}).

Let C(u;) be the i-th term of &7, and C(v;) be the i-th term of &, i = 1,2,...,n. Let
U1, U, . . ., Uy receive color 1, and vertex v; receive a color in C(v;) — {1}, j = 1,2,...,n. For
1<i<n,1<j<4,if j+1¢€ C(u;) NC(vj), then assign j + 1 to w;v;; if j + 1€C(u;) N C(v;),
then assign 1 to w;v;. For 1 <4 < 5,5 < j <mn,ifi € C(u;) N C(v;), then assign i to w;v;; if
i€C(u;) N C(vy), then assign a color in C'(u;) N C(v;) to uw;. For 6 <i<n,5<j<n, we
assign a color in C'(u;) N C(v;) to u;v;.

We can verify that the above coloring is a 5-VDIET coloring of K, ,,, when 6 < n < 10.

Case 2 n =11.

Let C(u1) = {1,2,3,4,5}, C(uz) = {1,2,3,4}, C(us) = {1,2,3,5}, C(ug) = {1,2,4,5},
C(us) = {1,3,4,5}, C(ug) = {1,3,4}, C(ur) = {2,3,4,5}, C(us) = {2,3,5}, C(ug) = {2,4,5},
C(u1) = {1,2,5}, C(u11) = {2,5}. Let C(v1) = {1,5}, C(v2) = {2,3}, C(vz) = {3,5}, C(vg) =
{2,4}, C(vs) = {4,5}, C(ve) = {1,2,3}, C(vr) = {1,2,4}, C(vs) = {1,3,5}, C(vo) = {1,4,5},
C(vi0) = {2,3,4}, C(v11) = {3,4,5}.

We give a 5-VDIET coloring of K11 11 according to the above color sets.

Let uq,uo, us, ug, us, ug receive color 1 and wur, us, ug, w19, w11 receive color 2. For each i =
1,2,...,11, we color u;v; by 1if 1 € C(u;) N C(v1) and color u;v; by 5 otherwise; We color w;v9
by 2 if 2 € C(u;) N C(v2) and color u;vg by 3 otherwise; We color u;vs by 3 if 3 € C(u;) N C(vs3)
and color u;vs by 5 otherwise; We color u;vg by 4 if 4 € C(u;) N C(vg) and color u;vy by 2
otherwise; We color w,us by 5 if 5 € C(u;) N C(vs) and color u;vs by 4 otherwise. For each
i=1,2,3,4,5,§ = 6,7,...,11, we assign i to edge w;v; if i € C(u;) N C(v;) and assign a
color in C(u;) N C(v;) to wv; if i€C(u;) N C(v;). For each i =6,7,...,11, j =6,7,...,11, we
assign a color in C(u;) N C(v;) to edge u;v;. For each j =1,2,...,11, we color v; by a color in
C(v;) — {1,2}.

The above coloring is the required coloring. O
Lemma 7 K, , has no 5-VDIET coloring if n = 12,13, 14, 15.
Proof Assume that K, , has a 5-VDIET coloring g with colors 1,2, 3,4,5and n € {12,13,14, 15}.

Case 1 The colors of uy,us, ..., u, are the same. We may suppose g(u;) =1,i=1,2,...,n.

The complementary subset of each C(u;) in {1,2,3,4,5} is not the color set of any vertex,

1 < i< n. So we have at most 2° —n < 2% — 12 = 20 available subsets. This is a contradiction.
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Case 2 There are just two different elements in {g(u1), g(u2),...,g(u,)}. We may suppose
g(ur) =1,g(uz) = 2.

(1) Cluy) £ {11 {21 {1,21, 1 < j < n, Clus) £ {3}, {4}, {5}, {3, 4}, {3, 5}, {4,5}, {3,4,5},
1<i<n.

(2) C(v;) # {3},{4}, {5}, 1 < j < n. Otherwise if some C(v;,) = {5}, then each C(u;) is
one of the following sets: {1,5},{2,5}, {1,2,5}, {1, 3,5}, {1,4,5}, {2,3,5}, {2,4,5}, {1,2,3,5},
{1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}. We immediately get a contradiction when n =
13,14,15. When n = 12, any one of the complementary subsets of the above 12 subsets in
{1,2,3,4,5} is not the color set of any vertex. This is also a contradiction.

(3) |C(u;)] > 2,1 <4 < n. Otherwise if some C(u;,) = {1}, then any one of the 7
nonempty subsets of {3,4,5} is not the color set of any vertex. In this case for i = 1,2,...,n,
C(u;) # {2} (For otherwise each C'(v;) 2 {1,2} and the number of subsets of {1,2, 3,4, 5} which
contain 1 and 2 is 8 and we have n(> 12) vertices vq, va, . .., v, ). Except for §), {2} and nonempty
subsets of {3,4,5}, we have 23 subsets of {1,2,3,4,5} left. Such 23 subsets cannot distinguish
2n(> 24) vertices. This is also a contradiction.

Now we give two facts before further discussion.

Fact 1. For 1 <1i,j < n, we have C(u;) N C(v;) # 0.

Fact 2. If A C {1,2,3,4,5} is a color set of some wu; (or v;), then each subset B of
{1,2,3,4,5} — A is also a color set of some u; (or v;) when B is a color set of some vertex.

(4) C(u;) #{1,2}, 1 <4 < n. Otherwise if some C(u;,) = {1, 2}, then from Fact 1 we know
that {3,4,5}, {3,4}, {3,5}, {4,5} as well as O-subsets, 1-subsets of {1, 2, 3,4,5} are not the color
set of any vertex. Thus the number of the remaining subsets is 22. This is a contradiction.

(5) From the foregoing discussion we know that each color set belongs to 2{1:2:3:45} _
{0,{1,2},{1}, {2},{3},{4},{5}}. So we can obtain a contradiction if n = 13,14,15 and we

can obtain the color sets of all vertices of Ki2 12 by deleting exactly one set in 211,2,3,4,5} _

{0, 41,2}, {1}, {23, {3}, {4}, {5}} Let S = {{1,3},{2,4,5},{1,4},{2,3,5}, {1,5},{2,3,4}, {2,3},
{1,4,5), {2.4},{1,3,5}, {2.5},{1,3,4}, {3,4},{1,2,5}, 3,5}, {1.2,4}, {4,5},{1,2,3}}. There
are 18 sets in S. When n = 12, by Fact 2 we know that there are at least 16 subsets in S which

are all the color sets of v;’s. This is a contradiction.

Case 3 There are just 3 or 4 different elements in {g(u1), g(uz2),...,g(un)}. Then there are 1
or 2 different elements in {g(v1),g(v2),...,g(vy)}. Similarly to Case 1 or Case 2, we can get a

contradiction (we only exchange u and v in Case 1 or Case 2).

Case 4 There are just 5 different elements in {g(u1), g(u2),...,g(u,)}. Then the color of v,
must be in {g(u1), g(uz),...,g(un)}. This is a contradiction.
The proof is completed. O

Theorem 5 If12 <n < 21, then X (K, ,) = 6.

Proof From Lemma 7, we know that x¢ (K, ,) > 6, if n = 12,13,14,15. But x%(K,.,) > 6,
if n =16,17,...,21. Thus we only need to show that K, ,, has a 6-VDIET coloring with colors
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1,2,3,4,5,6,if 12 <n < 21. Let o = ({1,2,3,4,5,6},{1,2,4,5,6},{1,2,3,5,6}, {1,2,3,4, 6},
{1,2,3,4,5}, {1,3,4,5,6}, {1,3,5}, {1,3,6}, {1,4,5}, {1,4,6}, {1,5,6}, {1,2,3,4}, {1,2,3,5},
{1,2,3,6}, {1,2,4,5}, {1,2,4,6}, {1,2,5,6}, {1,3,4,5}, {1,3,4,6}, {1,3,5,6}, {1,4,5,6});

Z = ({1,2},{1,3}, {1,4}, {1,5}, {1,6}, {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,3,4},
{3,4,5,6}, {2,4,5,6}, {2,3,5,6}, {2,3,4,6}, {2,3,4,5}, {4,5,6}, {3,5,6}, {3,4,6}, {3,4,5},
{2,5,6}, {2,3,4,5,6}).

We will color the vertices and edges of K, ,, according to the given color sets of all vertices. Let
U1, Uz, - . . , Uy receive color 1. Let C(uqg), C(uz), ..., C(uy,) be the first n terms of &7, respectively
and C(v1),C(v2),...,C(v,) be the first n terms of %, respectively. For ¢ = 1,2,...,n, j =
1,2,3,4,5,if j +1 € C(u;) N C(vj), then assign j + 1 to wv;; if j + 1€C(u;) N C(v;), then
assign 1 to u;v;. Fori=1,2,3,4,5,6,6 < j <mn,if i € C(u;) N C(v;), then assign i to u;v;; if
i€C(u;)NC(v;), then assign one color in C'(u;)NC(v;) to wv;. Fori =7,8,...,n,j=6,7,...,n,
we assign one color in C'(u;) NC(v;) to uv;. For 1 < j <mn, let v; receive a color in C(v;) — {1}.
Obviously, the above coloring is what we need. The proof is completed. O

By the method used in the proof of the above theorem, we can easily obtain the following

proposition.

Proposition 6 Suppose k >4, n > 4. If (2]%3#1 <n< (ﬁ%], then X% (K,.,) < k.
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