Remarks on Vertex-Distinguishing IE-Total Coloring of Complete Bipartite Graphs $K_{4,n}$ and $K_{n,n}$

Xiang'en CHEN*, Xiaoqing XIN, Wenyu HE

College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, P. R. China

Abstract Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if $C(u) \neq C(v)$ for any two different vertices u and v of V(G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by $\chi_{vt}^{ie}(G)$, and it is called the VDIET chromatic number of G. We will give VDIET chromatic numbers for complete bipartite graph $K_{4,n}$ $(n \geq 4)$, $K_{n,n}$ $(5 \leq n \leq 21)$ in this article.

Keywords graphs; IE-total coloring; vertex-distinguishing IE-total coloring; vertex-distinguishing IE-total chromatic number; complete bipartite graph.

MR(2010) Subject Classification 05C15

1. Introduction and preliminaries

The vertex distinguishing proper edge coloring and point distinguishing general edge coloring were studied in [1-5, 8-9] and [7, 10-14], respectively.

For a total coloring (proper or not) f of G and a vertex v of G, denote by $C_f(v)$, or simply C(v) if no confusion arises, the set of colors used to color the vertex v as well as the edges incident to v. Let $\overline{C}(v)$ be the complementary set of C(v) in the set of all colors we used. Obviously, $|C(v)| \leq d_G(v) + 1$ and the equality holds if the total coloring is proper.

For a proper total coloring, if $C(u) \neq C(v)$, i.e., $\overline{C}(u) \neq \overline{C}(v)$ for any two distinct vertices uand v, then the coloring is called vertex-distinguishing (proper) total coloring and the minimum number of colors required for a vertex-distinguishing (proper) total coloring is denoted by $\chi_{vt}(G)$. This concept has been considered in [6, 15]. The following conjecture was given in [15].

Conjecture 1 Suppose G is a simple graph and n_d is the number of vertices of degree d,

Received June 28, 2010; Accepted August 10, 2011

Supported by the National Natural Science Foundation of China (Grant Nos. 61163037; 61163054), the Scientific Research Project of Northwest Normal University (No. nwnu-kjcxgc-03-61), the Natural Foudation Project of Ningxia (No. NZ1154) and the Scientific Research Foudation Project of Ningxia University (No. (E):ndzr10-7). * Corresponding author

E-mail address: chenxe@nwnu.edu.cn (Xiang'en CHEN); xinxq1203@163.com (Xiaoqing XIN); hewenyu518518@ 163.com (Wenyu HE)

 $\delta \leq d \leq \Delta$. Let k be the minimum positive integer such that $\binom{k}{d+1} \geq n_d$ for all d such that $\delta \leq d \leq \Delta$. Then $\chi_{vt}(G) = k$ or k+1.

From [15] we know that the above conjecture is valid for complete graph, complete bipartite graph, path and cycle, etc.

The total coloring of a graph G such that no two adjacent vertices receive the same color is called an IE- total coloring of a graph G. If f is an IE- total coloring of graph G using k colors and $\forall u, v \in V(G), u \neq v$, we have $C(u) \neq C(v)$, then f is called k-vertex-distinguishing IE-total coloring, or k-VDIET coloring. The minimum number k for which G has a vertex-distinguishing IE-total coloring using k colors is denoted by $\chi_{vt}^{ie}(G)$ and called the vertex-distinguishing IE-total chromatic number of graph G. The following proposition is obviously true.

Proposition 1 $\chi_{vt}^{ie}(G) \leq \chi_{vt}(G).$

For a graph G, let n_i denote the number of the vertices of degree $i, \delta \leq i \leq \Delta$. Let

$$\xi(G) = \min\{k | \binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{s} + \binom{k}{s+1} \ge n_{\delta} + n_{\delta+1} + \dots + n_s, \delta \le s \le \Delta\}.$$

Obviously, we have $\chi_{vt}^{ie}(G) \geq \xi(G)$. We will consider the VDIET colorings of complete bipartite graph $K_{4,n}$ $(n \geq 4)$ and $K_{n,n}$ $(5 \leq n \leq 21)$ in this paper.

2. Vertex distinguishing IE-total chromatic numbers of $K_{4,n}$

Lemma 1 For $4 \le n \le 7$, $K_{4,n}$ has a 4-VDIET coloring.

Proof We give a VDIET coloring of $K_{4,n}$ with colors 1, 2, 3, 4 as follows. Let u_1, u_2, u_3, u_4 receive color 1. Let $S_1 = (\{4\}, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{2, 3, 4\})$. Let $C(v_j)$ be the *j*-th term of $S_1, j = 1, 2, \ldots, n$. Assign 4 to v_1 and all its incident edges. Assign 2 to v_2 , u_1v_2 , and u_3v_2 and assign 1 to u_2v_2, u_4v_2 ; Assign 3 to v_3 and 1 to all incident edges of v_3 ; Assign 2 to v_4 and 4 to all incident edges of v_4 ; Assign 3 to v_5 and 4 to all incident edges of v_5 (when $n \ge 5$). Color $u_1v_6, u_2v_6, u_3v_6, u_4v_6, v_6$ by 3, 1, 2, 1, 3, respectively (when $n \ge 6$). Color $u_1v_7, u_2v_7, u_3v_7, u_4v_7, v_7$ by 2, 3, 2, 4, 2, respectively (if n = 7). For the resulting coloring, $C(u_1) = \{1, 2, 3, 4\}, C(u_2) = \{1, 3, 4\}, C(u_3) = \{1, 2, 4\}$ and $C(u_4) = \{1, 4\}$. So the resulting coloring is 4-VDIET coloring of $K_{4,n}$. \Box

Lemma 2 $K_{4,n}$ has a 5-VDIET coloring for $8 \le n \le 23$.

Proof Arrange all the subsets of $\{1, 2, 3, 4, 5\}$, except for \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{2, 3\}$, $\{1, 2, 3, 4, 5\}$, $\{1, 3, 4, 5\}$, $\{1, 2, 4, 5\}$, $\{1, 4, 5\}$, as follows.

 $\mathcal{S}_2 = (\{4\}, \{5\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{2,3,4\}, \{2,3,5\}, \{2,4,5\}, \{3,4,5\}, \{1,2,3,4\}, \{1,2,3,5\}, \{2,3,4,5\}).$

We give a 5-VDIET coloring as follows. Let u_1, u_2, u_3, u_4 receive color 1. Let $C(u_1) = \{1, 2, 3, 4, 5\}, C(u_2) = \{1, 3, 4, 5\}, C(u_3) = \{1, 2, 4, 5\}, C(u_4) = \{1, 4, 5\}$. Let $C(v_j)$ be the *j*-th term of $S_2, j = 1, 2, ..., n$. Obviously, $C(u_i) \cap C(v_j) \neq \emptyset$, $1 \le i \le 4$, $1 \le j \le n$. Assign 4 to v_1 and all its incident edges and assign 5 to v_2 and all its incident edges. Color u_1v_3, u_2v_3 ,

 u_3v_3, u_4v_3 and v_3 by 2, 1, 2, 1 and 2, respectively. Color $u_1v_4, u_2v_4, u_3v_4, u_4v_4$ and v_4 by 3, 3, 1, 1 and 3, respectively. For $j \ge 5$, if $C(v_i) = \{1, b\}$, then color v_i by b and $u_1v_i, u_2v_i, u_3v_i, u_4v_i$ by 1. If $C(v_i) = \{2, b\}, b = 4$ or 5, then color v_i by 2 and $u_1v_i, u_2v_i, u_3v_i, u_4v_i$ by b. If $C(v_i) = \{a, b\}, b = 1$ 2 < a < b, then color v_i, u_1v_i, u_2v_i by a and u_3v_i, u_4v_i by b. If $C(v_i) = \{a, b, c\} \neq \{1, 2, 3\}$, $1 \le a < b < c \le 5$, then color v_j by b, u_1v_j by $a, u_2v_j, u_3v_j, u_4v_j$ by c. If $C(v_j) = \{1, 2, 3\}$, then color v_i by 2, color u_1v_j by 3, and color u_2v_j, u_3v_j, u_4v_j by 1. If $C(v_j) = \{a, b, c, d\}$, a < b < c < d, then let $u_1v_j, u_2v_j, u_3v_j, u_4v_j$ and v_j receive b, c, a, d and d.

It is easy to verify that the resulting coloring is the required coloring. \Box

Lemma 3 If $24 \le n \le 55$, then $K_{4,n}$ has 6-VDIET coloring.

Proof We give a sequence of all subsets of $\{1, 2, 3, 4, 5, 6\}$, except for \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{2, 3\}$, $\{1, 2, 3, 4, 5, 6\}, \{1, 3, 4, 5, 6\}, \{1, 2, 4, 5, 6\}, \{1, 4, 5, 6\},$ as follows.

 $S_3 = (\{4\}, \{5\}, \{6\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{1,6\}, \{2,4\}, \{2,5\}, \{2,6\}, \{3,4\}, \{3,5\},$ $\{3,6\}, \{4,5\}, \{4,6\}, \{5,6\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,2,6\}, \{1,3,4\}, \{1,3,5\}, \{1,3,6\},$ $\{1,4,5\}, \{1,4,6\}, \{1,5,6\}, \{2,3,4\}, \{2,3,5\}, \{2,3,6\}, \{2,4,5\}, \{2,4,6\}, \{2,5,6\}, \{3,4,5\}, \{2,4,6\}, \{2,5,6\}, \{3,4,5\}, \{3,5,5\}, \{3,5,5\}, \{3,5,5\}, \{3,5,5\}, \{3,5,5\}, \{3,5,5\}, \{3,5,5\}, \{$ $\{3,4,6\}, \{3,5,6\}, \{4,5,6\}, \{1,2,3,4\}, \{1,2,3,5\}, \{1,2,3,6\}, \{1,2,4,5\}, \{1,2,4,6\}, \{1,2,5,6\}, \{1,2$ $\{1, 3, 4, 5\}, \{1, 3, 4, 6\}, \{1, 3, 5, 6\}, \{2, 3, 4, 5\}, \{2, 3, 4, 6\}, \{2, 3, 5, 6\}, \{2, 4, 5, 6\}, \{3, 4, 5, 6\}, \{1, 2, 3, 6\}, \{2, 3, 4, 5\}, \{3, 4, 5, 6\},$ $\{4,5\}, \{1,2,3,4,6\}, \{1,2,3,5,6\}, \{2,3,4,5,6\}$).

The first 5 subsets of S_3 are $\{4\}, \{5\}, \{6\}, \{1,2\}, \{1,3\}$, respectively. Obviously, S_3 has 55 terms (each term is a subset). Now we give a 6-VDIET coloring of $K_{4,n}$ as follows.

Let u_1, u_2, u_3, u_4 receive color 1. Let $C(u_1) = \{1, 2, 3, 4, 5, 6\}, C(u_2) = \{1, 3, 4, 5, 6\}, C(u_3) = \{1, 4, 5, 5, 6\}, C(u_$ $\{1, 2, 4, 5, 6\}, C(u_4) = \{1, 4, 5, 6\}.$ Let $C(v_j)$ be the *j*-th term of $S_3, j = 1, 2, \ldots, n$. We color v_j and its incident edges by j+3, j=1,2,3. We color $u_1v_4, u_2v_4, u_3v_4, u_4v_4, v_4$ by 2,1,2,1 and 2, respectively. We color $u_1v_5, u_2v_5, u_3v_5, u_4v_5, v_5$ by 3, 3, 1, 1 and 3, respectively. For $j \ge 6$, if $C(v_j) = \{a, b\}, a < b$, then assign a to u_1v_j , and b to u_2v_j, u_3v_j, u_4v_j and v_j .

If $C(v_i) = \{1, a, b\}, 1 < a < b$, then assign 1 to u_2v_i, u_3v_i, u_4v_i , and assign a and b to u_1v_i and v_i , respectively. If $C(v_i) = \{a, b, c\}, 2 \leq a < b < c$, then assign c to u_2v_i, u_3v_i, u_4v_i , and assign a and b to u_1v_i and v_i , respectively. If $C(v_i) = \{1, 2, a, b\}, 3 \le a < b$, then assign a, 1, 2, 1, b to $u_1v_i, u_2v_i, u_3v_i, u_4v_i$, and v_i , respectively. If $C(v_i) = \{a, b, c, d\}, a < b < c < d$, a > 1 or a = 1, b > 2, then assign a, b, c, d, d to $u_1v_j, u_2v_j, u_3v_j, u_4v_j$, and v_j , respectively. If $C(v_i) = \{1, 2, 3, a, b\}$, then assign 1, 3, 2, a, b to $u_1v_i, u_2v_i, u_3v_i, u_4v_i$, and v_i , respectively. If $C(v_i) = \{2, 3, 4, 5, 6\}$, then assign 2, 3, 4, 5, 6 to $u_1v_i, u_2v_i, u_3v_j, u_4v_i$, and v_i , respectively.

It can be easily verified that the above coloring is a 6-VDIET coloring of $K_{4,n}$, where $24 \leq$ $n \leq 55.$ \Box

Lemma 4 If $56 \le n \le 115$, then $K_{4,n}$ has a 7-VDIET coloring. If $\binom{k-1}{1} + \binom{k-1}{2} + \dots + \binom{k-1}{5} - 4 < 15$ $n \leq \binom{k}{1} + \binom{k}{2} + \cdots + \binom{k}{5} - 4$, where $k \geq 8$, then $K_{4,n}$ has a k-VDIET coloring.

Proof We give an order for all 1-combinations, 2-combinations, 3-combinations, 4-combinations and 5-combinations of $\{1, 2, \ldots, k\}$, except for, $\{1\}, \{2\}, \{3\}, \{2, 3\}$ such that the first k-1 terms are $\{4\}, \{5\}, \ldots, \{k\}, \{1, 2\}, \{1, 3\}$, respectively. Obviously the resulting sequence, denoted by S_4 , has $\binom{k}{1} + \binom{k}{2} + \binom{k}{3} + \binom{k}{4} + \binom{k}{5} - 4$ terms (each term is a subset).

We give a coloring of $K_{4,n}$ as follows.

Let u_1, u_2, u_3, u_4 receive color 1. Let $C(u_1) = \{1, 2, ..., k\}$, $C(u_2) = C(u_1) - \{2\}$, $C(u_3) = C(u_1) - \{3\}$, $C(u_4) = C(u_1) - \{2, 3\}$. Let $C(v_j)$ be the *j*-th term of S_4 , j = 1, 2, ..., n. Let v_j and its incident edges receive j + 3, j = 1, 2, ..., k - 3. Let $u_1v_{k-2}, u_2v_{k-2}, u_3v_{k-2}, u_4v_{k-2}, v_{k-2}$ receive 2, 1, 2, 1 and 2. Let $u_1v_{k-1}, u_2v_{k-1}, u_3v_{k-1}, u_4v_{k-1}, v_{k-1}$ receive 3, 3, 1, 1, 3.

For $j \geq k$, if $C(v_j) = \{a, b\}$, then assign a to u_1v_j and b to u_2v_j, u_3v_j, u_4v_j and v_j . If $C(v_j) = \{1, a, b\}, 1 < a < b$, then assign 1 to u_2v_j, u_3v_j, u_4v_j and assign a and b to u_1v_j and v_j , respectively. If $C(v_j) = \{a, b, c\}, 2 \leq a < b < c$, then assign c to u_2v_j, u_3v_j, u_4v_j and assign a and b to u_1v_j and v_j , respectively. If $C(v_j) = \{a, b, c\}, 2 \leq a < b < c$, then assign c to u_2v_j, u_3v_j, u_4v_j and assign a and b to u_1v_j and v_j , respectively. If $C(v_j) = \{1, 2, a, b\}, 3 \leq a < b$, then assign a, 1, 2, 1, b to $u_1v_j, u_2v_j, u_3v_j, u_4v_j$ and v_j , respectively. If $C(v_j) = \{a, b, c, d\}, a < b < c < d$, a > 1 or a = 1, b > 2, then assign a, b, c, d, d to $u_1v_j, u_2v_j, u_3v_j, u_4v_j$ and v_j , respectively. If $C(v_j) = \{1, 2, a, b, c\}$, then assign 1, a, 2, b, c to $u_1v_j, u_2v_j, u_3v_j, u_4v_j$ and v_j , respectively. If $C(v_j) = \{a, b, c, d, e\}, a < b < c < d < e, a > 1$ or a = 1, b > 2, then assign 1, a, 2, b, c to $u_1v_j, u_2v_j, u_3v_j, u_4v_j$ and v_j , respectively. If $C(v_j) = \{a, b, c, d, e\}, a < b < c < d < e, a > 1$ or a = 1, b > 2, then assign a, b, c, d, e to $u_1v_j, u_2v_j, u_3v_j, u_4v_j$ and v_j , respectively.

It is easy to verify that the resulting coloring is a k-VDIET coloring of $K_{4,n}$. \Box

Lemma 5 If $4 \le n \le 11$, then $\xi(K_{4,n}) = 4$; If $12 \le n \le 27$, then $\xi(K_{4,n}) = 5$; If $28 \le n \le 59$, then $\xi(K_{4,n}) = 6$.

Proof This lemma is obviously true. \Box

Theorem 1 For $4 \le n \le 58$, we have

$$\chi_{vt}^{ie}(K_{4,n}) = \begin{cases} 4, & 4 \le n \le 7; \\ 5, & 8 \le n \le 23; \\ 6, & 24 \le n \le 55; \\ 7, & 56 \le n \le 58. \end{cases}$$

Proof (a) When $4 \le n \le 7$, $\chi_{vt}^{ie}(K_{4,n}) \ge \xi(K_{4,n}) = 4$ by Lemma 5. By Lemma 1, we know that $\chi_{vt}^{ie}(K_{4,n}) = 4$.

(b) When $8 \le n \le 11$, $\chi_{vt}^{ie}(K_{4,n}) \ge \xi(K_{4,n}) = 4$ by Lemma 5. Assume that $K_{4,n}$ has a VDIET coloring g with colors 1, 2, 3, 4. Obviously, $|C(u_i)| \ge 2$, i = 1, 2, 3, 4.

(1) The colors of u_1, u_2, u_3, u_4 are the same. We may suppose that $g(u_1) = g(u_2) = g(u_3) = g(u_4) = 1$. $C(v_j) \neq \{1\}$ (for the vertex coloring is proper). There exist $l, t \in \{2, 3, 4\}$, such that l < t, $\{l\} \neq C(v_j) \neq \{t\}$, j = 1, 2, ..., n, for otherwise there will be two same sets among the sets $C(u_1), C(u_2), C(u_3), C(u_4)$. If $\{p\}$ is the color set of some $v_j, p \in \{1, 2, 3, 4\} - \{1, t, l\}$, then $\{1, p\} \subseteq C(u_i), 1 \leq i \leq 4$. So $\{C(u_1), C(u_2), C(u_3), C(u_4)\} = \{\{1, 2, 3, 4\}, \{1, 2, 3, 4\} - \{l\}, \{1, 2, 3, 4\} - \{l, t\}\}$. Thus $\{l, t\}$ is not the color set of any vertex. Thereby $\{1\}, \{l\}, \{l\}, \{l\}, \{l, t\}$ are not the color set of any vertex. The number of subsets of $\{1, 2, 3, 4\}$, except for $\emptyset, \{1\}, \{l\}, \{l, t\}, is 11$, but the number of vertices of $K_{4,n}$ is $n + 4 \geq 12$. This is a contradiction. If $C(v_j) \neq \{p\}, 1 \leq j \leq n$, then $\emptyset, \{1\}, \{l\}, \{l\}, \{p\}$ are not the color set of any vertex. We also get a contradiction.

(2) There are just two distinct elements in $\{g(u_1), g(u_2), g(u_3), g(u_4)\}$, say $g(u_1) = 1, g(u_2) = 2, g(u_3), g(u_4) \in \{1, 2\}$. Then $C(u_i) \neq \{1\}, \{2\}, i = 1, 2, 3, 4; C(v_j) \neq \{1\}, \{2\}, \{1, 2\}, j = 1, 2, ..., n$. Obviously, there exists $l \in \{3, 4\}$, such that $C(v_j) \neq \{l\}, j = 1, 2, ..., n$. If there exists exactly one $l \in \{3, 4\}$, such that $C(v_j) \neq \{l\}, j = 1, 2, ..., n$. If there 1, 2, 3, 4. So $\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}$ are not the color set of any vertex. This is a contradiction. If $\{3\} \neq C(v_j) \neq \{4\}, 1 \leq j \leq n$, then $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}$ are not the color set of any vertex. This is a loo a contradiction.

(3) There are just three distinct elements in $\{g(u_1), g(u_2), g(u_3), g(u_4)\}$, say $g(u_i) = i$, $i = 1, 2, 3, g(u_4) \in \{1, 2, 3\}$. If $C(v_j) \neq \{4\}, j = 1, 2, ..., n$, then $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}$ are not the color set of any vertex. This is a contradiction. If $C(v_{j_0}) = \{4\}$ for some $j_0 \in \{1, 2, ..., n\}$, then $\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$ are not the color set of any vertex. This is also a contradiction.

(4) The colors of vertex u_1, u_2, u_3, u_4 are distinct. Without loss of generality, we assume that $g(u_i) = i, i = 1, 2, 3, 4$, then $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}$ are not the color set of any vertex. This is a contradiction. Thus $K_{4,n}$ has no 4-VDIET coloring. So $\chi_{vt}^{ie}(K_{4,n}) \geq 5$. Combining this with Lemma 2, we know that $\chi_{vt}^{ie}(K_{4,n}) = 5$, if $n = 8, \ldots, 11$.

(c) When $12 \le n \le 23$, we know that $\chi_{vt}^{ie}(K_{4,n}) = 5$ by Lemmas 2 and 5.

(d) When n = 24, 25, 26, 27, we have $\chi_{vt}^{ie}(K_{4,n}) \geq 5$. Assume that $K_{4,n}$ has a VDIET coloring using colors 1, 2, 3, 4, 5. Completely similar to the proof of the result that $K_{4,n}$ has no 4-VDIET coloring if $8 \leq n \leq 11$ in (b), we can show that $K_{4,n}$ has no 5-VDIET coloring if $24 \leq n \leq 27$. So $\chi_{vt}^{ie}(K_{4,n}) \geq 6$, and combining this with Lemma 3 gives $\chi_{vt}^{ie}(K_{4,n}) = 6$.

(e) When $28 \le n \le 55$, we can prove that $\chi_{vt}^{ie}(K_{4,n}) = 6$ by Lemmas 3 and 5.

(f) Suppose n = 56, 57, 58. From Lemma 5 we know that $\chi_{vt}^{ie}(K_{4,n}) \ge 6$. Completely similar to the proof of the result that $K_{4,n}$ has no 4-VDIET coloring if $8 \le n \le 11$ in (b), we can show that $K_{4,n}$ has no 6-VDIET coloring if n = 56, 57, 58, so $\chi_{vt}^{ie}(K_{4,n}) \ge 7$. Combining this with Lemma 4, we know that $\chi_{vt}^{ie}(K_{4,n}) = 7$.

The proof is completed. \Box

Theorem 2 If $\binom{k-1}{1} + \binom{k-1}{2} + \dots + \binom{k-1}{5} - 4 < n \le \binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{5} - 4, k \ge 7$, then $\chi_{vt}^{ie}(K_{4,n}) = k$.

Proof Assume that $K_{4,n}$ has a (k-1)-VDIET coloring g.

Case 1 The colors of u_1, u_2, u_3, u_4 are the same. We may assume that $g(u_1) = g(u_2) = g(u_3) = g(u_4) = 1$. Obviously, we have that $C(v_j) \neq \{1\}, j = 1, 2, ..., n$. There exist two colors $l, t \in \{2, 3, ..., k-1\}$, such that $\{l\} \neq C(v_j) \neq \{t\}, j = 1, 2, ..., n$, for otherwise there exists a color in $\{2, 3, ..., k-1\}$, say 2, such that $C(u_i) \supseteq \{1, 3, 4, ..., k-1\}, i = 1, 2, 3, 4$. So $C(u_1), C(u_2), C(u_3), C(u_4)$ are all equal to $\{1, 3, 4, ..., k-1\}$ or $\{1, 2, 3, 4, ..., k-1\}$. This is a contradiction.

Without loss of generality, suppose $\{2\} \neq C(v_j) \neq \{3\}$.

(1) $\{4\},\{5\},\ldots,\{k-1\}$ are all the color sets of some v_j 's, $j=1,2,\ldots,n$. Then $C(u_i) \supseteq$

 $\{1, 4, 5, \dots, k-1\}, \text{ and } \{C(u_1), C(u_2), C(u_3), C(u_4)\} = \{\{1, 4, 5, \dots, k-1\}, \{1, 2, 4, 5, \dots, k-1\}, \{1, 3, 4, 5, \dots, k-1\}, \{1, 2, 3, 4, 5, \dots, k-1\}\}.$ So $\{2, 3\}$ is not the color set of any vertex v_j . Thus $\{1\}, \{2\}, \{3\}, \{2, 3\}$ are not available for any v_j . And $\binom{k-1}{1} + \binom{k-1}{2} + \dots + \binom{k-1}{5} - 4(< n)$ subsets cannot distinguish n vertices v_1, v_2, \dots, v_n . This is a contradiction.

(2) $\exists r \in \{4, 5, ..., k-1\}$, such that $C(v_j) \neq \{r\}, 1 \leq j \leq n$. Then $\{1\}, \{2\}, \{3\}, \{r\}$ are not available for any v_j . It is also a contradiction.

Case 2 There are only two different colors among $g(u_1), g(u_2), g(u_3), g(u_4)$. Without loss of generality we assume that $g(u_1) = 1, g(u_2) = 2, g(u_3), g(u_4) \in \{1, 2\}$. If for each $r \in \{3, 4, \ldots, k-1\}, \{r\}$ is a color set of some vertex v_j , then $C(u_i) \supseteq \{3, 4, \ldots, k-1\}$. Hence each $C(u_i), i = 1, 2, 3, 4$, is equal to one of the following sets $\{1, 3, 4, \ldots, k-1\}, \{2, 3, 4, \ldots, k-1\}$. $\{1, 2, 3, 4, \ldots, k-1\}$. Three subsets cannot distinguish 4 vertices u_1, u_2, u_3, u_4 , this is a contradiction. If there exists $r \in \{3, 4, \ldots, k-1\}$, such that $\{r\}$ is not a color set of any vertex v_j , then $\{1\}, \{2\}, \{1, 2\}, \{r\}$ are not available for any vertex $v_j, j = 1, 2, \ldots, n$. The number of available subsets (for v_j) is at most $\binom{k-1}{1} + \binom{k-1}{2} + \cdots + \binom{k-1}{5} - 4$. But we have n vertices v_1, v_2, \ldots, v_n , leading to a contradiction.

Case 3 In $\{g(u_1), g(u_2), g(u_3), g(u_4)\}$, there are at least three different colors. Without loss of generality we assume that $g(u_i) = i, i = 1, 2, 3$. Then $\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$ are not the color sets of any vertex $v_j, 1 \le j \le n$. So the number of available subsets (for v_j) is at most $\binom{k-1}{1} + \binom{k-1}{2} + \cdots + \binom{k-1}{5} - 7 < \binom{k-1}{1} + \binom{k-1}{2} + \cdots + \binom{k-1}{5} - 4 < n$. This is a contradiction.

So $K_{4,n}$ has no VDIET coloring using (k-1) colors. i.e., $\chi_{vt}^{ie}(K_{4,n}) \geq k$. From this result and Lemma 4, we know that $\chi_{vt}^{ie}(K_{4,n}) = k$. The proof is completed. \Box

3. Vertex distinguishing IE-total chromatic numbers of $K_{n,n}$ with $5 \le n \le 21$

Theorem 3 For complete graph $K_{5,5}$, we have $\chi_{vt}^{ie}(K_{5,5}) = 4$.

Proof Obviously, $\chi_{vt}^{ie}(K_{5,5}) \ge \xi(K_{5,5}) = 4$. In order to complete the proof of this theorem, we give a VDIET coloring using 4 colors 1, 2, 3, 4 as follows.

Let u_1, u_2, u_3, u_4, u_5 receive color 1. Let $C(u_1) = \{1, 2, 3, 4\}, C(u_2) = \{1, 2, 4\}, C(u_3) = \{1, 2, 3\}, C(u_4) = \{1, 3, 4\}, C(u_5) = \{1, 4\}; C(v_1) = \{1, 2\}, C(v_2) = \{1, 3\}, C(v_3) = \{3, 4\}, C(v_4) = \{2, 4\}, C(v_5) = \{2, 3, 4\}.$

For i = 1, 2, 3, 4, 5, we assign color 2 to $u_i v_1$ if $2 \in C(u_i) \cap C(v_1)$ and assign color 1 to $u_i v_1$ otherwise. We assign 3 to $u_i v_2$ if $3 \in C(u_i) \cap C(v_2)$ and assign color 1 to $u_i v_2$ otherwise. We assign color 4 to $u_i v_3$ if $4 \in C(u_i) \cap C(v_3)$ and assign color 3 to $u_i v_3$ otherwise. And then we color $u_1 v_4, u_2 v_4, u_3 v_4, u_4 v_4, u_5 v_4$ by 2, 4, 2, 4 and 4, respectively and color $u_1 v_5, u_2 v_5, u_3 v_5, u_4 v_5, u_5 v_5$ by 2, 4, 2, 3 and 4, respectively. We assign 2, 3, 4, 2, 3 to vertices v_1, v_2, v_3, v_4 and v_5 , respectively.

It is easy to verify that the resulting coloring is 4-VDIET coloring of $K_{5,5}$.

The proof is completed. \Box

Lemma 6 $K_{6,6}$ and $K_{7,7}$ has no 4-VDIET coloring.

Proof Assume that $K_{n,n}$ has a 4-VDIET coloring g, n = 6, 7.

Case 1 The colors of u_1, u_2, \ldots, u_n are the same. Without loss of generality, we assume $q(u_i) = 1, i = 1, 2, \dots, n.$

(1) $|C(u_i)| > 2, i = 1, 2, ..., n$. Otherwise the color set of each vertex contains 1, but the number of subsets of $\{1, 2, 3, 4\}$ which contain 1 is only 8. Eight subsets cannot distinguish 12 vertices or 14 vertices.

(2) $C(v_j) \neq \{1\}, j = 1, 2, ..., n$. This is obvious for no two adjacent vertices receive the same color.

(3) $|C(v_j)| \ge 2, j = 1, 2, ..., n$. Otherwise $C(v_{j_0}) = \{l\}, j_0 \in \{1, 2, ..., n\}, l \in \{2, 3, 4\}.$ Then $\{1,l\} \subseteq C(u_i)$, $i = 1, 2, \ldots, n$. But the number of subsets of $\{1, 2, 3, 4\}$ which contain $\{1, l\}$ is 4. These 4 subsets cannot distinguish u_1, u_2, \ldots, u_n . So the number of subsets of $\{1, 2, 3, 4\}$ which contain at least 2 elements is 11 and the number of vertices of $K_{n,n}$ is $2n \ge 12$. This is a contradiction.

Case 2 There are just two different elements in $\{q(u_1), q(u_2), \ldots, q(u_n)\}$.

We may assume $q(u_i) = i, i = 1, 2$.

(1) $C(v_i) \neq \{1\}, \{2\}, \{1, 2\}, j = 1, 2, \dots, n.$

(2) $|C(v_j)| \ge 2, j = 1, 2, ..., n$. Otherwise if some $|C(v_{j_0})| = 1$, say $C(v_{j_0}) = \{3\}$, then each $C(u_i), i = 1, 2, \ldots, n$, is one of the following subsets: $\{1, 3\}, \{1, 2, 3\}, \{1, 3, 4\}, \{1, 2, 3, 4\}, \{2, 3\}, \{2, 3\}, \{2, 3\}, \{3, 4\}, \{4, 2, 3, 4\}, \{4, 2, 3\}, \{4, 3, 4\}, \{4,$ $\{2,3,4\}$. We immediately obtain a contradiction if n=7. In the case n=6, each $C(v_i)$ is not among the above 6 subsets or the complementary subsets of the above 6 subsets in $\{1, 2, 3, 4\}$. So each $C(v_i)$ is one of the following sets: $\{3\}, \{3, 4\}, \{1, 2, 4\}$. This is a contradiction.

(3) $C(u_i) \neq \{3\}, \{4\}, i = 1, 2, \dots, n.$

(4) If some $C(u_{i_1}) = \{1\}$ and some $C(u_{i_2}) = \{2\}$, then $\{1,2\} \subseteq C(v_j), 1 \leq j \leq n$. The number of subsets of $\{1, 2, 3, 4\}$ which contain 1 and 2 is 4. Four subsets cannot distinguish n vertices $v_1, v_2, ..., v_n$ (n = 6, 7). This is a contradiction. If $C(u_i) \neq \{1\}, \{2\}, i = 1, 2, ..., n$, then $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}$ are not the color set of any vertex. But the number of subsets of $\{1, 2, 3, 4\}$ which contain at least 2 elements is 11. Eleven subsets cannot distinguish $2n \geq 12$ vertices. This is a contradiction. If $C(u_i) \neq \{1\}, i = 1, 2, \dots, n$, and some $C(u_{i_0}) = \{2\}$, then the color set of each vertex is not equal to $\emptyset, \{1\}, \{3\}, \{4\}, \{3, 4\}$. Note that in this case $2 \in C(v_i), 1 \leq j \leq n$. This is a contradiction. We can also get a contradiction in the case $C(u_i) \neq \{2\}, 1 \leq i \leq n$, and some $C(u_{i_0}) = \{1\}.$

Case 3 There are just 3 different elements in $\{g(u_1), g(u_2), \ldots, g(u_n)\}$. In this case the colors of v_1, v_2, \ldots, v_n are the same. So similarly to Case 1, we can obtain a contradiction (we only exchange u and v in Case 1).

Case 4 There are just 4 different elements in $\{g(u_1), g(u_2), \ldots, g(u_n)\}$. In this case the color of v_1 must be in $\{g(u_1), g(u_2), \ldots, g(u_n)\}$. This is a contradiction. \Box

Theorem 4 If $6 \le n \le 11$, then $\chi_{vt}^{ie}(K_{n,n}) = 5$.

Proof From Lemma 6 we know $\chi_{vt}^{ie}(K_{n,n}) \geq 5$, if n = 6, 7. And $\chi_{vt}^{ie}(K_{n,n}) \geq \xi(K_{n,n}) = 5$, n = 8, 9, 10, 11. So we only need to give a 5-VDIET coloring of $K_{n,n}$, when $6 \leq n \leq 11$.

Case 1 $6 \le n \le 10$. Let

 $\mathscr{A} = (\{1, 2, 3, 4, 5\}, \{1, 2, 4, 5\}, \{1, 2, 3, 5\}, \{1, 2, 3, 4\}, \{1, 3, 4, 5\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 4\}, \{1, 3, 5\}, \{1, 4, 5\}),$

 $\mathscr{B} = (\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,2,3\},\{3,4,5\},\{2,4,5\},\{2,3,5\},\{2,3,4\},\{4,5\}).$

Let $C(u_i)$ be the *i*-th term of \mathscr{A} , and $C(v_i)$ be the *i*-th term of \mathscr{B} , i = 1, 2, ..., n. Let $u_1, u_2, ..., u_n$ receive color 1, and vertex v_j receive a color in $C(v_j) - \{1\}, j = 1, 2, ..., n$. For $1 \le i \le n, 1 \le j \le 4$, if $j + 1 \in C(u_i) \cap C(v_j)$, then assign j + 1 to $u_i v_j$; if $j + 1 \in C(u_i) \cap C(v_j)$, then assign 1 to $u_i v_j$. For $1 \le i \le 5, 5 \le j \le n$, if $i \in C(u_i) \cap C(v_j)$, then assign *i* to $u_i v_j$; if $i \in C(u_i) \cap C(v_j)$, then assign a color in $C(u_i) \cap C(v_j)$ to $u_i v_j$. For $6 \le i \le n, 5 \le j \le n$, we assign a color in $C(u_i) \cap C(v_j)$ to $u_i v_j$.

We can verify that the above coloring is a 5-VDIET coloring of $K_{n,n}$, when $6 \le n \le 10$.

Case 2 n = 11.

Let $C(u_1) = \{1, 2, 3, 4, 5\}, C(u_2) = \{1, 2, 3, 4\}, C(u_3) = \{1, 2, 3, 5\}, C(u_4) = \{1, 2, 4, 5\}, C(u_5) = \{1, 3, 4, 5\}, C(u_6) = \{1, 3, 4\}, C(u_7) = \{2, 3, 4, 5\}, C(u_8) = \{2, 3, 5\}, C(u_9) = \{2, 4, 5\}, C(u_{10}) = \{1, 2, 5\}, C(u_{11}) = \{2, 5\}.$ Let $C(v_1) = \{1, 5\}, C(v_2) = \{2, 3\}, C(v_3) = \{3, 5\}, C(v_4) = \{2, 4\}, C(v_5) = \{4, 5\}, C(v_6) = \{1, 2, 3\}, C(v_7) = \{1, 2, 4\}, C(v_8) = \{1, 3, 5\}, C(v_9) = \{1, 4, 5\}, C(v_{10}) = \{2, 3, 4\}, C(v_{11}) = \{3, 4, 5\}.$

We give a 5-VDIET coloring of $K_{11,11}$ according to the above color sets.

Let $u_1, u_2, u_3, u_4, u_5, u_6$ receive color 1 and $u_7, u_8, u_9, u_{10}, u_{11}$ receive color 2. For each $i = 1, 2, \ldots, 11$, we color u_iv_1 by 1 if $1 \in C(u_i) \cap C(v_1)$ and color u_iv_1 by 5 otherwise; We color u_iv_2 by 2 if $2 \in C(u_i) \cap C(v_2)$ and color u_iv_2 by 3 otherwise; We color u_iv_3 by 3 if $3 \in C(u_i) \cap C(v_3)$ and color u_iv_3 by 5 otherwise; We color u_iv_4 by 4 if $4 \in C(u_i) \cap C(v_4)$ and color u_iv_4 by 2 otherwise; We color u_iv_5 by 5 if $5 \in C(u_i) \cap C(v_5)$ and color u_iv_5 by 4 otherwise. For each $i = 1, 2, 3, 4, 5, j = 6, 7, \ldots, 11$, we assign i to edge u_iv_j if $i \in C(u_i) \cap C(v_j)$ and assign a color in $C(u_i) \cap C(v_j)$ to u_iv_j if $i \in C(u_i) \cap C(v_j)$. For each $i = 6, 7, \ldots, 11, j = 6, 7, \ldots, 11$, we assign a color in $C(u_i) \cap C(v_j)$ to edge u_iv_j . For each $j = 1, 2, \ldots, 11$, we color v_j by a color in $C(v_j) - \{1, 2\}$.

The above coloring is the required coloring. \Box

Lemma 7 $K_{n,n}$ has no 5-VDIET coloring if n = 12, 13, 14, 15.

Proof Assume that $K_{n,n}$ has a 5-VDIET coloring g with colors 1, 2, 3, 4, 5 and $n \in \{12, 13, 14, 15\}$.

Case 1 The colors of u_1, u_2, \ldots, u_n are the same. We may suppose $g(u_i) = 1, i = 1, 2, \ldots, n$.

The complementary subset of each $C(u_i)$ in $\{1, 2, 3, 4, 5\}$ is not the color set of any vertex, $1 \le i \le n$. So we have at most $2^5 - n \le 2^5 - 12 = 20$ available subsets. This is a contradiction. **Case 2** There are just two different elements in $\{q(u_1), q(u_2), \ldots, q(u_n)\}$. We may suppose $q(u_1) = 1, q(u_2) = 2.$

(1) $C(v_j) \neq \{1\}, \{2\}, \{1,2\}, 1 \le j \le n, C(u_i) \neq \{3\}, \{4\}, \{5\}, \{3,4\}, \{3,5\}, \{4,5\}, \{3,4,$ $1 \leq i \leq n$.

(2) $C(v_j) \neq \{3\}, \{4\}, \{5\}, 1 \leq j \leq n$. Otherwise if some $C(v_{j_0}) = \{5\}$, then each $C(u_i)$ is one of the following sets: $\{1,5\}, \{2,5\}, \{1,2,5\}, \{1,3,5\}, \{1,4,5\}, \{2,3,5\}, \{2,4,5\}, \{1,2,3,5\}, \{1,2,3,5\}, \{2,3,5\}, \{2,4,5\}, \{1,2,3,5\}, \{1,2,3,5\}, \{1,2,3,5\}, \{1,3,5\}, \{2,3,5\}, \{2,4,5\}, \{1,2,3,5\}, \{1,3,5\}, \{2,3,5\}, \{2,3,5\}, \{2,3,5\}, \{2,3,5\}, \{2,3,5\}, \{3$ $\{1, 2, 4, 5\}, \{1, 3, 4, 5\}, \{2, 3, 4, 5\}, \{1, 2, 3, 4, 5\}.$ We immediately get a contradiction when n = 113, 14, 15. When n = 12, any one of the complementary subsets of the above 12 subsets in $\{1, 2, 3, 4, 5\}$ is not the color set of any vertex. This is also a contradiction.

(3) $|C(u_i)| \geq 2, 1 \leq i \leq n$. Otherwise if some $C(u_{i_0}) = \{1\}$, then any one of the 7 nonempty subsets of $\{3, 4, 5\}$ is not the color set of any vertex. In this case for $i = 1, 2, \ldots, n$, $C(u_i) \neq \{2\}$ (For otherwise each $C(v_i) \supseteq \{1,2\}$ and the number of subsets of $\{1,2,3,4,5\}$ which contain 1 and 2 is 8 and we have $n(\geq 12)$ vertices v_1, v_2, \ldots, v_n). Except for $\emptyset, \{2\}$ and nonempty subsets of $\{3, 4, 5\}$, we have 23 subsets of $\{1, 2, 3, 4, 5\}$ left. Such 23 subsets cannot distinguish $2n \geq 24$) vertices. This is also a contradiction.

Now we give two facts before further discussion.

Fact 1. For $1 \leq i, j \leq n$, we have $C(u_i) \cap C(v_j) \neq \emptyset$.

Fact 2. If $A \subseteq \{1, 2, 3, 4, 5\}$ is a color set of some u_i (or v_i), then each subset B of $\{1, 2, 3, 4, 5\} - A$ is also a color set of some u_i (or v_i) when B is a color set of some vertex.

(4) $C(u_i) \neq \{1,2\}, 1 \leq i \leq n$. Otherwise if some $C(u_{i_0}) = \{1,2\}$, then from Fact 1 we know that $\{3, 4, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}$ as well as 0-subsets, 1-subsets of $\{1, 2, 3, 4, 5\}$ are not the color set of any vertex. Thus the number of the remaining subsets is 22. This is a contradiction.

(5) From the foregoing discussion we know that each color set belongs to $2^{\{1,2,3,4,5\}}$ – $\{\emptyset, \{1,2\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}$. So we can obtain a contradiction if n = 13, 14, 15 and we can obtain the color sets of all vertices of $K_{12,12}$ by deleting exactly one set in $2^{\{1,2,3,4,5\}}$ – $\{\emptyset, \{1,2\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}$. Let $S = \{\{1,3\}, \{2,4,5\}, \{1,4\}, \{2,3,5\}, \{1,5\}, \{2,3,4\}, \{2,3\}, \{2,3\}, \{2,3\}, \{3$ $\{1,4,5\}, \{2,4\}, \{1,3,5\}, \{2,5\}, \{1,3,4\}, \{3,4\}, \{1,2,5\}, \{3,5\}, \{1,2,4\}, \{4,5\}, \{1,2,3\}\}$. There are 18 sets in S. When n = 12, by Fact 2 we know that there are at least 16 subsets in S which are all the color sets of v_j 's. This is a contradiction.

Case 3 There are just 3 or 4 different elements in $\{g(u_1), g(u_2), \ldots, g(u_n)\}$. Then there are 1 or 2 different elements in $\{g(v_1), g(v_2), \ldots, g(v_n)\}$. Similarly to Case 1 or Case 2, we can get a contradiction (we only exchange u and v in Case 1 or Case 2).

Case 4 There are just 5 different elements in $\{g(u_1), g(u_2), \ldots, g(u_n)\}$. Then the color of v_1 must be in $\{g(u_1), g(u_2), \ldots, g(u_n)\}$. This is a contradiction.

The proof is completed. \Box

Theorem 5 If $12 \le n \le 21$, then $\chi_{vt}^{ie}(K_{n,n}) = 6$.

Proof From Lemma 7, we know that $\chi_{vt}^{ie}(K_{n,n}) \ge 6$, if n = 12, 13, 14, 15. But $\chi_{vt}^{ie}(K_{n,n}) \ge 6$, if $n = 16, 17, \ldots, 21$. Thus we only need to show that $K_{n,n}$ has a 6-VDIET coloring with colors

$$\begin{split} &1,2,3,4,5,6, \text{ if } 12 \leq n \leq 21. \text{ Let } \mathscr{A} = (\{1,2,3,4,5,6\},\{1,2,4,5,6\},\{1,2,3,5,6\},\{1,2,3,4,6\},\\ &\{1,2,3,4,5\},\{1,3,4,5,6\},\{1,3,5\},\{1,3,6\},\{1,4,5\},\{1,4,6\},\{1,5,6\},\{1,2,3,4\},\{1,2,3,5\},\\ &\{1,2,3,6\},\{1,2,4,5\},\{1,2,4,6\},\{1,2,5,6\},\{1,3,4,5\},\{1,3,4,6\},\{1,3,5,6\},\{1,4,5,6\}); \end{split}$$

 $\mathscr{B} = (\{1,2\},\{1,3\}, \{1,4\}, \{1,5\}, \{1,6\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,2,6\}, \{1,3,4\}, \{3,4,5,6\}, \{2,4,5,6\}, \{2,3,5,6\}, \{2,3,4,6\}, \{2,3,4,5\}, \{4,5,6\}, \{3,5,6\}, \{3,4,6\}, \{3,4,5\}, \{2,5,6\}, \{2,3,4,5,6\}).$

We will color the vertices and edges of $K_{n,n}$ according to the given color sets of all vertices. Let u_1, u_2, \ldots, u_n receive color 1. Let $C(u_1), C(u_2), \ldots, C(u_n)$ be the first n terms of \mathscr{A} , respectively and $C(v_1), C(v_2), \ldots, C(v_n)$ be the first n terms of \mathscr{B} , respectively. For $i = 1, 2, \ldots, n, j = 1, 2, 3, 4, 5$, if $j + 1 \in C(u_i) \cap C(v_j)$, then assign j + 1 to $u_i v_j$; if $j + 1 \in C(u_i) \cap C(v_j)$, then assign 1 to $u_i v_j$. For $i = 1, 2, 3, 4, 5, 6, 6 \leq j \leq n$, if $i \in C(u_i) \cap C(v_j)$, then assign i to $u_i v_j$; if $i \in C(u_i) \cap C(v_j)$, then assign one color in $C(u_i) \cap C(v_j)$ to $u_i v_j$. For $i = 7, 8, \ldots, n, j = 6, 7, \ldots, n$, we assign one color in $C(u_i) \cap C(v_j)$ to $u_i v_j$. For $1 \leq j \leq n$, let v_j receive a color in $C(v_j) - \{1\}$. Obviously, the above coloring is what we need. The proof is completed. \Box

By the method used in the proof of the above theorem, we can easily obtain the following proposition.

Proposition 6 Suppose $k \ge 4$, $n \ge 4$. If $\lceil \frac{2^{k-1}-2}{3} \rceil < n \le \lceil \frac{2^k-2}{3} \rceil$, then $\chi_{vt}^{ie}(K_{n,n}) \le k$.

References

- [1] P. N. BALISTER, B. BOLLOBÁS, R. H. SHELP. Vertex distinguishing colorings of graphs with $\Delta(G) = 2$. Discrete Math., 2002, **252**(1-3): 17–29.
- [2] P. N. BALISTER, O. M. RIORDAN, R. H. SCHELP. Vertex-distinguishing edge colorings of graphs. J. Graph Theory, 2003, 42(2): 95–109.
- C. BAZGAN, A. HARKAT-BENHAMDINE, Hao LI, et al. On the vertex-distinguishing proper edge-colorings of graphs. J. Combin. Theory Ser. B, 1999, 75(2): 288–301.
- [4] A. C. BURRIS, R. H. SCHELP. Vertex-distinguishing proper edge-colorings. J. Graph Theory, 1997, 26(2): 73–82.
- [5] J. ČERNY, M. HORŇÁK, R. SOTÁK. Observability of a graph. Math. Slovaca, 1996, 46(1): 21–31.
- [6] Xiang'en CHEN. Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cubes. Xibei Shifan Daxue Xuebao Ziran Kexue Ban, 2005, 41(5): 1–3.
- [7] F. HARARY, M. PLANTHOLT. The Point-Distinguishing Chromatic Index. Wiley-Intersci. Publ., Wiley, New York, 1985.
- [8] M. HORŇÁK, R. SOTÁK. Observability of complete multipartite graphs with equipotent parts. Ars Combin., 1995, 41: 289–301.
- [9] M. HORŇÁK, R. SOTÁK. Asymptotic behaviour of the observability of Q_n. Discrete Math., 1997, 176: 139–148.
- [10] M. HORŇÁK, R. SOTÁK. The fifth jump of the point-distinguishing chromatic index of $K_{n,n}$. Ars Combin., 1996, **42**: 233–242.
- M. HORŇÁK, R. SOTÁK. Localization jumps of the point-distinguishing chromatic index of K_{n,n}. Discuss. Math. Graph Theory, 1997, 17: 243–251.
- [12] M. HORŇÁK, N. ZAGAGLIA SALVI. On the point-distinguishing chromatic index of complete bipartite graphs. Ars Combin., 2006, 80: 75–85.
- [13] N. ZAGAGLIA SALVI. On the point-distinguishing chromatic index of $K_{n,n}$. Ars Combin., 1988, **25**(B): 93–104.
- [14] N. ZAGAGLIA SALVI. On the value of the point-distinguishing chromatic index of $K_{n,n}$. Ars Combin., 1990, **29**(B): 235–244.
- [15] Zhongfu ZHANG, Pengxiang QIU, Baogen XU, et al. vertex-distinguishing total colorings of graphs. Ars Combin., 2008, 87: 33–45.