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Abstract In this paper, a semiparametric two-sample density ratio model is considered and

the empirical likelihood method is applied to obtain the parameters estimation. A commonly

occurring problem in computing is that the empirical likelihood function may be a concave-

convex function. Here a simple Lagrange saddle point algorithm is presented for computing the

saddle point of the empirical likelihood function when the Lagrange multiplier has no explicit

solution. So we can obtain the maximum empirical likelihood estimation (MELE) of parameters.

Monte Carlo simulations are presented to illustrate the Lagrange saddle point algorithm.
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1. Introduction

Logistic regression model is commonly used to analyze binary data which arise in studying

relationships between diseases and environment or genetic characteristics. Suppose that y is a

binary response variable, and x is the covariate vector. The logistic model is pr(y = 1|x) =

exp(α∗+xTβ)/{1+exp(α∗+xTβ)} ≡ Λ(x), and the marginal density of x, f(x), is not specified.

Define π to be the marginal probability of y = 1 in the population, i.e., π =
∫

pr(y = 1|x)f(x)dx.

Let x1, . . . , xn0
be from the control group F (x|y = 0), xn0+1, . . . , xn be from the case group

F (x|y = 1). Denote the given conditional density functions of x by fi(x) = f(x|y = i) =

dF (x|y = i)/dx, i = 0, 1. By Bayes’ rule, we have

f1(x) = Λ(x)f(x)/π,

f0(x) = (1 − Λ(x))f(x)/(1 − π).
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We can see that

f1(x)/f0(x) =
(1 − π)Λ(x)

π(1 − Λ(x))
=

1 − π

π
exp(α∗ + xTβ) = exp(α + xTβ),

where α = α∗+log{(1−π)/π}. So we arrive at a simple semiparametric two-sample density ratio

model in which the log ratio of two density functions is linear in data, i.e., after reparameteri-

sation, the assumed logistic regression model is related to a semiparametric two-sample density

ratio model. Semiparametric two-sample density ratio models have been studied by Hu et al [1],

Guan [2], Zou et al [3], Qin and Zhang [4], Qin [5] and so on, in which the log ratio of two density

functions may be nonlinear. Consider a general semiparametric two-sample density ratio model

with densities

f0(x), f1(x) = g(x, θ)f0(x), (1)

respectively, where g(x, θ) is a known function, the baseline density f0 is unknown, and θ is

an unknown parameter to be estimated. For model (1), Qin [5] applied maximum empirical

likelihood estimation (MELE) to model estimation, and showed the consistency of the maximum

empirical likelihood estimator in a neighborhood of the true value θ0.

In this paper, we consider a special case of (1) in which g(x, θ) = exp{hT(x)θ}. Moreover, we

discuss the problem of computing maximum empirical likelihood estimation (MELE) in which

the empirical loglikelihood function is concave-convex. A concave-convex function is defined as

follows:

Definition 1 Let C and D be subsets of Rm and Rn, respectively, and let f(x, y) be a function

from C × D to [−∞, +∞]. The function f(x, y) is said to be concave-convex function if f(x, y)

is a concave function of x ∈ C for each y ∈ D and a convex function of y ∈ D for each x ∈ C.

The rest of the paper is organized as follows. In Section 2, for computing issues, we propose a

Lagrange saddle point algorithm to obtain the maximum empirical likelihood estimation (MELE).

In Section 3, we report some Monte Carlo simulation results. Section 4 concludes the paper.

2. Main results

Suppose we have two independent samples

x1, . . . , xn0
∼ f0(x), xn0+1, . . . , xn ∼ f1(x) = exp{hT(x)θ}f0(x), n = n0 + n1. (2)

Under model (2), the loglikelihood is

l(θ, F ) =
n∑

i=1

log dF (xi) +
n∑

i=n0+1

hT(xi)θ, (3)

where F =
∫

f0. Here hT(·) is known vector value function, the link parameter θ and the

distribution F are unknown. To maximize l(θ, F ), we discretize F and denote pi = dF (xi) for

i = 1, . . . , n as the non-negative jumps with total mass 1, so that

l =
n∑

i=1

log pi +
n∑

i=n0+1

hT(xi)θ, (4)
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where
n∑

i=1

pi = 1,

n∑

i=1

pi{exp(hT(xi)θ) − 1} = 0, pi ≥ 0 , i = 1, . . . , n. (5)

Similarly to Qin and Lawless [6], for any fixed θ, estimate pi (i = 1, . . . , n) by maximization

of function (4) subject to constraints (5), which gives

pi =
1

n

1

1 + ρ{exp{hT(xi)θ} − 1}
, (6)

where ρ is the Lagrange multiplier determined by

−

n∑

i=1

exp{hT(xi)θ} − 1

1 + ρ{exp{hT(xi)θ} − 1}
= 0. (7)

Substituting (6) into (4) gives the empirical loglikelihood function

l(θ, ρ) = −

n∑

i=1

log[1 + ρ{exp{hT(xi)θ} − 1}] − n logn +

n∑

i=n0+1

hT(xi)θ. (8)

Note that l(θ, ρ) is well defined for θ ∈ Θ and ρ ∈ (0, 1), where Θ is the parameter space for θ.

We can treat θ and ρ as independent parameters in l(θ, ρ). To obtain a maximum value, taking

first-order partial derivative with respect to ρ and θ, we have estimating equations

∂l

∂ρ
= −

n∑

i=1

exp{hT(xi)θ} − 1

1 + ρ{exp{hT(xi)θ} − 1}
= 0, (9)

∂l

∂θ
= −

n∑

i=1

ρh(xi) exp{hT(xi)θ}

1 + ρ{exp{hT(xi)θ} − 1}
+

n∑

i=n0+1

h(xi) = 0, (10)

where (9) is equivalent to equation (7). Let ρ̃ and θ̃ be the solution of the estimating equations

(9) and (10). As in Theorem 1 of Qin [5], we can show that ρ̃ converges to n1/n and θ̃ is

consistent and asymptotically normal in the region {θ| ‖ θ − θ0 ‖≤ n−1/3}, where θ0 denotes

the true value of θ. By implicit differentiation, the second-order partial derivative about ρ and

Hessian of l(θ, ρ) about θ are

∂2l

∂ρ2
=

n∑

i=1

[exp{hT(xi)θ} − 1]2

[1 + ρ{exp{hT(xi)θ} − 1}]2
, (11)

∂2l

∂θ∂θT
= −

n∑

i=1

ρ(ρ − 1)h(xi)h
T(xi) exp{hT(xi)θ}

[1 + ρ{exp{hT(xi)θ} − 1}]2
. (12)

Furthermore, it is easy to find that ∂2l
∂ρ2 is positive. Moreover, ∂2l

∂θ∂θT is negative definite for fixed

ρ in (0, 1), provided that
∑n

i=1
h(xi)h

T(xi) is positive definite. By the Definition 1 in Section 1,

the loglikelihood function l(θ, ρ) is concave-convex. Maximizing l(θ, ρ) in (θ, ρ) may be unreliable

because the function may have a saddle point. A vector pair (θ∗, ρ∗) is said to be a saddle point

of l(θ, ρ) (with respect to maximization in θ and minimization in ρ) if

l(θ, ρ∗) ≤ l(θ∗, ρ∗) ≤ l(θ∗, ρ), (13)
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for any θ ∈ Θ and ρ ∈ (0, 1). The following Lemma 1 is extensively discussed in Rockafellar [7,

Chap 37]. The essence of the Lemma 1 is that a saddle point of concave-convex function exists

under some regularity conditions.

Lemma 1 Let C and D be non-empty closed bounded convex sets in Rm and Rn, respectively,

and let f(x, y) be a continuous finite concave-convex function on C × D. Then f(x, y) has a

saddle point with respect to C × D.

From Lemma 1, we have the following Theorem 1.

Theorem 1 l(θ, ρ) has a saddle point (θ∗, ρ∗) which satisfies (13) if
∑n

i=1
h(xi)h

T(xi) is positive

definite.

The above theorem shows that θ∗ is just the maximum empirical likelihood estimation

(MELE) of θ. Empirical likelihood may pose computational difficulties, see, for example, Owen

[8] and Owen [9]. Saddle point algorithm has been studied by some researchers, say, Zhang and

Kung [10], He and He [11] and so on. Let Φ(θ, ρ) = ∂l
∂ρ . Next we propose a Lagrange saddle

point algorithm, based on bisection method as in Bazaraa et al [12], to obtain the saddle point

(θ∗, ρ∗).

Lagrange saddle point algorithm:

Initialization Step. Let (a1, b1) be the initial interval of ρ, where a1 = 0, b1 = 1. Let m be

the allowable final interval of uncertainty. Let n be the smallest positive integer such that

(1/2)n ≤ m/(b1 − a1).

Let k = 1 and go to the Main Step.

Main Step.

Step 1. Let ρk = 1

2
(ak + bk). Furthermore substituting ρk into (10) and solving the score

equation (10), we can obtain θk by using Newton-Raphson algorithm. Evaluate Φ(θk, ρk). If

Φ(θk, ρk) = 0, stop; (θk, ρk) is a saddle point. Otherwise, go to Step 2 if Φ(θk, ρk) > 0, and go

to Step 3 if Φ(θk, ρk) < 0.

Step 2. Let ak+1 = ak and bk+1 = ρk. Go to Step 4.

Step 3. Let ak+1 = ρk and bk+1 = bk. Go to Step 4.

Step 4. If k = n, stop, (θk+1, ρk+1) is the saddle point; Otherwise, replace k by k + 1 and

repeat Step 1.

Theorem 2 The point sequence {(θk, ρk)} given in the above algorithm converges to a saddle

point (θ∗, ρ∗) as k → ∞.

The proof of Theorem 2 is obvious, so we omit it here.

Remark 1 If the first element of hT(x) is 1, by differentiating with respect to the first element

of θ, we can see easily that the Lagrange multiplier ρ has the explicit solution ρ = n1/n. The
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point estimator of θ can be easily obtained by solving the following score equation

∂l

∂θ
= −

n∑

i=1

ρh(xi) exp{hT(xi)θ}

1 + ρ{exp{hT(xi)θ} − 1}
+

n∑

i=n0+1

h(xi) = 0, (14)

where ρ = n1/n. Qin and Zhang [4], Qin [5] have discussed the above estimating problem.

3. Simulation results

Monte Carlo simulations have been presented to examine the performance of maximum em-

pirical likelihood estimation by using the Lagrange saddle point algorithm. We consider two

examples.

Example 1 Take f0 to be Normal, Exponential, Poisson, where hT(x) = (1, x). Here let

θ = (θ0, θ1)
T, where θ0 is known. The Lagrange multiplier ρ has no explicit solution. We report

the results for the maximum empirical likelihood estimation of θ1. Throughout, we show the

mean, median and variance of these estimators based on 1000 replications for each design with

different n.

f0(x) f1(x) n Mean Median Var

N(0, 1) N(2, 1)

20 2.188 2.056 0.541

100 2.032 2.008 0.040

500 2.010 2.005 0.007

Ex(1) Ex(2)

20 -1.060 -1.021 0.062

100 -1.010 -1.000 0.010

500 -1.000 -0.996 0.002

Po(3) Po(1)

20 -1.150 -1.115 0.048

100 -1.106 -1.096 0.007

500 -1.099 -1.099 0.001

Table 1 Maximum empirical likelihood estimation of θ1 by using Lagrange sad

-dle point algorithm. The true value of θ1 is 2.0,-1.0,-1.1, respectively.

The point estimator of θ1 can be also obtained by solving the score equation (14), see the

remark 2 of Qin [5].

Example 2 Take f0 to be Weibull distribution with parameter (2,1), and f1 to be a Weibull dis-

tribution with parameter (4,2), where hT(x) = (log(x), x2, x4). The true value of θ = (θ1, θ2, θ3)
T

is (2.0, 1.0,−0.5)T. We report the simulation results in Table 2. To save computation, the sim-

ulation is repeated 100 times.
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Remark 2 In Example 2, Weibull (γ, β) has probability density function given by

f(x|γ, β) =
γ

β
xγ−1e−xγ/β , 0 < x < ∞, γ > 0, β > 0. (15)

From Tables 1 and 2, we can see that the maximum empirical likelihood estimation (MELE)

by using Lagrange saddle point algorithm is very close to the true value with large sample sizes.

n Mean Median Var

Estimation of θ1

100 2.249 2.175 0.550

500 2.033 2.045 0.089

2000 1.993 1.986 0.023

Estimation of θ2

100 1.057 1.030 0.186

500 1.019 1.020 0.029

2000 0.999 1.002 0.006

Estimation of θ3

100 -0.539 -0.512 0.062

500 -0.516 -0.530 0.009

2000 -0.499 -0.502 0.002

Table 2 Maximum empirical likelihood estimation of θ = (θ1, θ2, θ3)
T by using

Lagrange saddle point algorithm.

4. Concluding remarks

A semiparametric two-sample density ratio model is proposed. We obtain the maximum

empirical likelihood estimation (MELE) by using the Lagrange saddle point algorithm, which

can be applicable to more complicated semiparametric two-sample models. From our simulation

results, it seems that our proposed Lagrange saddle point algorithm is effective for computing the

maximum empirical likelihood estimation (MELE) when the Lagrange multiplier has no explicit

solution.
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