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The Stabilization and Idempotent Completion of a Left
Triangulated Category
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Abstract Let (¢,9Q,A) be a left triangulated category with a fully faithful endofunctor .
We show a triangle-equivalence (S(%),,A) = (5(%),Q, A), where (S(%),, A) denotes the

stabilization of the idempotent completion of (4,2, A) and (S(%), 2, A) denotes the idempotent
completion of the stabilization of (¢,Q, A).
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1. Introduction

Let € be an additive category. An idempotent morphism e is said to be split if there exist
morphisms B -~ A —% B with gp = 1p and pg = e (see [5, Prop.18.15]). The additive category
% is said to be idempotent complete (or idemsplit) provided that every idempotent morphism
splits.

For every additive category € there is a fully faithful embedding [ : € — € into an idempo-
tent complete additive category. Moreover, the functor [ induces an equivalence Homgqq(%, £) =
Homg,q4(%,-Z) for each idempotent complete additive category ., where Hom,4qy denotes the
(large) category of additive functors [7]. Many natural triangulated categories, such as the de-
rived categories of perfect complexes over a quasi-separated, quasi-compact scheme, the bounded
derived categories of abelian categories and the triangulated categories satisfying [TR5X;], are
idempotent complete [4]. But not all the triangulated categories are idempotent complete. For-
tunately any additive category can be idempotent completed and the idempotent completion of
a triangulated category is still a triangulated category [7]. Recently, Chen and Tang in [6] have
shown that the idempotent completion of a right or left recollement of a triangulated category
is still a right or left recollement.

Motivated by the idempotent completion of a triangulated category, we study the analogous
aspects of the idempotent completion of a one-sided triangulated category. For details and

more information on one-sided triangulated categories we refer to [1,2,9]. Let € be an additive
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category equipped with an additive endofunctor Q : € — ¥. Consider the category LT (€,Q)
whose objects are diagrams of the form Q(4) - B — C —% A where the morphisms are

indicated by the following commutative diagram:

Q(A) —= B . c—2 4
Q(7) a B v
Q(A/) u’ B v’ Vol w’ A

Figure 1 Triangulation Morphism

A left triangulation of the category (%, ) is a full subcategory A of LT (%, ) which satisfies all
the axioms of a triangulated category, except that €2 is not necessarily an equivalence. Then the
triple (€, Q, A) is called a left triangulated category and the diagrams in A are the left triangles.
For a left triangulated category (€, A), there exists a triangulated category (S(€),9Q,A)
called the stabilization of . The category S(%) is the universal triangulated category for exact
functors starting at €, that is, S : € — S(%) is an exact functor such that for any exact functor
F : € — 2 with a triangulated category 2, there is a unique exact functor F* : S(¢) — 2 such
that F* 0§ = F. The existence of (S(€),Q, A) can be found in [3].

Throughout this paper, if € is an additive category and A, B are objects in %, then the set
of morphisms from A to B in % is denoted by %' (A, B) instead of Hom¢ (A4, B), and the set of
integers is denoted by Z.

2. Preliminaries

Before giving the main results we first provide elementary definitions and constructions in

this section.
2.1. Stabilization

Let (¢,9Q,A) be a left triangulated category. Heller in [3] and Beligiannis in [1] constructed
a triangulated category S(€) as follows.

Objects of S(¥’) are pairs (A4, n) where A is an object of € and n € Z. If n, m € Z, we consider
the directed set I, ., = {k € Z|k > n,k > m}. The set of morphisms between (A,n), (B,m) €
S(€) is defined by S(€)((A,n),(B,m)) = lii}nkelmm(ﬁ(ﬂk_"(/l), QF=m(B)). Then S(%¥) is an
additive category and there exists an equivalence Q : S(%) — S(%) defined as follows. (A,n) €
S(€), QA,n) = (A,n—1) and if a : (A,n) — (B,m), then Q(a) = G(k—1:A,n—1;B,m—1)(Qk—1),
where i( 4 n:5,m) + €(Q(A),Q"™(B)) — S(€)((A,n), (B, m)) is the canonical morphism
and o @ Q""(A) — QF™(B) is representative such that i 4 np,m) (k) = a for some
k € Inm. Moreover, a1 = ay, : Q(k_l)_("_l)(A) — Q(’“_l)_(m_l)(B). The inverse of ( is
defined by (~2_1(A,n) = (4,n+1), ﬁ_l(a) = Q(kt1:4,n41:B,m+1) (Qrr1). For I >k, let fi =
QR (=) © € (QF " (A), Q™ (B)) — € (Q"(A), Q"™ (B)) be the canonical morphism such
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that i(k:A,n;B,m) = i(l:A,n;B,m) 'fkl- If (077 Qkin(A) — Qkim(B) and Bk : Qkim(B) — Qkil(C),
then
ik A,m;0,0) (Bre k) = 4 (:B,ms0,1) (Bk ) (k: A,ms B,m) ()

For brevity we also write ix = i(x.— _,_ _).

There also exists a natural additive functor S : € — S(%) defined as follows. S(A4) = (A4,0)
and if & : A — B is a morphism in €, then S(a) = ig() : (4,0) — (B,0). Thus we have a natural
isomorphism 6 : QS(A) = (4,—1) "2 (Q(A),0) = SQ(A). So Qig(a) = SQ(a) = ioQa),

for every morphism oo : A — B in %.
Using the functor S : € — S(%) and the left triangulation A of €, we define a triangulation
A of the pair (S(%),Q) as follows. A diagram

QC, 1) —"— (A,n) —"— (B,m) —"— (C,1)
belongs to A if there exists k € 2Z, k > max{l,n,m} and a triangle of representatives

Q(Qkil(O)) &2 Qkfn(A) Bk Qk*m(B) Tk Qkfl(c)

in % where a = ix(ax), = ix(8k),7 = ix(7). Then the triple (S(%),Q, A) is a triangulated
category and S : € — S(%) is the stabilization of € in the sense of [1] or [3, Th.9.2].

2.2. Idempotent completion

Let € be an additive category. Balmer and Schlichting in [7] constructed an idempotent
completion € of € as follows.

Objects of & are pairs (A,e) where A is an object of ¥ and e : A — A is an idempotent
morphism in %. A morphism in % from (A1, e;) to (Az,ez) is a morphism a : A, — Ay in €
with ae; = eaa = a. So F((Ay,e1), (As,e2)) = ez 06 (e, o) o e;.

The assignment A +— (A,14) defines a fully faithful functor I from % to . So we can
think of € as a full subcategory of €. If (¢,9,A) is a triangulated category, define Q : ¥ —
% by Q(A,e) = ((A),Q(e)). For every morphism « : (Aj,e1) — (Ag,e2) in €, Qa) =
Qa). So Qol =10. We define a triangulation A of the pair (¢,Q) as follows. A diagram
Q(Aq,e1) = (Ag, e9) R (Asz,e3) — (A1, e1) belongs to A if it is a direct factor of a triangle
of €, that is, if there is a diagram Q(By,d;) —— (Ba,ds) — (Bs,d3) — (By,d;) such that
(A1, e1) @ (B, d1)) “2¥ (As,e2) © (Ba,do) 228 (A3, e3) @ (Bs,ds) 125 (A, 1) @ (By, dy) is
isomorphic to a triangle in ¢. Balmer and Schlichting in [7, Th.1.12] proved the triple (¢, €, A)

is a triangulated category.

3. Main theorem

In this section we assume that (%,, A) is a left triangulated category with a fully faithful
endofunctor . We denote its idempotent completion by (%,Q,A) and its stabilization by
(5(%),92,A).
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Note that the proof of [7, Th.1.12] can be transferred to the case of a left triangulated

category. Thus we have the following theorem.

Theorem 3.1 (%,Q,A) is a left triangulated category.
Denote the stabilization of (€,9,A) by (S(%),Q,A) and the idempotent completion of
(S(€),Q,A) by (5(¢),Q,A). Our main theorem is

Theorem 3.2 There is a triangle-equivalence (S’(?),ﬁ, i) = (S’(%),ﬁ, Z)
Before proving the theorem, we need some preparations.
An object of S(€) is ((4,e),n) where A € €, > =e: A — A and n € Z. For brevity, let
(A, e,n) denote ((A,e),n). For (A1, e1,n1), (Az2,e2,n2) € S(F) ,
J— k} ni
S(@)(Ar,e1,m), (Ag,e2,m2)) = lim G(Q " (A1, e1), Q7 " (A, e2)).
K€Dy s

Denote by j : ?(ﬁkim (Al,el),ﬁkin

morphism and

*(Az,e2)) — S(%)((A1,e1,m1), (A2, e2,m2)) the canonical

k—n 1

*(Az,e9) = B(Q ™ (A1, 1), 2 " (As,e2)

—l—k — =k-n -

g = (=):FQ (A1,e1),Q

such that jp = jigi whenever I > k. If o : (A1,e1,n1) — (Az2,e2,n2) is a morphism in

S(%), by the deﬁnition of direct limit, there exists an integer k € I,,, », and a morphism oy :

o' (A1, e1) — Q" ""?(Ag, e2) in @ such that jp(ax) = a. Thus oy : QF ™1 (A;) — QF72(Ay)
in ¢ and a2 (e1) = QF "2 (e9)ay, = .

For the canonical morphism
i = i(k:A,n;B,m) : %(Qkin(A% Qkim(B)) - S(%)((Aa n)v (Bv m))
we have

Lemma 3.3 Let (A, e,n) € S(%) and i, = i(n:A,n;A,n)- Then
(i) €' =in(e) is idempotent.
(i) Ifk >n and ep = QF"(e) : QF"(A) — QF"(A), then ir(er) = ¢’

/

Proof (i) Since that e : A — A is idempotent, e’'e’ = i, (e)i,(e) =1in(e) =€’
(ii) For k > n,ir(ex) = i "(e) = in(e) = €. O

Lemma 3.4 If (A,n,e') € S(€), then there exists a unique idempotent morphism e € € (A, A)
such that i,(e) = ¢’ and for k > n, i.(Q¥"(e)) = €.

Proof Since ¢’ : (A,n) — (A4,n) is idempotent, there exists an integer ¢ > n and e, €
E((A), Q" (A)) such that i;(e;) = €’. Soit(e?) = ir(e;). By [8, Prop.24.3(1)], (2%t(e;))? =
QF~t(e;) for some integer k > t. Thus e, = Q¥ t(e;) : Q¥ "(A) — QF"(A) is idempotent and
ix(ex) = it(er) = €. Since endofunctor € is fully faithful, it follows that there exists a unique
idempotent morphism e : A — A such that e, = Q¥""(e). So i,(e) = ixQ* " (e) = ir(ex) = €.
O
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Lemma 3.5 ik(lﬂkfn(A)) = 1(A,n)~

Proof Let aj, = 1gr-n(a) and a = i(ax). For any morphism 3 : (4,n) — (B, m) in S(¥), we
have 3; : Q7" (A) — Q'=™(B) for some t € I, ,,, such that 3 = i;(3;). Without loss of general-
ity, we can assume k > t. So Ba = i(Bi)ix(ar) = ix(Q*7H(B)) - ik(an) = ik (-QFH(B) () =
in(Q(B:)) = it(B;) = B. Similarly, we have ay = ~ for each v in S(%)((%,),(<,)). So

ik(lgk—n(a)) = L(an). O N

For any object (A4,e,n) in S(%), Q(A,e,n) = (A, e,n—1). For any morphism « : (41, e1,n1) —
(Ag, e2,n2) in S(%), there exists an integer k € I,,, », and oy, € ?(ﬁk_m (A1, e1), Q" (Az,e2)
)

s~uch that jr(ag) = a. So ax—1 = ap : ﬁ(k_l)_(m_l)(Al,el) — ﬁ(k_l)_(m_l) (Ag, €2

)

Q(a) = ig_1(ag_1). A diagram

ﬁ(141561;711) _0"_(142,627”2) —Q>(A35637n3) L’(Alvelvnl)

belongs to A if there exists k € 27, k > max{ny,no,n3} and a left triangle of representatives (*)

= —k—nl Qg —k—’ﬂg k —k—’ﬂg k —]i}—’ﬂl
Q(Q (Al,el)) —>Q (Az,eg) ﬁ—> Q (A3,63) il Q (Al,el)

in € with a = jip(ax), 8 = jr(Br),7 = jrx(). Thus () is a direct factor of a triangle of ¥.
Objects of S(€) are ((A,n),e') where A€ €, n € Z, e : (A,n) — (A, n) is an idempotent mor-
phism. For brevity, let (A4, n,e’) denote ((4,n),e’). A morphism o' : (A1,n1,€]) — (A2, n2,€5)
in S(€) is a morphism o’ : (A1,n1) — (Ag,np) in S(€) with o/¢} = eha’ = o/. There ex-
ist ap : QF ™M (A)) — QF"2(Ay) in € such that igx(ar) = o/ and idempotent morphisms
e QFM(Ay) — QF7(A;) such that ix(en) = e} for some integer k € I, n,,t = 1,2. By
Lemma 3.4, there exist unique idempotent morphisms e; : A3 — A; and ey : Ay — As such that

e1r = Q¥ (e1) and egr = QF7"2(e3). So i1, (QF " (er)) = e} and Q(e;) = Qip(QF " (ey))) =
ip_1 (QED=(e =D () for t = 1,2.

Proof of Theorem 3.2 Using the notations as above, we define F' : S(¢) — S(%) as follows.
For any object (A,e,n) € S(%), F(A,e,n) = (A, n,¢e'), where ¢/ = i(n:A,m;4,n)(€). For any mor-
phism « : (A1,e1,n1) — (Ag, e2,n2), there exists an integer k > ni,ne and a morphism «y :
Q™ (Ar,e1) — Q" (Ag,e2) in € such that ji(ax) = a. So ay : QF ™1 (A;) — QF 2 (Ay)
is a morphism in € and Q"1 (e1) = QF "2 (eg)ay = ay. Let €] = i(ny:AymisArny) (€1) and

€9 = G(ny:As,n3As,mz) (€2). Then for the canonical morphism

i = Z'(1611‘\1,711;1427712) : %(Qk_m (A1), QFn (A2)) — S(€)((A1,n1), (A27 n2))

we have ir(ag) = o : (A1,n1) — (Az2,n2), d’e] = eha' = o/. Thus o € S(€)((A1,n1,€}),
(A2,n2,€5)), we define F(a) = o’

Assume that F(a) = o/, where o = ji(ag) = je(on), o = ix(ay) for some k,t € Iy, p,. It
is clear that we can assume that k > ¢. Thus j; = ji - gk, jr(akx) = a = ji(ar) = jrgik(ay) =
Jk (ﬁkit(at)) = k(" (ay)). So jr(ar —QF*(ay)) = 0. Thus there exists an integer | > k such
that gr(ar — Q% (ay)) = 0 (see [8, Prop.24.3]). That is, ﬁlik(ak — Q**(ay)) = 0 and then
Q' (o) = QY (ay) which implies that ix (k) = 3, (Q % (ar)) = (7 () = ie(a).
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Let a : (A1,e1,m1) — (Ag,e2,m2) and B : (Ag,ea,n2) — (As,es,n3). Then there exist an
integer k > max{ni,n2,ns}, ax € ?(ﬁkim(Al,el),ﬁkim (A2, e2)) and B € ?(ﬁkim (Asz, e2),
0" (43, e3)) with o = ji(ax) and § = ju(B). Thus F(B)F(a) = ix(Br)ir(on) = ir(Feon) =
F(jk(Brar)) = F(ik(Br)ir(ar)) = F(Ba).

For each (A,e,n) € S(%) and 3’ € S(€)((A,n,¢e),(B,m,e,)), then 3 € S(€)(A,n),
(B,m)) and f'¢’ = )3’ = 3. Hence there exists an integer k > n,m and By € € (QF¥ " (A),
QF=™(B)) such that 3 = ir(Bx). Thus jr(r) = 8 € S(€)((A,e,n), (B, e1,m)) with F(8) =
p'. Hence we have 3'F(liaen) = F(B)F(Laen) = F(Blaen) = F(B) = . Sim-
ilarly, we have F(1a,en))Y = F(L(a,en)F(Y) = F(la,en)y) = F(y) = o for each v €
W((Ca l,e5),(A,n,e’)). So F(l(Aﬁe,n)) =1ra,en)-

It remains to show that F' is a triangle-equivalence.

It is clear that F' is dense from Lemma 3.4 and full. To show that F' is faithful, we let two
morphisms a, 3 € S(€)((A1,e1,n1), (Aa,e2,n2)) with F(a) = o/ = F(f3). So there exist aj €
Z(Q " (A, e1), 0" (Ag, e2)) and By € T " (A1, 1), Q" (As, €2)) for some k, t € I, g,
such that ji(ar) = a, §:(8:) = B, ix(ar) = i:(B:) = o/. Without loss of generality, suppose k > ¢,
clearly, i;(3;) = ixQ2*~*(8;). Then there exists an integer [ > k such that Q=% (a, —QF(8,)) =
ie, QF(ar) = Q4B,). Therefore, a = ji(ar) = 3 F(ar) = 41 B) = 5:.(8) = B
Finally, we will show that F' is exact.

For any object (A,e,n) € S(%), Q(A n) = F(4,e,n—1) = (An -1 e), where
¢ = it tian-tam-n(e). QF(Aen) = Q(An,e") = ((A,n), Q") = (An — 1,¢), where
€’ = imananle). For any a € S(€)((A1,e1,n), (A2, e2,n2)), QF(a) = ﬁ(a) = Q)
where ji(ar) = a, ig(ag) = . So Q(a) = ig—1(ag—1) and jr_1(ak_1) = 5(a) implies
Fﬁ(a) =ip_1(ap—1) = EF(Q). Hence FQ = OF.

Suppose that

Q(As, e3,n3) —— (A1, e1,n1) L(szez,nz) —— (43, e3,n3) (1)

is a triangle in S(%), applying the functor F yields a diagram in ( )
(

Q(As,ng,ef) 2 (Ar,ni,el) Lo (Ag,na,el) L (As,ng,el). 2)

It follows from (1) that there exists a left triangle in &

k

Q@™ (45,e35) 205

—k— ’ﬂg( ]i}—77,3(

Aryer) 240 Az e) 15 Q Az, e3) (3)

for some k € 2Z, k > max{ni,n2,ng}, where o = jip(ar), 8 = jx(Br), v = Jr(vk). We let
di = 1a, —e;, i = 1,2,3. Since there is (A;,e;) @ (A;, 1 —€;) = (A;,14,) in € for i = 1,2,3 by
[6, Lemma 12], there is a diagram in &

— —k—n up =k—n1 v =k—na2 —k—n
QO T (43,d3)) (Ar,di) =~ (Az,ds) = *(Cs, ds) (4)

such that the direct sum of (3) and (4) is isomorphic to a left triangle in ¢

QFk+1-ns (AB) L, QOk—m1 (Al) QF—n2 (Ag) L. QF—ns (AB) (5)
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0 0 0
where & = ( Uk ) e = ( B >7 Ck = ( T ) Then we have a triangle in

0 Uk 0 Vi 0 Wi

(A2, m2)

Q(A37 Tlg)

(A1,m1)

(As, n3) (6)

where & = (&), = ix(nk), ¢ = ix(Cx). On the other hand, we can get a diagram in € from

(4)

Qk-‘rl—’ﬂg (AS) Qk—’ﬂl (Al) Qk}—ng (A2)

Qk—ng (Ag) (7)

and
(1 (dg)) = (8 (dy) g = g, 0 (25 (dr) = (2472 (da) o = o,

wi(QF7"2(dp)) = (¥ (ds)Jwr = wr,
which implies a diagram in S(%)
Q(Ag,, ng)

(A2,n2)

(A1,n1) (A3, n3) (8)

Where u = i(k}:Ag,’ﬂg 1 A1,n1)(uk) v = Z(k? A1,n1,A2,n2)(vk) w = Z(k Ag,ng,Ag,ns)(wk)' Let dé =
i(n31A3,n37A37n3)(d3) dl = Z(nl Aipni,Ag, nl)(dl) d2 - Z(712 Az,n2,A2,n2) (d2) So
w(QUd5")) = ik ag s —1541,m0) (W) * Gnig—1: A mg—1:Ag,mg 1) (d3)
= i(k:A;g,’ﬂg—l;Al,nl)(uk) : Z(k:Ag,ng—l;Ag,ng—l)Qk n3+1(d3)
= i(k:A3,n3—1;A1,n1)(Uk ’ Qkin3+1(d3))
= i(ktAs,nsfl;Alﬂll)((Qk_nl (dl))uk)
= i(k:Al,nl;Al,nl)(Qk_nl (dl)) : i(k:A37n3*1;A17n1)(uk)
= i(nl:A1,n1;A1,n1)(d1) : i(k:A37n3—1;A17n1)(uk)
=dj-u=u.
Similarly, we have v-dy =dj - v =v, w-dy, = d - w = w. Thus we have a diagram in S(%)
Q(A?n ns, d{,_?,) - (A17 ni, dll) - (A27 na, d/Q) — (A?n ns, d{,_?,) . (9)
Now 6% S¥ dé’, = i(n31A37n3;A37n3)(63> : i(n31A37n3;A3,n3)(d3) = i(n31A3,n3;A3,n3)(1A3) = 1(A3,n3) by
Lemma 3.5. Similarly, there are €} © d} = 1(p, n,) and e ® dy = 1(p, n,). So the direct sum of

(2) and (9) is isomorphic to the diagram in S(%)
(A3, n3) (Ar,n1) — (A2, n2)

"0 "0 0
wheref":(cé u),n’ (i v>7<I2<Z) ) Thus
§,g<a 0>:<ik ( 0)21%(&):6
0 u Uk

Similarly, " 2 n, ¢’ = (. It follows that (10) 6) So (10) is a triangle in S(%), and then (2)
is a triangle in S(€). This completes the proof. O

(Az,n3) (10)

1
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