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Abstract First, we give a module estimation of the singular integral with a differential element.
Then by proving the existences of Cauchy principal value we obtain the transformation formula
of the Cauchy-type singular integrals with a parameter.

Keywords Clifford analysis; Cauchy principal value; Cauchy-type singular integral with a

parameter; transformation formula.

MR(2010) Subject Classification 30G30; 30G35

1. Introduction

Cauchy-type integral is a kind of singular integrals which has become one of the basic tools
to solve various boundary value problems. Due to its good property it has been widely applied
to the theories of partial differential equations, singular integral equations and generalized func-
tions. Especially it seems that the disposition of the singular integral equations and differential
equations becomes quite simple and profound when Cauchy-type integral is applied [1].

Exchanging order of Cauchy-type integral plays an important role in the regularization and
composition of the singular integral operators. With the exchanging order formula of Cauchy-
type integral, we can solve various boundary value problems [2]. Thus, the exchanging order of
Cauchy-type integral is the core problem in solving boundary value problems of many equations.
In complex analysis and complex analysis in several variables, the exchanging order of Cauchy-
type integral and the relevant problems have been solved thoroughly and it has been applied
to elastic mechanics, fluid mechanics, multi-dimensional singular integral and integral equation
[3-7].

Starting from the above facts it naturally occurs to us whether there exists the corresponding

conclusion in Clifford algebraic space. Clifford algebra A, (R) is an associative and incommutable
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real algebra structure. Since the 1970s Clifford analysis has been well developed in light of
complex analysis [8, 9]. But for the incommutable property of Clifford algebra, many conclusions
in complex analysis are not right in Clifford analysis. Cauchy-type integral also plays a vital role
in Clifford analysis. However, Clifford algebra’s incommutability brings trouble in the exchanging
order, composition and regularization of Cauchy-type integral. Huang Sha proved P-B (Poincaré-
Bertrand) formula for singular integrals in Clifford analysis in 1998 (see [8]). But the definitions
are not perfect. On the basis of above conclusions, this paper will modify the definitions and
prove that the exchanging order formula of Cauchy-type integral in Clifford analysis still holds

true.

2. Preliminaries
2.1 Clifford algebra A,(R)

Let A,,(R) be areal Clifford Algebra over an n-dimensional Euclidean space R™ with orthogo-
nal basis e := {e1,ea,...,e,}. Then A, (R) hasits basisey, ea,...,en; €2€3,...,€n_1€n;...;€2 - Ep.

Hence an arbitrary element of the basis may be written as eq4 = eq, - - - €q,,, here
A=A{as,...,ap} C{2,....,n}, 2< g <as < -+ < ap <mn,

and when A = (), e4 = e;. So the real Clifford algebra is composed of elements having the type
a=7Y ,Taea, where z4(€ R) are real numbers. We define

eje; =¢ee1=¢;, t=1,2,3,...,n,

2 _ -
e =—1, 1=2,3,...,n,

eiej = —eje;, 2<i<j<n,(i#j)
€h1€h2 """ Chy = €hihy-hy, 1< hy <o <h, <.

The norm for an element a = ) , z4e4 € A, (R) is defined as |a| = y/(a,a) = (34 2%)2.
2.2 Outer algebra

A differential space with basis {dz1,...,dz,} can be denoted by V,,. A Grassman algebra
defined in V,, with basis {dz#, A € PN} can be denoted by G(V,,). The outer multiplication can
be defined as

dz? \da® = (=1)PAB)dgAYB . A B e PN, ANB =10,

doz4 A d2P =0, A,Be PN, ANB #0,

nAv=Yn'vPdet NdaB, = ntdat, v=2vPda”.
A B A B

We define dz; = dzyA- - -Adz;—1 Adzipa A - Adan, i =1,2,...,n. Andletdo = Y7, (—1)"*le;dm;.
If ds stands for the classical surface element and m = Z?:l e;n;, where n; is the i-th com-
ponent of the unit outward normal vector, then do can be written as do = mdS. Further-
more, the volume-element dz” = dxq A--- Adz, is used. Next, let @ C R™ be a nonempty

open connected set and the boundary 92 be a Liapunov surface which is differentiable, ori-
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ented and compact [1]. Let No € 99 be a fixed point. We establish a polar coordinate sys-
tem with the origin at Ny and the outward normal direction of 92 at Ny as the direction
of the positive &, axis. Then the surface 9 can be written as &, = &,(&1,...,&n—1). And
&, has partial derivatives about & (i = 1,...,n — 1). Now we establish a polar coordinate
at No: £,-1 = po COS Y1 COS Y3 * * + COS (P —3 COS P2, Ep—a = P COS (1 COS P2 + + + COS Pp—3 SIN Yy 2,
..y & = po cos p1 sin g, & = po sin 1, where pg is the length of |[NNp| and ¢; satisfy the con-
ditions: [p;| < §,i=1,2,...,n—3,0 < ¢,_2 < 27. By [1], we have

D R S
|daz|:|dsz|§2| (515525 af 1)
D(POa‘Pla o '7§0n—2)

where M is a positive constant.

||dpodepydeps - - - dpn_o| < Moph~2dpo, (1)

2.3 Cauchy type singular integrals with a parameter

Let @ C R™ be as stated above. Denote £ and n on 092 by 0€¢ and 0€,, respectively.
f =>4 faea is a function defined on 2 and valued on A, (R), where f4 are real functions with
n variables and A € PN. f is called a Holder continuous function on 92 with the order 3 if all
fa are Holder continuous functions on 992 with the order 3, where 0 < 8 < 1. Let H(92 x 0%2, 3)
be a set which includes all the Hélder continuous functions with the order § defined on 92 x 02
and valued on A, (R).

Definition 1 Let I' be a P-chainin R", f(z) =) 4 fa(®)ea, g(x) = > g gn(x)en, f(x),g9(x) €
H(T',B8), A,B € PN. Then we define

n

[ raoag@) =33 S ) ecien | fawign(e)ds,
T A B r

i=1

where T = (1, T2, ...,Ty).

Remark 1 By Definition 1, we know when f(z),g(z) € H(T,(3), the above integral is well
defined.

Let E(n,¢) = %, E(,n) = wn‘ggijﬂn, where w, is the area of the unit sphere in R".
And we know E(n,(), E(§,n) are Cauchy integral kernels of regular functions. Let

HfZ/ E(¢,n)doy f(1,€) = lim (¢, n)doy £(1,€),
o0

M—=0J aa-s,,

&f:/‘fm@m%E@mw=nm F(n,)doe B(E,m),
o0

A2=0.) 903y,

where £ and n are points in 9, oy, = {n | |7 =& <A} NI dx, ={&| 1€ —n| < A2} O

Definition 2 Let 99 be as stated above and E(n,¢) = > gi(n, Qer, E(&,m) = > i v (&, n)ex,
fm.&) = >c fe(n,§ec € H(ON x 092, 3), here g, 1 and fc are real value functions and
C € PN. Then we define

h—/mfmmmef@mMJmo
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=Y 33N D (1) Peeierejec] / 9 O / or(&,m) fo(n,€)dE));
C

=1 i=1 k=1 j=1 Qy 0Q¢
b= 1] B.Qdo, B o 0.
3 n
ZZZZZZ(—l)i“”ezeiekeg‘ec/ [/ 910, Q)i (€, ) fo(n, £)difi)dE;
1=1 i=1 k=1 j=1 C a0 J o9,

here ( € 02 and the singular integrals are their Cauchy principal values.

Remark 2 The singular integrals in this article are their Cauchy principal values.

3. Some properties of Cauchy-type singular integrals in Clifford analysis

3.1 Some Lemmas

Lemma 1 ([8]) Let 99 be as stated above and ¢ € 0. Then we have
1 wpe L
B, Qdoy = [ Blemdog = 5 oy = 2% where B(G,2) = In| In—<| < ).
a0, 90 B(¢,e) n-—

Lemma 2 ([8]) When f(n,§) € H(0Q x 9Q,3), the singular integral operators P, f, Pof all
exist and P, f, Pof € H(09Q,[3).

Lemma 3 ([8]) Let 09 be as stated above and ¢ € ). Then we have

/ E(n,()do, E(&,n) = 0.
aQ,

Lemma 4 ([8]) Let 99 be as stated above, ( € 9Q and 6x(¢,n) = {n | |n— ] < A\, n € 0Q}.
Then we have limy—o [ . E(n,¢)do, = 0.

3.2 The main results

Theorem 1 Let I' be a differentiable, oriented, compact Liapunov surface in R", p(n,§) €
H( x T, 8). Then for any points { # £ € T', we have

M
| g E(n, Q)doy E(&,n)doe[p(n,n) — (¢, O < |§_<|+1_ﬁldagl-

Proof Suppose I = |an E(n,¢)do, E(,n)doe[e(n,n) —¢((,Q)]]. And let T' =T + Ty + I3,
where I'y =T — B(£,8), Ty = TN B((,2), I3 = =Ty — 'y, and § = 2|¢ — ¢|. Then we can
obtain

I<| [ E(n,Q)do,E(E,n)doc[p(n,n) —o(C, Q)]+

I

| | Em,QdoyE(E,n)doclp(n,n) — (¢, O+

s

| g E(n,¢)do, E(&,n)doc[p(n,1) — ©((, Q)| = L1 + Lz + Ls.
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When n € I'y, 2[n—&| > [n—&| + ¢ — €| > |n — ¢|. Then by equation (1), we have

My M: n—C §—n
L < /' Loy E = gy — P

w2 Jry In—=¢m e =l
Mle/ 1 1 2"1M1M2/ 1
- do doe| < do,||do;
B e g g e = T g ol
2"71M2M1M0 L 1 27171M2M1M0 L 1
- w2 /:5 2n—2—B—n+2 dp1|d0'5| = 02 / P dp1|d0'£|
n 2 M1 n 3 Py
2"71M2M1M0 1) Bontl
w%(n—ﬁ—l)[(Z) Jldoe| < |doe| = |§ <|n 1 gl ¢l
where p; = [ — (| and L = max,cr(|n — {|).
When n €T3, |n—¢&| > g. Then from equation (1), we have
My Mo 1 1
Ls < 2 / — n—l—B|dU77| — o ldoe]
n—1 1 1 ne1 %6 p? 2
<4 M1M25n71 P TES 5 |doy|doe| < 4 M1M2M05n T s Fdp1|do]
3 1
e 1 3 Ms
=4 1M1M2M0—5n_16(§5) |dog¢| = Fii- ﬁ|d(7§| WHO’H

where p1 = |1 — (|,
Whenn €Dy, [n—& <8, In—¢|>6-¢—n—¢ >3-4 =2 Then

€7 _
w2|A2 In— C|nda77|n §|nd05[<ﬂ(77,77) @& O]+

ol [ e ool — (.l = 1+ v
" SM;? /r2 In— éll"*H’ In — ZI’H [dory[|do
. s
gjwbﬂftg&4 15;11j£4 5dpaldoe] < My ldoe| = E;—Tj%—q—ﬁwdad

where pg = |1 —¢&|.

7—¢ -7
| do [|doe].
v Iy = ¢ e =l
Let vi = | [p, 7= g|nd0n\g mnl S={nln—-&l<x<fmnela}, Li={n|n-¢& =\ nely},
Lo={n|n—¢ =%, neTlf}, where I'] is the domaln outside of T" and Ly, Lo have inverse
orientations. Then
’1}2—11 |/ n_Cndan 5_77”|<1m| n_cndng_nn|+
A=0" Jp,_s5, In =] 1€ —nl A=0"Jp, 5,4 Li4Lo [N — €] 1€ =l
: 7-¢ -7 7-¢ -1
lim do + do =T+ T+ 73.
L e A T e
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Suppose 27 is the domain closed by I's — §) + L1 + La. Then (,£ & Q; and

7-¢ £€-7
———)0, =0; Oy(=—7F)=
=g =% Ml
By Stokes formula [8] we know
m-¢ €1

71 = lim | do
A=0" Jp, — 5,\+L1+L2 In—¢ln g —n

. E-7 7—C E-7
:1[[ 8 d = U.
1|/ln d" %l - [(K Iﬂ%| 0

A=0 [E=n* ="
=l f o <<|nd”" |§—_ i < Jm e | ol g
When n € Ly, we know |n — (| > é and |n — ¢ = \. By Lemma 1 we have
s e [ i) < tim SRR [ s
< Jimy 6714711(;1\{21) )\"1 Tn A" = Mg@'

When 1 € Lo, [ —¢| > $ and [y — €] > A\. Then by Lemma 1 we can obtain

gn—1 1 4n=1
75 < lim M, -|do,| — < lim 2 / \doy|
A0 Lo on— | _<|n A—0 511—1(1)11—1 Lo
4n=1 0, 0 1
< lim wn ()" = Myg——.
T A0 gr1(S)n—1(n — 1) (4) Ol = ¢

Hence vy < M”W and vy < M1M2 v3l€ — ¢|P|doe| < MlMngl = C\" —3|dog|. Then
Ly <wvp+wvy < Ml2|g_¢|+1—@|d05|- HGDCG I<Li+Ly+L3< M13W|d05|

Remark 3 Theorem 1 is used to prove Theorem 3, which has a special conclusion and gives
a module estimation of the singular integral expression with a differential element. Because the
differential elements in Clifford analysis are also vector-valued and they are incommutable with

functions, they should be estimated together rather than separately.

Theorem 2 Let I'1,Ty be differentiable, oriented, compact Liapunov surfaces in R™, ¢(n) €
H(Fl,ﬁ), 9(7775) € H(Fl X F276)7 f(n7§) € H(Fl X F276)' We have

B(n)doy| / £, €)doeg(n, €)] = / ([ é(m)doyf(n, €)doeg(n.©)).
T Ty

I's I
Whereg: (517527" '7511)7 n= (77177727-- 77777,)

Proof Let ¢(n) = >, ¢a(n)ea, 9(n,&) = > c9c(n.&ec, f(n,€) = > g fe(n,§)es. By Defini-

tions 1, 2 and Fubini Theorem, we have

o(n)day / £(n,€)doeg(n, ©)
Ty 'y

=/ > palnea Z(—l)iﬂeidﬁi/F S e, 9es Y (1) e;dg; > go(n, Eec
i=1 2 =1 C

g B
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S vt eacienciee [ [ oatn ot et 9810
5 r,J

SO S (1) e qeiepe e / 64 (n) (. g (n, €)AMdE .
C I'1 xT's

:/ [/ > patmea Y (1) edini Y- fon Qenl D (—1)7e;dg; Y go(n, Eec
Py /Ty B c

i=1 j=1

S eeienciee [ 1] oatnfan el
B C

Ty INT

S S SN () Re acienejec / $a(n) f5(n, €)gc (n, €)dTdE;
] B C

'yt xT2

= [ bm)doy / £, €)doeg(1.6)].

Fl FQ
Remark 4 Theorem 2 shows that for normal integrals integral order can be commuted though

the multiplication order of functions is not changed.

Theorem 3 Let Q! C R" be as stated above. Suppose p(n,&) € H(0Q x 9Q,3) and ¢ € 9.

Then the following integrals all exist and we can obtain the following equations.

/ E(n, O)do, / B(&, n)doclo(nn) — o(6.0)]

0%, %

- / [ B OdoyBE,mdoelo(nn) — o(C. Ol ()
o0 J 09,

/ Em.Odoy [ B¢ n)doclo(n &) — o6, ©)

o, %

- / [/ By, ()doy E(€, n)doe[p(n, €) — p(€. )] 3)
o0 J 09,

/ E(n,C)dffn/ E(& n)doe[p(&,€) — ¢(n,n)]

o0, 0%

- / [ B Odoy B, ndoelo(,€) — oln n)l)- (4)
a0 J o9,

Proof We only prove that the integrals exist and the first equation is right. The other equations

can be proved similarly.

(i) First we prove that the integrals all exist. Let

= / o, 20 6)den / o, DMl = GO

I = /Emg [/annE(n’ Qdoy E(E, n)doe[e(n,n) — ¢(¢, O)]]-
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From Lemma 1 we have

|| = | E(n,¢)doy, E(&,n)doeleo(n,n) — ¢(¢, Q)
a0, 99
_ M Mo 1
= / B0, fonm) — 9(¢. Ol < T / o g
M1MOM2 1 o M1M0M2
- 2w, / p}_ﬁ p= 2w, 3 o

here p1 = | — {|. Hence I exists. By Theorem 1 we can obtain

= / - / o B0 Oy P& oot ) — (6,0
< M, / | / E(n, O)doy E(E, mdoelo(n,n) — 9(C. O]
a0 J o9,

L
1 M13M0
b e < MlgMQMO/ dps = 8
a0 € —¢["17F ¢ py " B

here po = |£€ — ¢|. Hence I’ exists.

By Lemma 2, we know faQ 5 n)dffd (77,5) 5 f and f@Q 5 n daé[ (576)_@(77777)]
are Holder continuous functions about 7. Then we can obtain that the left two integrals of

< M13M2/

equation (3) and equation (4) all exist. By Theorem 1 and the proof of I’ we can know the right

two integrals of equation (3) and equation (4) all exist.

(ii) Next we prove I = I'.

Ry (&, mdoelo(n ) — o(¢. O+
697, 695\\5 7]\<2(5

E(y.¢)dr, [ E(& mdoelo(nn) — o(¢.Ol = I + I

oQ, Qe N|E—n| <26

s / [ / E(n, O)day B(€, n)daelio(n,n) — o(C, Ol1+
00¢ J 00,\In—¢|<20

/ [ / E(n, O)doy E(E, mdoelo(n.n) — o(C, Ol = I, + I,
90 J 0Q,N|n—€|<26

We only need to prove I; = I and lims_.o Iz = lims_¢ I = 0.

L =/ E(n,C)dan/ E(& n)doeleo(n,n) — (¢ Q)]+
o, \In—¢|<$ Qe \|E—n| <26

/ B, ¢)dr, [ E(&, mydoelp(n ) — o(¢.O) = Is + .
aQ,N[n—¢|<3 Qe \|E—n| <26

n=[ 1f E(n, C)doy B (&, mdoelp(n.n) — o(C, O]+
Qe J 99, \(In—€|<26UIn—¢|<$)

/ [ / E(n, O)doy B(E, mdoelo(n.n) — o(¢, Ol = I + I,
Qe o0, \|n—¢€|<28)N|n—¢|< S

Let E(n,¢) = >3y filn, Qer, B(n, &) = 25—y gk(n,)ex, o(n,m) — (¢, ) = Yo e (n,{ec- By
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Definition 1 and Theorem 2 we have

I =/ E(n, C)dan/ E(&,m)doe[e(n,n) — ¢(¢, C)]
00, \In—¢|<3 8Qs\|£—n|<25

NI S S

a\In—¢1<$ 1=

n n o dA
/695\5 77‘<2 Zl 7775)(51@ ;( 1) EJ é'];gpc(r,%c)ec
S ey s [ [ ascdiad,
N . C 1

Here 31 = {(n,€) | n € (0Q\|n — ¢| < £),€ € (9Q¢\|n — €| < 26)}.

1= / E(n, C)doy E (&, m)doelp(n.n) — 9(C, )]
Qe J 90, \(In—¢€l<26Un—¢|<?)

Z(—l)i+j+2ezei€k6jec// figrpcdindé;.
220

=1 i=1 k=1 j=1 C

Here X3 = {(n,¢) | 6 00¢,m € (0Q\(In =€l < 20U |n—¢| < §))}. Let X3 = {(n,€) | n €
0Q,€ € 0Q,|n —¢| > §,|n— €| > 26}. Then £y = £3 = ¥,. Hence I3 = I,

/ E(n,¢)dor [ (&, mdoelo(n ) — o(C Ol
o, Nn—¢|<§ Qe \|n—€| <26

M, M. 1 1
< 12 2 / — 13 |dgn|/ T— |d0'§|
wi S oa,nm-ci<g 1m =<l 99\ In—el <25 1M — &

| 14]

)
MZ M, M, /‘ 1 /L 1 MgMiM, 6
< d —dpy < = InL|+|In28
o2 B pf e 23 (2) [In L| + | In 24])
ME M, M.
< 0&}2% 2(2) (IIn L| +|20] %) < M146°,

where 0 < ¢ < (. Hence lims_o |[I4] = 0. In integral I}, ¢, £ and 7 satisfy the following
inequalities:

b
|§—<|2|n—€|—|n—€|>25—5>5;

=€l >l Cl—IC—ul > e~ ¢l — 5 > 2l <l

Then we have

My Mo, 1 1
merm2 [ f —doy | |doelln — ¢
wi S age ) @a,\In—¢l<2)nn—cl<2 In = ¢ In —¢&|

271 1M1M2/ / 1 1
ST o ——ldo| —_|do|
wh Qe 7 (99n\|In—¢€|<28)NIn—(¢| <3 [n — P18 e —¢Jn—11S

2" =1 M2 My M. 2" MEM My S _
w—/ ldm/ i < =52 ) (L 157 = Misd

n
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Hence limgﬁo |L/L| = 0. Then |Il — I“ = limgﬁo |Il - I“ = hmgﬂo |I4 — Iéll| S hm(;‘;() |I4| +
lims_.o |I}| = 0. Therefore, I; = I3.

By Lemma 4 we know 1im5_>o(IQ%QM{KME(&n)dag) = 0. Then for any € > 0, we can

find a number ¢’ > 0, such that |f895mn_5‘<26E(§,n)d05| < & when 0 < § < ¢§’. Then when
0 < < §', we obtain

=1  EBoodw, [ E(&, mydoelo(nn) — (¢ Q)
a0, 80 N|n—gl<26

—1 [ EmQdo / oy PE M) GO

a9,
MlMQE L 1
SMgs/ E(n,Q)||doy|le(n,n) — w(C, 0] < / do
asznl( MIday [le(n,m) — (¢, Q) o Om_qn,l,gl nl
Mo M; M. Lo MoM; M, LP
:M/ pitapy = MMM
Wn, 0 ﬁwn

Hence lims_,q | 12| = 0.

I = / [ / E(n, ¢O)don B(E, n)doelo(n,n) — 0(C. )]
90 J 0Q,N|n—€|<26
-/ / B, ), B(E. ool m) = (. O+
00eN|E—C|<36 0, Nn—£<26
/ [ / E(n, O)doy (€, n)doelo(n.n) — o(&, Ol = Ny + Na.
e\ [€—C¢|<36 J 0Q,N|n—E€] <26
Ny = / [ / E(n, C)doy B(€, n)doe[p(n, n) — p(&, )]+
00\ [E—C|<38 J 0Q,N|n—£]<26
/ [ / B, O)doy (€, n)doe[p(é,€) — o(¢, Ol = 7 + 74
00\ [E—C|<38 J 0Q,Nn—€]<26

When | — | > 39, |n — &] < 26, we have

=2 le—cl—ln—¢ > le= ¢l - 25 > le—c| - Sl | = 5l — ¢l

Then
My M. 1 1
lim |7]| < lim 12 2/ / — Py |do,||do|
5—0 =0  wp 90 \|E—¢|<38) 9Q,N|n—E€| <28 In — (| In—¢|
L
1
< Myzlim 67 [ —————|do¢| < lim Myg[ln L — (35) )" =
< 17612%5 35|§_<|n_1| o¢| < lim 1s[ln L — (36)°]¢” =0,

where 0 < e < 3.

= / [ / E(n,()doy E(€, n)doe o€, €) — (¢, O]
e\ |e—¢|<38 J 09,N|n—¢|<28

- / [ / E(n,()doy (€, )ldocp(€,€) — o(¢, ).
e\ [€—C¢|<36 J 9Q,N|n—E€] <26

For lims_.q faﬂnm\n—g\déE(n’C)danE(§7n) =0, lims_ 75 = 0. Hence lims_g No = 0.
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Similarly to the proof of Theorem 1, we have

1
E do, FE d — Myg——|dog¢]|.
| /mmn_w (9, €1y B m)doclipn,n) — oG, Ol < Mo gy ldoe]

n—1

Then we have lims_o|Ny| < lims_o ff;‘;MlgMoszszﬂdpl — limg_.o MeMpsMz (353 — 0,
1

Hence lims_.g I35 = 0. The proof is completed. O

Similarly we can prove the other equations.

Remark 5 Essentially, Theorem 3 draws the following conclusion: If there is a weak singular
integral in the twice integrals (i.e., it is convergent in the sense of generalized integral), the integral
order can be commuted although the other integral is convergent in the sense of principal value.
The proving method is outlined as follows: at the beginning we try to prove that the integrals

are convergent in the sense of principal value and then prove that the equations exist.
Theorem 4  Let 0N2 be as stated above. Then we have

E(n,¢)doy, E(& m)docp(n, ) =/ E(n,C)dfan(&n)dUgso(n,&)+i<p(<,4)~
o9, O a9, Joq,

Proof By Theorem 3 and Lemma 1, we can obtain

E(n,¢)doy, E(&,n)doecp(n,§)
a9, 9,

B O [ E(€ndoclo(n. ) — ol€ €)1+

Q%

Qy

B0y [ B(€ndoclolé.€) — ol n)l+

Q, 9

E(n, ¢)do, /6 (€ mdoeleln) — 9(¢.0) + /@ B0, /6 (€ nMoepl.0
/@ E(n, ¢)doy B(E, n)doep(n,€) — (€. )]+

/8 E(n, O)doy B(E, n)doe (€, €) — o(n, m)]+
/

B0, e B(& oot 1) = 2(C O + 5 [ B, Odeyel€.0

Q,

[ [ BwodnBEndocen e - [ [ Bm.0dn,BEndoenc0) + 146,
Q. Jox, Q. Jox,

From Lemma 3 we have fémg [faﬂn E(n,¢)do, E(¢,n)]doep(¢, () = 0. Hence

E(n,¢)doy, E(& m)docp(n, ) =/ E(n,C)dfan(&n)dUgso(n,&)+i<p(<,4)~
o9, 00 a9, Joq,

Remark 6 The last theorem shows that when the twice integrals are convergent in the sense
of Cauchy-type principal values, there is an extra item after the integral exchanging order and

this agrees with the result in complex analysis.
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