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Abstract Let Ω ⊂ R
n be a bounded domain with a smooth boundary. We consider the longtime

dynamics of a class of damped wave equations with a nonlinear memory term

utt + αut − ∆u −

∫ t

0

µ(t − s)|u(s)|βu(s)ds + g(u) = f.

Based on a time-uniform priori estimate method, the existence of the compact global attractor

is proved for this model in the phase space H1

0 (Ω) × L2(Ω).
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1. Introduction

Let Ω ⊂ R
n be a bounded domain with sufficiently smooth boundary Γ, and α and β be

positive constants. We consider the following damped wave equations with nonlinear memory

term:

utt + αut − ∆u −

∫ t

0

µ(t − s)|u(s)|βu(s)ds + g(u) = f in Ω × R
+, (1)

u(x, t) = 0 on Γ × R
+, (2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω. (3)

Many physical phenomena are properly described by partial differential equations where the

dynamics is influenced by the past history of one or more variables. A wave equation of hyper-

bolic type with a convolution term describes simple viscoelastic materials with fading memory.

This equation has arisen from the theory of isothermal viscoelastic [3, 16], which describes a

homogeneous and isotropic viscoelastic solid.

A problem similar to (1)–(3) with linear memory has been studied in [7, 8, 14, 15, 17]. For

the nonlinear one-dimensional equation, Dafermos [4], exploring the dissipative properties of

the equation, showed that the system is well posed provided the initial data are small enough,

Received March 24, 2010; Accepted April 18, 2011

Supported by the National Natural Science Foundation of China (Grant No. 10471018).
* Corresponding author

E-mail address: yinghaohan@hotmail.com (Yinghao HAN); zgjin@dlut.edu.cn (Zengguo JIN)



214 Yinghao HAN, Zhen’guo YU and Zengguo JIN

whereas for the n-dimensional linear system the author proved the asymptotic stability of the

solutions. For 3-dimensional isotropic and homogeneous materials, Dassios and Zafiropoulus [5],

using an asymptotic analysis, proved that the solution of the viscoelastic system of memory

type has a uniform decay to zero provided that the relaxation kernel is the exponential function.

Problem (1)–(3), without the memory term µ and with f = 0, has been proposed by Feireisl [7],

who studied the longtime behavior of solutions and showed the existence of a universal attractor

with the nonlinear term g to satisfy the so-called subcritical exponent growth condition. Ma and

Zhong [12] investigated the existence of global attractors of strong solutions for the hyperbolic

equations with linear memory using the semigroup approach.

Few have ever considered the nonlinear memory term. Cavalcanti [2] and Park [13] proved

the existence and uniform decay of solutions for the wave equations with nonlinear boundary

damping and boundary memory source term. That is, they only showed the existence and

uniform decay with nonlinear memory term. In this paper, we consider the global attractor

problem with nonlinear memory term. The contribution of this paper is that the authors deal

with damped wave equations with nonlinear memory term.

The rest of the paper is organized as follows. In Section 2, we introduce the various assump-

tions, notations, definitions, propositions and theorems which will be needed later. In Section

3, we show the existence of absorbing sets in the phase space H. Finally, we prove that the

semigroup associated to the problem possesses a global attractor in H.

2. Preliminaries

With usual notations, we introduce two Hilbert spaces H = L2(Ω) and V = H1
0 (Ω). The

scalar product and the norm in H = L2(Ω) and V = H1
0 (Ω) are denoted by (·, ·), | · |; ((·, ·)), ‖ · ‖,

respectively. The symbol H denotes the product space V ×H . We consider the strictly positive

Laplace-Dirichlet operator on H

A = −△, dom(A) = H2(Ω) ∩ H1
0 (Ω)

generating, for s ∈ R, the scale of Hilbert spaces

Vs = dom(A
s
2 ), 〈u, v〉s = 〈A

s
2 u, A

s
2 v〉.

In particular, V0 = H , V1 = V . Whenever s1 > s2, the imbeding Vs1 ⊂ Vs2 is compact and

‖u‖Vs1
≥ λ

(s1−s2)/2
1 ‖u‖Vs2

, ∀u ∈ Vs1 ,

where λ1 is the first eigenvalue of the operator −∆.

In the following, we consider an abstract damped linear equation in a Hilbert space H̄

utt + αut + Āu = f, α > 0, (4)

u(x, 0) = u0, ut(x, 0) = u1, (5)

where Ā is an unbounded, self-adjoint, positive linear operator from domĀ ⊂ H̄ to H̄ . Assume

that the injection V̄ = dom(Ā1/2) ⊂ H̄ is continuous and dense.
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Next we introduce the existence and uniform decay of the above problem which will be needed

later.

Proposition 1 ([18]) Under the above assumptions, let f, u0, u1 be given such that

f ∈ L2(0, T ; H̄), u0 ∈ V̄ , u1 ∈ H̄.

Then there exists a unique solution u to (4), (5), satisfying

u ∈ C(0, T ; V̄ ), ut ∈ C(0, T ; H̄).

Furthermore, if we assume that

f ∈ C(0, T ; H̄),
∂f

∂t
∈ L2(0, T ; H̄), u0 ∈ dom(Ā), u1 ∈ V̄ ,

then u satisfies

u ∈ C(0, T ; dom(Ā)), ut ∈ C(0, T ; V̄ ), utt ∈ C(0, T ; H̄).

Proposition 2 ([18]) The hypotheses are those of Proposition 1 and we assume that f ∈

C(0, T ; H̄), u0 ∈ V̄ , u1 ∈ H̄ . Then if u is the solution of (4), (5), {u, ut} ∈ C(0, T ; V̄ × H̄), and if

0 < ε ≤ ε0, ε0 = min{
α

4
,
λ1

2α
},

then, for any 0 < t < T , u satisfies the following relation

‖u(t)‖2 + |ut(t) + εu(t)|2 ≤ {‖u0‖
2 + |u1 + εu0|

2} exp(−
εt

2
) +

2

ε2
|f |2L∞(R+;H̄)(1 − exp(−

εt

2
)).

In order to establish the existence of attractors, we need the following related concepts of

absorbing sets and Kuratowski measure.

Definition 1 Let B0 be an open subset of a matric space M, and S(t) be a semigroup on M.

We say that B0 is an absorbing set of S(t) if the orbit of any bounded set B enters into B0 after

a certain time (which may depend on the set B ⊂ M). Namely, for any bounded set B, there

exists t1(B), such that

S(t)B ⊂ B0, ∀t ≥ t1(B).

Definition 2 Let M be a metric space. The Kuratowski measure of a noncompact set B in M

is defined by

αM(B) = inf{d : B has a finite cover of open balls of M of diameter less than d}.

Theorem 1 ([18]) Let S(t) be a semigroup on a complete metric space M. If the following hold

(I) There exists a bounded absorbing subset B0 of M;

(II) For any bounded set B ⊂ M and number ε > 0, there exists t1(ε), such that for t ≥ t1(ε),

αMS(t)(B) < ε.

Then the ω-limit set of B0 is the connected and compact global attractor of S(t).

In order to formulate problem (1)–(3) in a proper functional setting and describe the long-

time behavior of solutions, we require some conditions on the nonlinear term, namely, we take



216 Yinghao HAN, Zhen’guo YU and Zengguo JIN

g ∈ C1(R) and denote

G(s) =

∫ s

0

ḡ(y)dy.

There exist positive constants γ ≥ 0, ρ > (γ+2)
β+2 (

∫
Ω

1dx)1/γ−1/β , such that g(s) = ρ|u(s)|γu(s)+ḡ,

where ḡ satisfies the following conditions:

(g1) lim inf |s|→∞
G(s)
s2 ≥ 0;

(g2) lim inf |s|→∞
sḡ(s)−c1G(s)

s2 ≥ 0;

(g3) |ḡ′(s)| ≤ c2(1 + |s|ν) for some ν ≥ 0.

The above conditions are in fact redundant to prove the existence and uniqueness of finite

energy solutions, but they are necessary to prove the asymptotic behavior results. This is due

to the fact that the external force satisfies more restrictive conditions. We infer from (g1), (g2)

that, for every η > 0, there exist positive constants Cη, C′
η such that

G(s) + ηs2 ≥ −Cη, ∀s ∈ R, (6)

sḡ(s) − c1G(s) + ηs2 ≥ −C′
η, ∀s ∈ R. (7)

A proper choice of η will be made when necessary.

The memory kernel µ is required to satisfy the following hypotheses:

(h1) µ ∈ C1(R+) ∩ L1(R+);

(h2) µ(s) ≥ 0, µ′(s) ≤ 0, ∀s ∈ R
+;

(h3)
∫ ∞

0 µ(s)ds = 1;

(h4) There exist m1, m2 > 0, such that m1µ(s) ≤ −µ′(s) ≤ m2µ(s), ∀s ∈ R
+.

Notice that the condition (h4) implies the exponential decay of µ. This requirment seems to

be unavoidable in order to have the exponential decay of the associated problem [4, 6, 11].

For convenience we denote ḡ by g and the equation (1)–(3) are written in the following forms

utt + αut − ∆u + ρ|u(t)|γu(t) −

∫ t

0

µ(t − s)|u(s)|βu(s)ds + g(u) = f in Ω × R
+, (8)

u(x, t) = 0 on Γ × R
+, (9)

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω. (10)

The existence of weak and strong global solution of the above equation has been shown in

Han [10]. This equation generates a semigroup S(t) on H.

In the following, we give our main result:

Theorem 2 Assume that (h1)–(h4) and (g1)–(g3) hold, and ν, β satisfy the following conditions

0 ≤ ν, β, γ < ∞, β ≤ γ when n = 1, 2,

0 ≤ ν, β, γ < 2, β ≤ γ when n = 3,

β = γ = ν = 0, when n ≥ 4.

(11)

Then the semigroup S(t) of the equation (8)–(10) possesses a global attractor A which is compact,

connected, and maximal in H.
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3. Existence of global attractor

In this section we are going to establish a time-uniform prior estimate of solutions u in H.

Then we apply the estimate to obtain the existence of the global solutions and bounded absorbing

set. Finally, we establish the existence of the global attractor for the dynamical system S(t) in

the phase space H.

3.1 Absorbing set in H

We are now in a position to deal with the estimates on solutions of problem (8)–(10).

Define

(µ�u)(t) =

∫ t

0

µ(t − s)||u(s)|
β
2 u(s) − |u(s)|

β
2 u(t)|2ds,

then a simple computation gives
∫ t

0

µ(t − s)(|u(s)|βu(s), ut(t))ds =
1

2
(µ′

�u)(t) −
1

2

d

dt
(µ�u)(t) −

1

2
µ(0)‖u(t)‖β+2

β+2+

1

2

d

dt

(∫ t

0

µ(t − s)||u(s)|β/2u(t)|2ds
)
−

1

2

∫ t

0

µ′(t − s)||u(s)|β/2u(t)|2ds, (12)

1

2

d

dt

(∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds

)
=

1

2
µ(0)‖u(t)‖β+2

β+2 +
1

2

∫ t

0

µ′(t − s)‖u(s)|β+2
β+2ds. (13)

Now we take the scalar product in H of equation (8) with v = ut + εu, and with (12), (13) we

find

1

2

d

dt

(
|v|2 + ‖u‖2 + (µ�u)(t) +

2ρ

γ + 2
‖u(t)‖γ+2

γ+2 +

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds −

1

2
(µ′

�u)(t)−

∫ t

0

µ(t − s)||u(s)|β/2u(t)|2ds + 2

∫

Ω

G(u)dx
)

+ (α − ε)|v|2 + ε‖u‖2 − ε(α − ε)(u, v)+

ερ‖u(t)‖γ+2
γ+2 −

1

2

∫ t

0

µ′(t − s)‖u(s)‖β+2
β+2ds +

1

2

∫ t

0

µ′(t − s)||u(s)|β/2u(t)|2ds + ε(g(u), u)

= (f, v) + ε

∫ t

0

µ(t − s)(|u(s)|βu(s), u(t))ds. (14)

By Young’s inequality, (7) and Poincaré inequality, we obtain the following results:

(f, v) ≤ C′′(η)|f |2 + η|v|2, (15)

−
ε

4
λ2

1|u|
2 −

ε(α − ε)2

λ2
1

|v|2 ≤ −ε(α − ε)(u, v), (16)

c1

∫

Ω

G(u)dx − η‖u‖2 − C′
η ≤ (g(u), u), (17)

∫ t

0

µ(t − s)(|u(s)|βu(s), u(t))ds

≤
1

2

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds +

1

2

∫ t

0

µ(t − s)||u(s)|β/2u(t)|2ds. (18)
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Now combining with (h4), (7) and (15)–(18), we deduce from (14) that

1

2

d

dt

(
|v|2 + ‖u‖2 + (µ�u)(t) +

2ρ

γ + 2
‖u(t)‖γ+2

γ+2 +

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds−

∫ t

0

µ(t − s)||u(s)|β/2u(t)|2ds + 2

∫

Ω

G(u)dx
)

+
(
α − ε −

ε(α − ε)2

λ2
1

− η
)
|v|2+

(
3ε

4
− ηε)‖u‖2 +

m1

2
(µ�u)(t) + ερ‖u(t)‖γ+2

γ+2 +
m1 − ε

2

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds−

m2 + ε

2

∫ t

0

µ(t − s)||u(s)|β/2u(t)|2ds + c1ε

∫

Ω

G(u)dx ≤ C′′(η)|f |2 + C′
ηε. (19)

We take the numbers ε, η sufficiently small so that all the numbers {(α− ε− ε(α−ε)2

λ2
1

− η), (3ε
4 −

ηε), (m1−ε
2 )} are positive. And let

δ = 2 min
{
(α − ε −

ε(α − ε)2

λ2
1

− η), (
3ε

4
− ηε),

m1

2
,
ε(γ + 2)

2
, (

m1 − ε

2
), (

m2 + ε

2
),

c1ε

2

}
.

Then we have
d

dt
E(t) + δE(t) ≤ 2(C′′(η)|f |2 + C′

ηε),

where

E =|v|2 + ‖u‖2 + (µ�u)(t) +
2ρ

γ + 2
‖u(t)‖γ+2

γ+2 +

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds−

∫ t

0

µ(t − s)||u(s)|β/2u(t)|2ds + 2

∫

Ω

G(u)dx.

Considering ρ > (γ+2)
β+2 (

∫
Ω

1dx)1/γ−1/β , and taking η ≤
λ2
1

4 in (6), we deduce

E + 2C(η) =|v|2 + ‖u‖2 + (µ�u)(t) +
2ρ

γ + 2
‖u(t)‖γ+2

γ+2 +

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds−

∫ t

0

µ(t − s)||u(s)|β/2u(t)|2ds + 2

∫

Ω

G(u)dx + 2C(η)

≥|v|2 + ‖u‖2 + (µ�u)(t) +
2ρ

γ + 2
‖u(t)‖γ+2

γ+2 +

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds−

β

β + 2

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds −

2

β + 2

∫ t

0

µ(s)ds‖u(t)‖β+2
β+2 − 2η|u(t)| (20)

≥|v|2 +
1

2
‖u‖2 + (µ2u)(t) +

( 2ρ

γ + 2
−

β

β + 2

(∫

Ω

1dx
) 1

γ − 1
β
)
‖u(t)‖γ+2

γ+2+

2

β + 2

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds ≥ 0. (21)

Hence by virtue of the Gronwall lemma

E(t) + 2C(η) ≤ (E(0) + 2C(η))e−δt +
2(C(η′)|f |2 + C′

ηε + δC(η))

δ
(1 − exp(−δt)), ∀t ≥ 0, (22)

therefore

lim sup
t→∞

E(t) + 2C(η) ≤ R2
0, R2

0 =
2

δ
(C(η′)|f |2 + C′

ηε + δC(η)).
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On the other hand, from (7) we deduce that G(u) is a bounded operator from V to H . In

addition, by (11) we have γ + 2 < 2n + 2/n − 2, hence H1
0 (Ω) →֒ Lγ+2(Ω). Therefore if B is

bounded set of H, then

R = sup
(u0,u1)∈B

(E(0) + 2C(η))

= sup
(u0,u1)∈B

{‖u(0)‖2 + |ut(0) + εu(0)|2 +
2ρ

γ + 2
‖u(0)‖γ+2

γ+2 + 2G(u(0)) + 2C(η)} < ∞.

Now we set R1 = R0 + 1, then it readily follows from (22) that for t ≥ t0 = t0(R, R1),

t0(R, R1) =
1

δ
ln(

R

R2
1 − R2

0

). (23)

We have E(t) + 2C(η) ≤ R2
1, and

‖u(t)‖2 + |ut(t)|
2 ≤ (1 +

ε2

λ2
1

)‖u‖2 + |v|2 ≤ 2(1 +
ε2

λ2
1

)(E(t) + C(η)) ≤ 2(1 +
ε2

λ2
1

)R2
1. (24)

If we set R2
2 = 2(1 + ε2

λ2
1
)R2

1, then we can immediately conclude the following lemma.

Lemma 1 The ball of H, B0 = B(0, R2), centered at 0 of radius R2, is an absorbing set in H

for the semigroup S(t). For any bounded set B of H, there exists t0 > 0, such that S(t)B ⊂ B0,

for t ≥ t0.

3.2 Asymptotic compactness of S(t)

In this subsection we shall split S(t) so that we can make use of the so-called Kuratowski

α-measure of noncompact set to prove the asymptotic compactness of S(t). More precisely,

we split S(t) into two parts: S1(t) and S2(t), where S2(t) decays exponentially, and S1(t) is

uniformly compact in H. Thus for any bounded set B ⊂ H, α(S(t)B) ≤ α(S1(t)B)+α(S2(t)B) =

α(S2(t)B) → 0 as t → ∞.

In the following we split the solution u into the sum ū + ũ, where ū is the solution of the

problem:

ūtt + αūt − ∆ū =

∫ t

0

µ(t − s)|u(s)|βu(s)ds − ρ|u(t)|γu(t) − g(u) + f in Ω × R
+,

ū(x, t) = 0 on Γ × R
+, (25)

ū(x, 0) = 0, ūt(x, 0) = 0 for x ∈ Ω,

and ũ is the solution of the following problem:

ũtt + αũt − ∆ũ = 0 in Ω × R
+,

ũ(x, t) = 0 on Γ × R
+, (26)

ũ(x, 0) = u0, ũt(x, 0) = u1 for x ∈ Ω.

Since f = 0 in the equation (26), by the Proposition 2, we obtain the uniform decay of the

solution of equation (26), i.e., the solution ũ of equation (26) with (u0, u1) ∈ B0 satisfies

{‖ũ(t)‖2 + |ũt(t)|
2} ≤ C(B0) exp(−α1t). (27)
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In the following, we will show that the semigroup S1(t) is uniformly compact for t > 0 in H.

Lemma 2 Under the hypotheses (11), there exists σ > 0 such that for any (u, ut) ∈ Cb(R
+,H),

we have
∫ t

0

µ′(t − s)|u(s)|βu(s)ds + µ(0)|u(t)|βu(t) − ρ(γ + 1)|u(t)|γut(t) − g′(u)ut ∈ L∞(R+; Vσ−1).

Furthermore, for any given bounded set B ⊂ H, there exists C(B) > 0 such that if (u0, u1) ∈ B,

then

sup
(u,ut)∈B

∥∥∥
∫ t

0

µ′(t − s)|u(s)|βu(s)ds + µ(0)|u(t)|βu(t)−

ρ(γ + 1)|u(t)|γut(t) − g′(u)ut

∥∥∥
L∞(R+;Vσ−1)

≤ C(B). (28)

Proof For n = 1, 2, in this case we take σ > 0 satisfying

nτ

2τ + 4
< (1 − σ) <

n

2
, (29)

where τ = max{γ, ν}. Then we infer β + 2 ≤ γ + 2 ≤ τ + 2 < 2n/(n− 2(1 − σ)), hence we have

L2n/(n−2(1−σ))(Ω) ⊂ Lτ+2(Ω) ⊂ Lγ+2(Ω) ⊂ Lβ+2(Ω). (30)

On the other hand, due to the interpolation and the Sobolev embedding theorem we obtain

the following injections

V1−σ ⊂ H1−σ(Ω) ⊂ L2n/n−2(1−σ)(Ω) (31)

with all the injections being continuous. We combine (30) with (31) to obtain

V1−σ ⊂ Lτ+2(Ω) ⊂ Lγ+2(Ω) ⊂ Lβ+2(Ω). (32)

Observe that, for any 1 ≤ q < ∞, H1
0 (Ω) ⊂ Lq(Ω). If we take q = nν/(1 − σ), then for any

u ∈ H1
0 (Ω), ‖u‖ ≤ M we have

‖u(t)‖γn/1−σ ≤ C‖u(t)‖, (33)

and by virtue of (g3), we have

‖g′(u)‖Lq/ν ≤ C(M). (34)

Let w(t) ∈ V1−σ. Applying the Hölder inequality with exponents 2n/2(1−σ), 2, 2n/(n−2(1−σ)),

(32) and (33), we deduce the following result

∣∣∣
(∫ t

0

µ′(t − s)|u(s)|βu(s)ds, w(t)
)
+µ(0)(|u(t)|βu(t), w(t))−

(ρ(γ + 1)|u(t)|γut(t), w(t)) − (g′(u(t))ut(t), w(t))
∣∣∣

≤ m1

∫ t

0

µ(t − s)‖u(s)‖β+1
β+2‖w(t)‖β+2ds + ρ(γ + 1)‖u(t)‖γ

γn/1−σ|u(t)t|‖w(t)‖2n/(n−2(1−σ))+

µ(0)‖u(t)‖β+1
β+2‖w(t)‖β+2 + ‖g′(u(t))‖L2n/2(1−σ) |ut(t)|‖w(t)‖2n/(n−2(1−σ))

≤
(
m1C

∫ t

0

µ(t − s)‖u(s)‖β+1
β+2ds + µ(0)C‖u(t)‖β+1

β+2+
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ρ(γ + 1)C‖u(t)‖γ|ut(t)| + C‖g′(u(t))‖Lq/ν |ut(t)|
)
‖w(t)‖V1−σ

≤
(m1C(β + 1)

β + 2

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds +

µ(0)(β + 1)C

β + 2
‖u(t)‖β+2

β+2 +
m1C

β + 2
+

ρ(γ + 1)C‖u(t)‖γ|ut(t)| +
µ(0)

β + 2
+ C‖g′(u(t))‖Lq/ν |ut(t)|

)
‖w(t)‖V1−σ

≤ C(B)‖w(t)‖V1−σ , (35)

where

C(B) = sup
{u0,u1}∈B,t∈R+

{m1C(β + 1)

β + 2

∫ t

0

µ(t − s)‖u(s)‖β+2
β+2ds +

µ(0)(β + 1)C

β + 2
‖u(t)‖β+2

β+2+

m1C

β + 2
+ ρ(γ + 1)C‖u(t)‖γ |ut(t)| +

µ(0)

β + 2
+ C‖g′(u(t))‖Lq/ν |ut(t)|

}
.

By (22) and (34), C(B) is bounded. That shows
∫ t

0 µ′(t − s)|u(s)|βu(s)ds + µ(0)|u(t)|βu(t) −

ρ(γ + 1)|u(t)|γut(t)− g′(u)ut is in the dual space Vσ−1 of V1−σ and its norm in Vσ−1 is bounded

by C(B), and so the inequality (28) holds.

For n = 3, if we take q = 6, then (34) is still true. If we take σ = 1−τ/2, then 0 ≤ 2(1−σ) =

τ < 2 < 6/2 and τ + 2 ≤ 2n/(n− (1− σ)). Thus we also have the injections (30) and (31). Since

γn/1 − δ = 2γn/τ < 2n, we have (33). Proceeding exactly as above, from (35) we can conclude

the inequality (28).

For n ≥ 4, due to (11), g′(u) is in L∞(Ω) for any u ∈ H , and the result is obvious in this

case. 2

Lemma 3 For t > 0, the operator S1(t) is uniformly compact in H. Therefore, for any bounded

set B ⊂ H and T > 0, the set
⋃

t≥T S(t)B is relatively compact in H.

Proof If (u0, u1) belongs to a bounded set B, then for t ≥ t0 (given by (23)), Lemma 1 implies

that (u(t), ut(t)) is in B0 and ‖u(t)‖2 + |ut(t)|
2 ≤ R2

2, ∀t > t0. Using Proposition 1, we deduce

(u(t), ut(t)) ∈ C(0, T ;H), ∀T > 0, hence (u(t), ut(t)) ∈ Cb(R
+;H). Therefore for all t > 0,∫ t

0
µ(t − s)|u(s)|βu(s)ds − ρ|u(t)|γu(t) − g(u) is bounded in H . It follows from Proposition 2,

{ū, ūt} is also bounded. By differentiation of equation (25), we find that w = ūt is a solution of

wtt + αwt − ∆w =

∫ t

0

µ′(t − s)|u(s)|βu(s)ds+

µ(0)|u(t)|βu(t) − ρ(γ + 1)|u(t)|γut(t) − g′(u)ut,

w(0) = 0, wt(0) =f − g(u0).

Due to Lemma 2, if we replace V̄ , H̄ with Vσ, V−1+σ in Proposition 1, respectively, then we obtain

that (w, wt) = (ūt, ūtt) ∈ Cb(R
+; Vσ × Vσ−1).

Now let us return to equation (25). Since
∫ t

0 µ(t− s)|u(s)|βu(s)ds− ρ|u(t)|γu(t)− g(u)+ f ∈

Cb(R
+; H), we find that Aū ∈ Cb(R

+; Vσ−1), i.e., ū ∈ Cb(R
+; Vσ+1). Thus (ū, ūt) ∈ C(R+; Vσ+1×

Vσ) and
⋃

t≥0 S1(t)B is included in a bounded set of Vσ+1 × Vσ. Since the injection of Vσ1 into

Vσ2 is compact ∀σ1 > σ2. From the fact Vσ+1 × Vσ →֒ H, we can obtain that
⋃

t≥0 S1(t)B is

compact in H. 2
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The proof of Theorem 2 is now obvious. Since we have established the existence of a bounded

absorbing set in H and the asymptotic compactness of S(t), Theorem 2 follows from Theorem 1.
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