Weighted Estimates for Marcinkiewicz Integrals with Non-Doubling Measures

Songbai WANG, Yinsheng JIANG*, Baode LI
College of Mathematics and System Sciences, Xinjiang University, Xinjiang 830046, P. R. China

Abstract

Let μ be a nonnegative Radon measure on R^{d} which satisfies the growth condition $\mu(B(x, r)) \leq C_{0} r^{n}$ for all $x \in R^{d}$ and $r>0$, where C_{0} is a fixed constant and $0<n \leq d$. The purpose of this paper is to establish the boundedness of the Marcinkiewicz integrals from $L^{p}(u)$ to $L^{p, \infty}(u)$, where u is a weight function of Muckenhoupt type associated with μ.

Keywords maximal singular integrals; Muckenhoupt type weights; sharp maximal operators; non-doubling measures.

MR(2010) Subject Classification 42B20; 42B25

1. Introduction

Recent years, more and more people pay considerable attention to the study of function spaces with non-doubling measures $[2,4-6,8-10,15-17]$. Assuming that the faces (or edges) of the cubes have the measure zero, Orobitg and Pérez in [11] introduced the weights on non-homogeneous spaces and obtained the weighted norm inequalities for the Calderón-Zygmund operators and the corresponding maximal singular operators. Without the above assumption, Hu and Yang in [8] established the weighted boundedness for maximal singular integrals with non-doubling measures from $L^{p}(u)$ to $L^{p, \infty}(u)$, for $p \in(1, \infty)$ and $u \in A_{p}^{\rho}(\mu)$ with $\rho \geq 1$, where $A_{p}^{\rho}(\mu)$ consists of the weight functions of Muckenhoupt type associated with μ, see Definition 1 below.

Hu , Lin and Yang in [7] introduced the Marcinkiewicz integrals with non-doubling measures and obtained some boundedness results. The main purpose of this paper is to establish weighted norm inequalities with weights of Munkenhoupt type on non-homogeneous spaces.

Let μ be a nonnegative Radon measure on R^{d}, which only satisfies the growth condition that there exist positive constants C_{0} and $n \in(0, d]$ such that for all $x \in R^{d}$ and $r>0$,

$$
\begin{equation*}
\mu(B(x, r)) \leq C_{0} r^{n} \tag{1}
\end{equation*}
$$

where $B(x, r)$ is the open ball centered at some point $x \in R^{d}$ and having radius r. The measure μ in (1) is not assumed to satisfy the doubling condition which is a key assumption in the analysis on spaces of homogeneous type. Some important non-doubling measures satisfying (1)

[^0]and the motivation for developing the analysis related to such measures can be found in [17]. We only point out that analysis with non-doubling measures plays an essential role in solving the long-standing Painlevé open problem by Tolsa in [15].

At first, we recall some notations and definitions and employ the statement used in [8]. By a cube $Q \subset R^{d}$ we mean a closed cube whose sides are parallel to the axes and which is centered at some point of $\operatorname{supp}(\mu)$, and we denote its side length by $l(Q)$. A μ-measurable function u is said to be a weight if it is nonnegative and μ-locally integrable. The $A_{p}^{\rho}(\mu)$ weights of Muckenhoupt type in the setting of non-doubling measures were first introduced by Orobitg and Pérez [11] for $\rho=1$ and by Komori [2] for $\rho \in[1, \infty)$.

Definition 1 Let $\rho \in[1, \infty), p \in[1, \infty)$ and $p^{\prime}=p /(p-1)$. A weight u is said to be an $A_{p}^{\rho}(\mu)$ weight if there exists a positive constant C such that for any cube Q,

$$
\left(\frac{1}{\mu(\rho Q)} \int_{Q} u(x) \mathrm{d} \mu(x)\right)\left(\frac{1}{\mu(\rho Q)} \int_{Q} u(x)^{1-p^{\prime}} \mathrm{d} \mu(x)\right)^{p-1} \leq C
$$

Also, a weight u is said to be an $A_{1}^{\rho}(\mu)$ weight if there exists a positive constant C such that for any cube Q,

$$
\frac{1}{\mu(\rho Q)} \int_{Q} u(x) \mathrm{d} \mu(x) \leq C \inf _{x \in Q} u(x) .
$$

As in the classical setting, we set $A_{\infty}^{\rho}(\mu)=\bigcup_{p=1}^{\infty} A_{p}^{\rho}(\mu)$. For $\rho=1$, we denote $A_{p}^{\rho}(\mu), A_{1}^{\rho}(\mu)$ and $A_{\infty}^{\rho}(\mu)$ simply by $A_{p}(\mu), A_{1}(\mu)$ and $A_{\infty}(\mu)$, respectively.

As pointed out by Orobitg and Pérez [11], without the assumption that for any cube Q, $\mu(\partial Q)=0$, where ∂Q is the faces (or edges) of the cube Q, the reverse Hölder inequality, the fact that $u \in A_{1}(\mu)$ implies $u \in L_{\text {loc }}^{1+\sigma}(\mu)$ with some $\sigma \in(0, \infty)$, and some other important properties enjoyed by the A_{p} weights in the setting of Euclidean spaces, may not be true.

Let K be a locally integral function on $R^{d} \times R^{d} \backslash\{x=y\}$ such that for any $x \neq y$,

$$
\begin{equation*}
|K(x, y)| \leq C|x-y|^{-(n-1)} \tag{2}
\end{equation*}
$$

and for any x, y and $y^{\prime} \in R^{d}$ with $|x-y| \geq 2\left|y-y^{\prime}\right|$,

$$
\begin{equation*}
\int_{|x-y| \geq 2\left|y-y^{\prime}\right|}\left[\left|K(x, y)-K\left(x, y^{\prime}\right)\right|+\left|K(y, x)-K\left(y^{\prime}, x\right)\right|\right] \frac{1}{|x-y|} \mathrm{d} \mu(x) \leq C \tag{3}
\end{equation*}
$$

for any $y, y^{\prime} \in R^{d}$. The Marcinkiewicz integral \mathcal{M} associated to the above kernel K and the measure μ as in (1) is defined by

$$
\begin{equation*}
\mathcal{M}(f)(x)=\left(\int_{0}^{\infty}\left|\int_{|x-y| \leq t} K(x, y) f(y) \mathrm{d} \mu(y)\right|^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{1 / 2}, \quad x \in R^{d} \tag{4}
\end{equation*}
$$

In their remarkable work [7], Hu , Lin and Yang successfully established the boundedness of \mathcal{M} with kernel K satisfying (2) and (3), respectively, from the Lebesgue space $L^{1}(\mu)$ to the weak Lebesgue space $L^{1, \infty}(\mu)$, from the Hardy space $H^{1}(\mu)$ to $L^{1}(\mu)$ and from the Lebesgue space $L^{\infty}(\mu)$ to the space $\operatorname{RBLO}(\mu)$ (see [12]). In this note, we make some modification for the kernel K. Besides K satisfies the size condition (2), it also satisfies that for any x, y and $y^{\prime} \in R^{d}$ with
$\left|y-y^{\prime}\right| \leq|x-y| / 2$, there exists $0<\varepsilon \leq 1$ such that

$$
\begin{equation*}
\left|K(x, y)-K\left(x, y^{\prime}\right)\right|+\left|K(y, x)-K\left(y^{\prime}, x\right)\right| \leq \frac{\left|y-y^{\prime}\right|^{\varepsilon}}{|x-y|^{n-1+\varepsilon}} \tag{5}
\end{equation*}
$$

Obviously, when the kernel satisfies condition (5), it also satisfies (3). Under above conditions, we shall prove that \mathcal{M} is bounded from $L^{p}(u)$ to $L^{p}(u), u \in A_{p}^{\rho}(\mu)$.

The following theorem is our main result.
Theorem 1 Let $\rho \in[1, \infty)$. Let K satisfy (2) and (5), and \mathcal{M} be the Marcinkiewicz integral defined as in (4). If \mathcal{M} is bounded on $L^{2}(\mu)$, for any $p \in[1, \infty)$ and $u \in A_{p}^{\rho}(\mu)$, then \mathcal{M} is also bounded from $L^{p}(u)$ to $L^{p, \infty}(u)$, that is, there exists a positive constant C such that for any $\lambda>0$ and all bounded functions f with compact support and $x \in R^{d}$,

$$
u\left(\left\{x \in R^{d}: \mathcal{M} f(x)>\lambda\right\}\right) \leq C \lambda^{-p} \int_{R^{d}}|f(x)|^{p} u(x) \mathrm{d} \mu(x)
$$

where, for a weight u and a μ-measurable set $E, u(E)=\int_{E} u(x) d \mu(x)$ and C only depends on d, ρ and p.

Throughout the paper, C denotes a positive constant that is independent of the main parameters involved but whose value may vary from line to line. Constants with subscript such as C_{1} do not change in different occurrences. Let a cube α and β be positive constants such that $\beta>\alpha^{n}$. For a cube Q, we say that Q is (α, β)-doubling if $\mu(\alpha Q) \leq \beta \mu(Q)$, where αQ denotes the cube concentric with Q which has side length $\alpha l(Q)$. It was pointed out by Tolsa [14] that there exists a large constant $\beta=\beta_{\alpha, d}>0$ such that for any $x \in \operatorname{supp}(\mu)$ and $H>0$, there exists some $\left(\alpha, \beta_{\alpha, d}\right)$-doubling cube centered at x with $l(Q)>H$ and for μ-almost all $x \in R^{d}$, and there exists a sequence $\left\{Q_{k}\right\}_{k \in N}$ of (α, β)-doubling cubes centered at x with $l\left(Q_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. In what follows, by a doubling cube Q we mean that Q is a ($2 \rho, \beta_{2 \rho, d}$) doubling cube, where $\rho \geq 1$. Moreover, for a cube Q, \widetilde{Q} denotes the smallest doubling cube of the form $(2 \rho)^{k} Q$ with $k \in \mathbb{N} \cup\{0\}$. For any two cubes $Q \subset R$, set

$$
\delta_{Q, R}^{\rho}=1+\sum_{k=1}^{N_{Q, R}^{\rho}} \frac{\mu\left((2 \rho)^{k} Q\right)}{\left[l\left((2 \rho)^{k} Q\right)\right]^{n}}
$$

where $N_{Q, R}^{\rho}$ is the least positive integer k such that $l\left((2 \rho)^{k} Q\right) \geq l(R)$.

2. Some lemmas

At first, we recall the John-Strömberg maximal operator and the John-Strömberg sharp maximal operator related to the measure in (1), and the weighted norm inequalities with $A_{\infty}^{\rho}(\mu)$ weights related to these two operators, where $\rho \in[1, \infty)$.

For a cube with $\mu(Q) \neq 0$ and a real valued μ-measurable function f, we define the median value of f on the cube Q, denoted by $m_{f}(Q)$, to be one of the numbers such that

$$
\mu\left(\left\{y \in Q: f(y)>m_{f}(Q)\right\}\right) \leq \frac{1}{2} \mu(Q)
$$

and

$$
\mu\left(\left\{y \in Q: f(y)<m_{f}(Q)\right\}\right) \leq \frac{1}{2} \mu(Q)
$$

For the case $\mu(Q)=0$, we define $m_{f}(Q)=0$. If f is complex-valued, the median value $m_{f}(Q)$ of f is defined by

$$
m_{f}(Q)=m_{\operatorname{Re} f}(Q)+i m_{\operatorname{Im} f}(Q)
$$

where $i^{2}=-1$.
Let $\rho \in[1, \infty)$ and $s \in\left(0, \beta_{2 \rho, d}^{-1} / 4\right)$. For any fixed cube Q and μ-measurable function f, we define the quantity $m_{0, s ; Q}^{\rho}(f)$ by

$$
m_{0, s ; Q}^{\rho}(f)=\inf \left\{t>0: \mu(\{y \in Q:|f(y)|>t\})<s \mu\left(\frac{3}{2} \rho Q\right)\right\}
$$

if $\mu\left(\frac{3}{2} \rho Q\right) \neq 0$, and $m_{0, s ; Q}^{\rho}(f)=0$, if $\mu\left(\frac{3}{2} \rho Q\right)=0$. The John-Strömberg maximal operator $M_{0, s}^{\rho, d}$ is defined by setting, for all $x \in R^{d}$,

$$
M_{0, s}^{\rho, d} f(x)=\sup _{\substack{Q \ni x, Q \text { doubling }}} m_{0, s ; Q}^{\rho}(f) .
$$

And the John-Strömberg sharp maximal function $M_{0, s}^{\rho, \sharp} f$ for any μ-measurable function f is defined by

$$
M_{0, s}^{\rho, \sharp} f(x)=\sup _{Q \ni x} m_{0, s ; Q}^{\rho}\left(f-m_{f}(\widetilde{Q})\right)+\sup _{\substack{R \supset Q \ni x \\ Q, R \text { doubling }}} \frac{\left|m_{f}(Q)-m_{f}(R)\right|}{\delta_{Q, R}^{\rho}} .
$$

For the case that μ is the d-dimensional Lebesgue measure, this sharp maximal operator was introduced by John [3] and then rediscovered by Strömberg [14] and Lerner [4, 5]. It is easy to check that for any cube $Q \ni x$ and $\varepsilon>0$,

$$
\mu\left(\left\{y \in Q:\left|f(y)-m_{f}(\widetilde{Q})\right|>M_{0, s}^{\rho, \sharp} f(x)+\varepsilon\right\}\right)<s \mu\left(\frac{3}{2} \rho Q\right)
$$

Let $\rho \in[1, \infty)$ be fixed. For $\eta \in(1, \infty)$, we define the maximal by setting, for all $x \in R^{d}$,

$$
\begin{equation*}
M_{\eta} f(x)=\sup _{Q \ni x} \frac{1}{(\eta Q)} \int_{Q}|f(y)| \mathrm{d} \mu(y) \tag{6}
\end{equation*}
$$

A result of Komori [2] states that for any $\eta>\rho, p \in[1, \infty)$ and $u \in A_{p}^{\rho}(\mu), M_{\eta}$ is bounded from $L^{p}(u)$ to $L^{p, \infty}(u)$. Let $M^{\rho, d}$ be the doubling maximal operator defined by setting, for all $x \in R^{d}$,

$$
\begin{equation*}
M^{\rho, d} f(x)=\sup _{\substack{Q \ni x \\ Q \text { doubling }}} \frac{1}{\mu(\rho Q)} \int_{Q}|f(y)| \mathrm{d} \mu(y) . \tag{7}
\end{equation*}
$$

Notice that for any doubling cube Q,

$$
\frac{1}{\mu(Q)} \int_{Q}|f(y)| \mathrm{d} \mu(y) \leq \beta_{2 \rho, d} \frac{1}{(2 \rho Q)} \int_{Q}|f(y)| \mathrm{d} \mu(y) \leq C \inf _{x \in Q} M_{2 \rho} f(x)
$$

Hu and Yang [8] proved the following result:
Theorem HY Let $\rho \in[1, \infty), s_{1} \in\left(0, \beta_{2 \rho, d}^{-1} / 4\right), p \in(0, \infty)$ and $u \in A_{\infty}^{\rho}(\mu)$. Then there exists a constant $C_{1} \in(0,1)$, depending on s_{1} and u, and a positive constant C such that for any $s_{2} \in\left(0, C_{1} s_{1}\right)$,
(i) If $\mu\left(R^{d}\right)=\infty, f \in L^{p_{0}, \infty}(\mu)$ with $p_{0} \in[1, \infty)$, and for any $R>0$,

$$
\sup _{0<\lambda<R} \lambda^{p} u\left(\left\{x \in R^{d}:|f(x)|>\lambda\right\}\right)<\infty
$$

then

$$
\sup _{\lambda>0} \lambda^{p} u\left(\left\{x \in R^{d}: M_{0, s_{1}}^{\rho, d} f(x)>\lambda\right\}\right) \leq \sup _{\lambda>0} \lambda^{p} u\left(\left\{x \in R^{d}: M_{0, s_{2}}^{\rho, \sharp} f(x)>\lambda\right\}\right) ;
$$

(ii) If $\mu\left(R^{d}\right)<\infty$, and $f \in L^{p_{0}, \infty}(\mu)$ with $p_{0} \in[1, \infty)$, then

$$
\begin{aligned}
& \sup _{\lambda>0} \lambda^{p} u\left(\left\{x \in R^{d}: M_{0, s_{1}}^{\rho, d} f(x)>\lambda\right\}\right) \\
& \leq \sup _{\lambda>0} \lambda^{p} u\left(\left\{x \in R^{d}: M_{0, s_{2}}^{\rho, \sharp} f(x)>\lambda\right\}\right)+C u\left(R^{d}\right)\left(s_{1} \mu\left(R^{d}\right)\right)^{-p / p_{0}}\|f\|_{L^{p_{0}, \infty}(\mu)}^{p}
\end{aligned}
$$

Hu and Yang [8] still introduced the sharp maximal operator $M_{r}^{\rho, \sharp}$. Let $r \in(0, \infty)$. The sharp maximal operator $M_{r}^{\rho, \sharp}$ was defined by setting, for all $x \in R^{d}$,

$$
M_{r}^{\rho, \sharp} f(x)=\sup _{Q \ni x}\left(\frac{1}{\mu\left(\frac{3}{2} \rho Q\right)} \int_{Q}\left|f(y)-m_{f}(\widetilde{Q})\right|^{r} \mathrm{~d} \mu(y)\right)^{\frac{1}{r}}+\sup _{\substack{x \in Q \subset R \\ R \in \text { doubling }}} \frac{\left|m_{f}(Q)-m_{f}(Q)\right|}{\delta_{Q, R}^{\rho}} .
$$

For $r=1$ and $\rho=1$, this operator is the sharp maximal operator introduced by Tolsa [15]. It is easy to check that for any cube Q and $r \in(0, \infty)$,

$$
m_{0, s ; Q}^{\rho}\left(f-m_{f}(\widetilde{Q})\right) \leq s^{-1 / r}\left(\frac{1}{\mu\left(\frac{3}{2} \rho Q\right)} \int_{Q}\left|f(y)-m_{f}(\widetilde{Q})\right|^{r} \mathrm{~d} \mu(y)\right)^{\frac{1}{r}}
$$

Therefore, for all $x \in R^{d}$,

$$
\begin{equation*}
M_{0, s}^{\rho, \sharp} f(x) \leq s^{-1 / r} M_{r}^{\rho, \sharp} f(x) . \tag{8}
\end{equation*}
$$

To prove our theorem, we need some Lemmas.
Lemma 1 ([8]) Let $\rho \in[1, \infty), M_{\eta}$ and $M^{\rho, d}$ be the maximal operators defined (6) and (7), respectively. For any $p \in[1, \infty)$ and $u \in A_{p}^{\rho}(\mu)$, both M_{η} with $\eta \in(\rho, \infty)$ and $M^{\rho, d}$ are bounded from $L^{p}(u)$ to $L^{p, \infty}(u)$.

Lemma $2([8])$ Let $\rho, p \in[1, \infty), u \in A_{p}^{\rho}(\mu)$, and $\eta \in(\rho, \infty)$. Then there exist constants $C_{1}, C_{2} \geq 1$ such that
(i) For any cube Q and μ-measurable set $E \subset Q, \frac{u(E)}{u(Q)} \geq C_{1}^{-1}\left(\frac{\mu(E)}{\mu(\eta Q)}\right)^{p}$;
(ii) For any doubling cube Q and μ-measurable set $E \subset Q, \frac{u(E)}{u(Q)} \geq C_{2}^{-1}\left(\frac{\mu(E)}{\mu(Q)}\right)^{p}$;
(iii) For any doubling cube Q and μ-measurable set $E \subset Q, \frac{u(E)}{u(Q)} \leq 1-C_{2}^{-1}\left(\frac{1-\mu(E)}{\mu(Q)}\right)^{p}$.

Lemma 3 ([8]) Let $\rho, p \in[1, \infty), s \in\left(0, \beta_{2 \rho, d}^{-1} / 4\right)$. Then for all μ-measurable functions f and $\lambda>0$,
(i) $\left\{x \in R^{d}:|f(x)|>\lambda\right\} \subset\left\{x \in R^{d}: M_{0, s}^{\rho, d} f(x)>\lambda\right\} \cup \Theta$ with $\mu(\Theta)=0$;
(ii) For $u \in A_{p}^{\rho}(\mu)$,

$$
u\left(\left\{x \in R^{d}: M_{0, s}^{\rho, d} f(x)>\lambda\right\}\right) \leq C s^{-p} u\left(\left\{x \in R^{d}:|f(x)|>\lambda\right\}\right)
$$

where C is a positive constant depending on d and ρ, but not on s and the weight u.

Lemma $4([8])$ Let $\rho \in[1, \infty), s \in\left(0, \beta_{2 \rho, d}^{-1} / 4\right)$ and Q be a doubling cube with $\mu(Q) \neq 0$. For any constant $c \in \mathbb{C}$ and μ-locally integrable function f,

$$
\left|m_{0, s ; Q}^{\rho}(f)-|c|\right| \leq m_{0, s ; Q}(f-c)
$$

Lemma $5([8])$ Let $\rho \in[1, \infty), s \in\left(0, \beta_{2 \rho, d}^{-1} / 4\right)$ and $r \in(0, \infty)$. For any cube Q and μ-locally integrable function f,

$$
m_{0, s ; Q}^{\rho}\left(f-m_{f}(Q)\right) \leq 3 s^{-1 / r} \inf _{c \in \mathbb{C}}\left(\frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}|f(y)-c|^{r} \mathrm{~d} \mu(y)\right)^{\frac{1}{r}}
$$

Lemma 6 Let $\rho \in[1, \infty)$, and $r \in(0,1)$. Let K satisfy (2) and (5), and \mathcal{M} be the Marcinkiewicz integral defined as in (4). If \mathcal{M} is bounded on $L^{2}(\mu)$, there exists a positive constant C such that for all bounded functions f with compact support and $x \in R^{d}$,

$$
\begin{equation*}
M_{r}^{\rho, \sharp}(\mathcal{M} f)(x) \leq C M_{\frac{9}{8} \rho} f(x) \tag{9}
\end{equation*}
$$

Proof For each cube Q and each bounded function f with compact support, set

$$
h_{Q}=m_{Q}\left(\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)\right) .
$$

Here and in what follows, for any μ-locally integrable function h,

$$
m_{Q}(f)=\frac{1}{\mu(Q)} \int_{Q} h(z) \mathrm{d} \mu(z)
$$

It follows from Lemmas 4 and 5 that for any cube $Q, s \in\left(0, \beta_{2 \rho, d}^{-1} / 4\right)$, and an elementary inequality,

$$
\begin{aligned}
& \int_{Q}\left|\mathcal{M}(f)(y)-m_{\mathcal{M}(f)}(\widetilde{Q})\right|^{r} \mathrm{~d} \mu(y) \\
& \leq \int_{Q}\left|\mathcal{M}(f)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y)+\left|h_{Q}-h_{\widetilde{Q}}\right|^{r} \mu(Q)+ \\
&\left|m_{0, s ; \widetilde{Q}}^{\rho}(\mathcal{M}(f))-m_{\mathcal{M}(f)}(\widetilde{Q})\right|^{r} \mu(Q)+\left|m_{0, s ; \widetilde{Q}}^{\rho}(\mathcal{M}(f))-h_{\widetilde{Q}}\right|^{r} \mu(Q) \\
& \leq \int_{Q}\left|\mathcal{M}(f)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y)+\left|h_{Q}-h_{\widetilde{Q}}\right|^{r} \mu(Q)+ \\
& \quad\left(m_{0, s ; \widetilde{Q}}^{\rho}\left(\mathcal{M}(f)-m_{\mathcal{M}(f)}(\widetilde{Q})\right)\right)^{r} \mu(Q)+\left(m_{0, s ; \widetilde{Q}}^{\rho}\left(\mathcal{M}(f)-h_{\widetilde{Q}}\right)\right)^{r} \mu(Q) \\
& \leq \int_{Q}\left|\mathcal{M}(f)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y)+\left|h_{Q}-h_{\widetilde{Q}}\right|^{r} \mu(Q)+ \\
& \quad C\left(3^{r} s^{-1}+s^{-1}\right) \frac{\mu(Q)}{\mu(\widetilde{Q})} \int_{\widetilde{Q}}\left|\mathcal{M}(f)(y)-h_{\widetilde{Q}}\right|^{r} \mathrm{~d} \mu(y),
\end{aligned}
$$

where C is a positive constant, and for any two doubling cubes $Q \subset R$,

$$
\begin{aligned}
& \left|m_{\mathcal{M}(f)}(Q)-m_{\mathcal{M}(f)}(R)\right| \\
& \quad \leq\left|m_{0, s ; Q}^{\rho}(\mathcal{M}(f))-h_{Q}\right|+\left|h_{Q}-h_{R}\right|+\left|m_{0, s ; R}^{\rho}(\mathcal{M}(f))-h_{R}\right|+ \\
& \quad\left|m_{0, s ; Q}^{\rho}(\mathcal{M}(f))-m_{\mathcal{M}(f)}(Q)\right|+\left|m_{0, s ; R}^{\rho}(\mathcal{M}(f))-m_{\mathcal{M}(f)}(R)\right| \\
& \leq m_{0, s ; Q}^{\rho}\left(\mathcal{M}(f)-h_{Q}\right)+\left|h_{Q}-h_{R}\right|+m_{0, s ; R}^{\rho}\left(\mathcal{M}(f)-h_{R}\right)+ \\
& \quad m_{0, s ; Q}^{\rho}\left(\mathcal{M}(f)-m_{\mathcal{M}(f)}(Q)\right)+m_{0, s ; R}^{\rho}\left(\mathcal{M}(f)-m_{\mathcal{M}(f)}(R)\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & 4 s^{-1 / r}\left(\frac{1}{\mu\left(\frac{3}{2} \rho Q\right)} \int_{Q}\left|\mathcal{M}(f)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y)\right)^{1 / r}+\left|h_{Q}-h_{R}\right|+ \\
& 4 s^{-1 / r}\left(\frac{1}{\mu\left(\frac{3}{2} \rho R\right)} \int_{R}\left|\mathcal{M}(f)(y)-h_{R}\right|^{r} \mathrm{~d} \mu(y)\right)^{1 / r}
\end{aligned}
$$

Thus, the proof of (9) can be reduced to proving that for any cube Q,

$$
\begin{equation*}
\left(\frac{1}{\mu\left(\frac{3}{2} \rho Q\right)} \int_{Q}\left|\mathcal{M}(f)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y)\right)^{1 / r} \leq C \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x) \tag{10}
\end{equation*}
$$

and for any two cubes $Q \subset R$ with R a doubling cube,

$$
\begin{equation*}
\left|h_{Q}-h_{R}\right| \leq C \delta_{Q, R}^{\rho} \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x) \tag{11}
\end{equation*}
$$

where C is a positive constant.
We first consider (10). For any cube Q, write

$$
\begin{aligned}
& \int_{Q}\left|\mathcal{M}(f)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y) \\
& \quad \leq \int_{Q}\left|\mathcal{M}(f)(y)-\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)(y)\right|^{r} \mathrm{~d} \mu(y)+\int_{Q}\left|\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y) \\
& \leq \int_{Q}\left|\mathcal{M}\left(f \chi_{\frac{4}{3} Q}\right)(y)\right|^{r} \mathrm{~d} \mu(y)+\int_{Q}\left|\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y)
\end{aligned}
$$

where we use the fact that $\left|\mathcal{M}(f)(y)-\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)(y)\right| \leq\left|\mathcal{M}\left(f \chi_{\frac{4}{3} Q}\right)(y)\right|$. Recall that \mathcal{M} is bounded from $L^{1}(\mu)$ to $L^{1, \infty}(\mu)$ (see [7]). It follows from the Kolmogorov inequality that

$$
\left(\frac{1}{\mu\left(\frac{3}{2} \rho Q\right)} \int_{Q}\left|\mathcal{M}\left(f \chi_{\frac{4}{3} Q}\right)(y)\right|^{r} \mathrm{~d} \mu(y)\right)^{1 / r} \leq \frac{C}{\mu\left(\frac{3}{2} \rho Q\right)}\left\|f \chi_{\frac{4}{3} Q}\right\|_{L^{1}(\mu)} \leq C \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x)
$$

On the other hand, following the method of [7], for any $x, y \in Q$, let $f_{*}=f \chi_{R^{d} \backslash \frac{4}{3} Q}$ and set

$$
\begin{aligned}
& \mathrm{A}_{1}=\left(\int_{0}^{\infty}\left[\int_{|y-z| \leq t \leq|x-z|}|K(y, z)|\left|f_{*}(z)\right| \mathrm{d} \mu(z)\right]^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{1 / 2} \\
& \mathrm{~A}_{2}=\left(\int_{0}^{\infty}\left[\int_{|x-z| \leq t \leq|y-z|}|K(y, z)|\left|f_{*}(z)\right| \mathrm{d} \mu(z)\right]^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{1 / 2}
\end{aligned}
$$

and

$$
\mathrm{A}_{3}=\left(\int_{0}^{\infty}\left[\int_{\max (|y-z|,|x-z|) \leq t}|K(y, z)-k(x, z)|\left|f_{*}(z)\right| \mathrm{d} \mu(z)\right]^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{1 / 2}
$$

By the Minkowski inequality, we have

$$
\begin{aligned}
\mathcal{M}\left(f_{*}\right)(x) \leq & \left(\int_{0}^{\infty}\left|\int_{|x-z| \leq t} K(x, z) f_{*}(z) \mathrm{d} \mu(z)-\int_{|y-z| \leq t} K(y, z) f_{*}(z) \mathrm{d} \mu(z)\right|^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{1 / 2}+\mathcal{M}\left(f_{*}\right)(y) \\
& \leq \mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathcal{M}\left(f_{*}\right)(y)
\end{aligned}
$$

This together with symmetry gives

$$
\begin{equation*}
\left|\mathcal{M}\left(f_{*}\right)(x)-\mathcal{M}\left(f_{*}\right)(y)\right| \leq \mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3} \tag{12}
\end{equation*}
$$

Applying the Minkowski inequality and (2), we get for $x, y \in Q$

$$
\mathrm{A}_{1} \leq \int_{|y-z| \leq|x-z|} \frac{\left|f_{*}(z)\right|}{|y-z|^{n-1}}\left[\int_{|y-z| \leq t \leq|x-z|} \frac{\mathrm{d} t}{t^{3}}\right]^{\frac{1}{2}} \mathrm{~d} \mu(z)
$$

$$
\begin{aligned}
& \leq C \int_{|y-z| \leq|x-z|} \frac{\left|f_{*}(z)\right|}{\left|x_{Q}-z\right|^{n+\frac{1}{2}}}|x-y|^{\frac{1}{2}} \mathrm{~d} \mu(z) \\
& \leq C l(Q)^{\frac{1}{2}} \sum_{k=1}^{\infty} \int_{\left(\frac{1}{3}\right)^{k+1} Q \backslash\left(\frac{4}{3}\right)^{k} Q} \frac{|f(z)|}{\left|x_{Q}-z\right|^{n+\frac{1}{2}}} \mathrm{~d} \mu(z) \\
& \leq C l(Q)^{\frac{1}{2}} \sum_{k=1}^{\infty} \frac{\mu\left(\frac{9}{8} \rho\left(\frac{4}{3}\right)^{k+1} Q\right)}{\left(\frac{4}{3} k l(Q)\right)^{n+\frac{1}{2}}} \frac{1}{\mu\left(\frac{9}{8} \rho\left(\frac{4}{3}\right)^{k+1} Q\right)} \int_{\left(\frac{4}{3}\right)^{k+1} Q}|f(z)| \mathrm{d} \mu(z) \\
& \leq C \sum_{k=1}^{\infty}\left(\frac{4}{3}\right)^{-k} M_{\frac{9}{8} \rho} f(x) \leq C M_{\frac{9}{8} \rho} f(x) .
\end{aligned}
$$

By symmetry, we have

$$
A_{2} \leq C M_{\frac{9}{8} \rho} f(x) .
$$

And by (5),

$$
\begin{aligned}
\mathrm{A}_{3} & \leq \int_{R^{d}}|K(y, z)-K(x, z)|\left|f_{*}(z)\right|\left[\int_{\max (|y-z|,|x-z|) \leq t} \frac{\mathrm{~d} t}{t^{3}}\right]^{1 / 2} \mathrm{~d} \mu(z) \\
& \leq C \int_{R^{d} \backslash\left(\frac{4}{3}\right) Q} \frac{|x-y|^{\delta}}{|x-z|^{n+\delta-1}|f(z)|} \frac{1}{\left|x_{Q}-z\right|} \mathrm{d} \mu(z) \\
& \leq C \sum_{k=1}^{\infty} \int_{\left(\frac{4}{3}\right)^{k+1} Q \backslash\left(\frac{4}{3}\right)^{k} Q} \frac{l(Q)^{\delta}}{\left|x_{Q}-z\right|^{n+\delta}}|f(z)| \mathrm{d} \mu(z) \\
& \leq C \sum_{k=1}^{\infty} \int_{\left(\frac{4}{3}\right)^{k+1} Q} \frac{l(Q)^{\delta} \mu\left(\frac{9}{8} \rho\left(\frac{4}{3}\right)^{k+1} Q\right)}{\left(\left(\frac{4}{3}\right)^{k} l(Q)\right)^{n+\delta}} \frac{1}{\mu\left(\frac{9}{8} \rho\left(\frac{4}{3}\right)^{k+1} Q\right)}|f(z)| \mathrm{d} \mu(z) \\
& \leq C \sum_{k=1}^{\infty}\left(\frac{4}{3}\right)^{-k} M_{\frac{9}{8} \rho} f(x) \leq C M_{\frac{9}{8} \rho} f(x) .
\end{aligned}
$$

Combining these estimates for $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3}, we have

$$
\left(\frac{1}{\mu\left(\frac{3}{2} \rho Q\right)} \int_{Q}\left|\mathcal{M}(f)(y)-h_{Q}\right|^{r} \mathrm{~d} \mu(y)\right)^{1 / r} \leq C \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x),
$$

and obtain the estimate (10).
Next we turn to (11). Let $N=N_{Q, R}^{\rho}+1$ and by Minkowski inequality, we have,

$$
\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)(x) \leq \mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(x)+\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} Q}\right)(x)
$$

and

$$
\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(x) \leq \mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} Q}\right)(x)+\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)(x) .
$$

By the same estimate as above, we obtain

$$
\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} R}\right)(y) \leq \mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(y)+\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} R}\right)(y)
$$

and

$$
\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(y) \leq \mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} R}\right)(y)+\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} R}\right)(y) .
$$

Then, it is easy to check that, for any $x, y \in \mathbb{R}^{d}$,

$$
\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)(x)-\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} R}\right)(y) \leq \mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(x)+\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} Q}\right)(x)+
$$

$$
\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} R}\right)(y)-\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(y),
$$

and

$$
\begin{array}{r}
\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} R}\right)(y)-\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} Q}\right)(x) \leq \mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(y)+\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} R}\right)(y)+ \\
\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} Q}\right)(x)-\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(x) .
\end{array}
$$

It follows that,

$$
\begin{aligned}
& \left|\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3}} Q\right)(x)-\mathcal{M}\left(f \chi_{R^{d} \backslash \frac{4}{3} R}\right)(y)\right| \leq \mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} Q}\right)(x)+\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} R}\right)(y)+ \\
& \left|\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(x)-\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(y)\right| .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left|h_{Q}-h_{R}\right| \leq & m_{Q}\left(\mathcal{M}\left(f \chi_{2 \rho Q \backslash \frac{4}{3} Q}\right)\right)+m_{Q}\left(\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash 2 \rho Q}\right)\right)+ \\
& \frac{1}{\mu(Q) \mu(R)} \int_{Q} \int_{R}\left|\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)-\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)\right| \mathrm{d} \mu(y) \mathrm{d} \mu(x)+ \\
& m_{R}\left(\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} R}\right)\right) \\
= & I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

The size condition (2) and the Minkowski inequality, along with the growth condition (1) implies that for any $x \in Q$,

$$
\begin{aligned}
\mathcal{M}\left(f \chi_{2 \rho Q \backslash \frac{4}{3} Q}\right)(x) & \leq \int_{2 \rho Q \backslash \frac{4}{3} Q}|f(z) K(x, z)|\left(\int_{l(Q) / 6}^{\infty} \frac{\mathrm{d} t}{t^{3}}\right)^{1 / 2} \mathrm{~d} \mu(z) \\
& \leq \frac{C}{[l(Q)]^{n}} \int_{2 \rho Q}|f(z)| \mathrm{d} \mu(z) \leq C M_{\frac{9}{8} \rho} f(x)
\end{aligned}
$$

and for any $y \in R$,

$$
\begin{aligned}
\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash \frac{4}{3} R}\right)(y) & \leq \int_{4 \rho R \backslash \frac{4}{3} R}|f(z) K(y, z)|\left(\int_{l(R) / 6}^{\infty} \frac{\mathrm{d} t}{t^{3}}\right)^{1 / 2} \mathrm{~d} \mu(z) \\
& \leq \frac{C}{[l(R)]^{n}} \int_{4 \rho R}|f(z)| \mathrm{d} \mu(z) \leq C M_{\frac{9}{8} \rho} f(x) .
\end{aligned}
$$

Therefore, there exists a positive constant C such that

$$
I_{1}+I_{4} \leq C \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x) .
$$

For the term I_{2}, the Minkowski inequality, the size condition (2) and the growth condition (1) indicate that for any $x \in Q$,

$$
\begin{aligned}
\mathcal{M}\left(f \chi_{(2 \rho)^{N} Q \backslash 2 \rho Q}\right)(x) & \leq \int_{\left(2 \rho \rho^{N} Q \backslash 2 \rho Q\right.}|f(z) K(y, z)|\left(\int_{|x-z| \leq t} \frac{\mathrm{~d} t}{t^{3}}\right)^{1 / 2} \mathrm{~d} \mu(z) \\
& \leq C \sum_{k=1}^{N-1} \int_{(2 \rho)^{k+1} Q \backslash(2 \rho)^{k} Q} \frac{|f(z)|}{|x-z|^{n}} \mathrm{~d} \mu(z) \\
& \leq C \sum_{k=1}^{N-1} \frac{\mu\left((2 \rho)^{k+2} Q\right)}{\left[l\left((2 \rho)^{k} Q\right)^{n}\right.} \inf _{x \in Q} M_{2 \rho} f(x) \\
& \leq C \delta_{Q, R}^{\rho} \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x) .
\end{aligned}
$$

So, we have

$$
I_{2} \leq C \delta_{Q, R}^{\rho} \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x)
$$

Finally, as in the inequality (12), a familiar argument involving the condition (5) gives, for any $x \in Q$ and $y \in R$,

$$
\left|\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(x)-\mathcal{M}\left(f \chi_{R^{d} \backslash(2 \rho)^{N} Q}\right)(y)\right| \leq C \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x)
$$

and

$$
I_{3} \leq C \inf _{x \in Q} M_{\frac{9}{8} \rho} f(x)
$$

Then, the inequality (11) holds, and the proof of Lemma 6 is completed.

3. Proof of Theorem 1

Now we turn to prove Theorem 1.
Proof of Theorem 1 By Lemma 1, it suffices to show that

$$
\begin{equation*}
u\left(\left\{x \in R^{d}: \mathcal{M}(f)(x)>\lambda\right\}\right) \leq C u\left(\left\{x \in R^{d}: M_{\frac{9}{8} \rho} f(x)>\lambda\right\}\right) . \tag{13}
\end{equation*}
$$

Using Theorem HY, we first prove that for $p \in[1, \infty)$ and any bounded function f with compact support and for any $R>0$,

$$
\begin{equation*}
\mathcal{M}(f) \in L^{p, \infty}(\mu) \tag{14}
\end{equation*}
$$

and for any $\rho \in[1, \infty)$ and $u \in A_{p}^{\rho}(\mu)$,

$$
\begin{equation*}
\sup _{0<\lambda<R} u\left(\left\{x \in R^{d}: \mathcal{M}(f)(x)>\lambda\right\}\right)<\infty . \tag{15}
\end{equation*}
$$

The fact (14) was proved in [7]. So, we need only to prove (15). Let $t>2$ be large enough such that the support of f is contained in the ball $B(0, t)$. It is obvious that

$$
\sup _{0<\lambda<R} \lambda^{p} u(\{x \in B(0,2 t): \mathcal{M}(f)(x)>\lambda\}) \leq R^{p} u(B(0,2 t)) \leq \infty
$$

On the other hand, it is easy to see that if $x \in R^{d} \backslash B(0,2 t)$ and $y \in B(0, t)$, then we obtain $|x| \sim|x-y|$ and by the Minkowski inequality and the size condition (2),

$$
\mathcal{M}(f)(x) \leq \int_{R^{d}} \frac{|f(y)|}{|x-y|^{n}} \mathrm{~d} \mu(y) \leq \frac{C_{4}}{|x|^{n}}\|f\|_{L^{1}(\mu)}
$$

Lemma 2 (i) and the growth condition (1) imply that if $\lambda \leq C_{4}\|f\|_{L^{1}(\mu)} / 2$,

$$
\begin{aligned}
& u\left(\left\{x \in R^{d} \backslash B(0,2 t): \mathcal{M}(f)(x)>\lambda\right\}\right) \leq u\left(\left\{x \in R^{d}:|x|^{n}>\lambda /\left(C_{4}\|f\|_{L^{1}(\mu)}\right)\right\}\right) \\
& \quad \leq u\left(B\left(0, \frac{9}{8} \rho\left(C_{4}\|f\|_{L^{1}(\mu)}\right)^{1 / n} \lambda^{-1 / n}\right)\right) \\
& \quad \leq C u(B(0,1))\left(\frac{\mu\left(B\left(0, \frac{9}{8} \rho\left(C_{4}\|f\|_{L^{1}(\mu)}\right)^{1 / n} \lambda^{-1 / n}\right)\right)}{\mu(B(0,1))}\right) \\
& \quad \leq C_{f} \frac{u(B(0,1))}{[\mu(B(0,1))]^{p}} \lambda^{-p},
\end{aligned}
$$

where C_{f} is a positive constant depending on f.

Notice that for $\lambda>C_{4}\|f\|_{L^{1}(\mu)} / 2$, there exists no point $x \in R^{d} \backslash B(0,2 t)$ satisfying $\mathcal{M}(f)(x)>$ λ. Therefore,

$$
\begin{aligned}
& \sup _{\lambda>0} \lambda^{p} u\left(\left\{x \in R^{d} \backslash B(0,2 t): \mathcal{M}(f)(x)>\lambda\right\}\right) \\
& \quad=\sup _{C_{4}\|f\|_{L^{1}(\mu)} / 2 \geq \lambda>0} \lambda^{p} u\left(\left\{x \in R^{d} \backslash B(0,2 t): \mathcal{M}(f)(x)>\lambda\right\}\right) \\
& \quad \leq C_{f} \frac{u(B(0,1))}{[\mu(B(0,1))]^{p}}
\end{aligned}
$$

which yields (15).
Now we conclude the proof of (13).
If $\mu\left(R^{d}\right)=\infty$, by Lemma 3 (i), Theorem HY with $s_{1}=\beta_{2 \rho, d}^{-1} / 5$ and $p_{0}=1$, (8) and Lemma 6 , we have that

$$
\begin{aligned}
u\left(\left\{x \in R^{d}: \mathcal{M}(f)(x)>\lambda\right\}\right) & \leq C u\left(\left\{x \in R^{d}: M_{0, s}^{\rho, d} \mathcal{M}(f)(x)>\lambda\right\}\right) \\
& \leq C u\left(\left\{x \in R^{d}: M_{0, s}^{\rho, \sharp} \mathcal{M}(f)(x)>\lambda\right\}\right) \\
& \leq C u\left(\left\{x \in R^{d}: M_{r}^{\rho, d} \mathcal{M}(f)(x)>\lambda\right\}\right) \\
& \leq C u\left(\left\{x \in R^{d}: M_{\frac{9}{8} \rho} f(x)>\lambda\right\}\right)
\end{aligned}
$$

If $\mu\left(R^{d}\right)<\infty, p, \rho \in[1, \infty)$ and $u \in A_{p}^{\rho}(\mu)$, then for a positive constant C,

$$
\begin{aligned}
u\left(R^{d}\right)\left[\mu\left(R^{d}\right)\right]^{-p}\|\mathcal{M}(f)\|_{L^{1, \infty}(\mu)}^{p} & \leq C u\left(R^{d}\right)\left[\mu\left(R^{d}\right)\right]^{-p}\|f\|_{L^{1}(\mu)}^{p} \\
& \leq C u\left(R^{d}\right)\left(\inf _{x \in R^{d}} M_{\frac{9}{8} \rho} f(x)\right)^{p} \\
& \leq C \sup _{\lambda>0}\left[u\left(\left\{x \in R^{d}: M_{\frac{9}{8} \rho} f(x)>\lambda\right\}\right)\right]
\end{aligned}
$$

where in the first inequality, we have invoked the estimate

$$
\|\mathcal{M}(f)\|_{L^{1, \infty}(\mu)} \leq C\|f\|_{L^{1}(\mu)}
$$

(see [7]), and the second inequality follows from the fact that

$$
\frac{1}{\mu\left(R^{d}\right)} \int_{R^{d}}|f(y)| \mathrm{d} \mu(y)=\lim _{l(Q) \rightarrow \infty} \frac{1}{\mu\left(\frac{9}{8} \rho Q\right)} \int_{Q}|f(y)| \mathrm{d} \mu(y) \leq \inf _{x \in R^{d}} M_{\frac{9}{8} \rho} f(x)
$$

The desired result again follows from Lemma 3 (i), Theorem HY with $s_{1}=\beta_{2 \rho, d}^{-1} / 5$ and $p_{0}=1$, (8) and Lemma 6. This completes the proof of Theorem 1.

Acknowledgement The authors would like to thank the referees for their helpful suggestions and comments.

References

[1] Yong DING, Dashan FAN, Yibiao PAN. Weighted boundedness for a class of rough Marcinkiewicz integrals. Indiana Univ. Math. J., 1999, 48(3): 1037-1055.
[2] Y. KOMORI. Weighted estimates for operators generated by maximal functions on nonhomogeneous spaces. Georgian Math. J., 2005, 12(1): 121-130.
[3] F. JOHN. Quasi-isometric mappings. Seminari 1962/63, Anal. Alg. Geom. e Topol, vol 2, Ist. Naz. Alta Mat., Ediz, Cremonese, Rome, 1965, 462-473.
[4] A. K. LERNER. Weighted norm inequalities for the local sharp maximal function. J. Fourier Anal. Appl., 2004, 10(5): 465-474.
[5] A. K. LERNER. Weighted rearrangement inequalities for local sharp maximal functions. Trans. Amer. Math. Soc., 2005, 357(6): 2445-2465.
[6] Yongsheng HAN, Dachun YANG. Triebel-Lizorkin spaces with non-doubling measures. Studia Math., 2004, 162(2): 105-140.
[7] Guoen HU, Haibo LIN, Dachun YANG. Marcinkiewicz integrals with non-doubling measures. Integral Equations Operator Theory, 2007, 58(2): 205-238.
[8] Guoen HU, Dachun YANG. Weighted norm inequalities for maximal singular integrals with nondoubling measures. Studia Math., 2008, 187(2): 101-123.
[9] Guoen HU, Yan MENG, Dachun YANG. New atomic characterization of H^{1} space with non-doubling measures and its applications. Math. Proc. Cambridge Philos. Soc., 2005, 138(1): 151-171.
[10] Guoen HU, Yan MENG, Dachun YANG. Multilinear commutators of singular integrals with non doubling measures. Integral Equations Operator Theory, 2005, 51(2): 235-255.
[11] J. OROBITG, C. PÉREZ. A_{p} weights for nondoubling measures in \mathbf{R}^{n} and applications. Trans. Amer. Math. Soc., 2002, 354(5): 2013-2033.
[12] Yinsheng JIANG. Spaces of type BLO for non-doubling measures. Proc. Amer. Math. Soc., 2005, 133(7): 2101-2107.
[13] E. M. STEIN. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Amer. Math. Soc., 1958, 88: 430-466.
[14] J. O. STRÖMBERG. Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J., 1979, 28(3): 511-544.
[15] X. TOLSA. BMO, H^{1} and Calderón-Zygmund operators for non doubling measures. Math. Ann., 2001, 319(1): 89-149.
[16] X. TOLSA. A proof of the weak $(1,1)$ inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition. Publ. Mat., 2001, 45(1): 163-174.
[17] X. TOLSA. The space H^{1} for nondoubling measures in terms of a grand maximal operator. Trans. Amer. Math. Soc., 2003, 355(1): 315-348.
[18] J. VERDERA. The fall of the doubling condition in Calderón-Zygmund theory. Publ. Mat., 2002, Extra: 275-292.

[^0]: Received July 13, 2010; Accepted January 15, 2011
 Supported by the National Natural Science Foundation of China (Grant No. 10861010).

 * Corresponding author

 E-mail address: haiyansongbai@163.com (Songbai WANG); ysjiang@xju.edu.cn (Yinsheng JIANG); baodeli1981@ sina.com (Baode LI)

