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Weighted Estimates for Marcinkiewicz Integrals with
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Abstract Let u be a nonnegative Radon measure on R? which satisfies the growth condition
w(B(x,r)) < Cor™ for all x € R* and r > 0, where Cp is a fixed constant and 0 < n < d. The
purpose of this paper is to establish the boundedness of the Marcinkiewicz integrals from L (u)
to LP*°(u), where u is a weight function of Muckenhoupt type associated with p.
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1. Introduction

Recent years, more and more people pay considerable attention to the study of function spaces
with non-doubling measures [2,4-6,8-10,15-17]. Assuming that the faces (or edges) of the cubes
have the measure zero, Orobitg and Pérez in [11] introduced the weights on non-homogeneous
spaces and obtained the weighted norm inequalities for the Calderén-Zygmund operators and
the corresponding maximal singular operators. Without the above assumption, Hu and Yang
in [8] established the weighted boundedness for maximal singular integrals with non-doubling
measures from LP(u) to LP*>°(u), for p € (1,00) and u € Ab(u) with p > 1, where AS(u) consists
of the weight functions of Muckenhoupt type associated with u, see Definition 1 below.

Hu, Lin and Yang in [7] introduced the Marcinkiewicz integrals with non-doubling measures
and obtained some boundedness results. The main purpose of this paper is to establish weighted
norm inequalities with weights of Munkenhoupt type on non-homogeneous spaces.

Let 1 be a nonnegative Radon measure on R%, which only satisfies the growth condition that

there exist positive constants Cy and n € (0,d] such that for all z € R? and r > 0,
p(B(z,r)) < Cor™, (1)

where B(xz,7) is the open ball centered at some point 2 € R? and having radius r. The measure
w in (1) is not assumed to satisfy the doubling condition which is a key assumption in the

analysis on spaces of homogeneous type. Some important non-doubling measures satisfying (1)
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and the motivation for developing the analysis related to such measures can be found in [17].
We only point out that analysis with non-doubling measures plays an essential role in solving
the long-standing Painlevé open problem by Tolsa in [15].

At first, we recall some notations and definitions and employ the statement used in [8]. By a
cube Q C R? we mean a closed cube whose sides are parallel to the axes and which is centered at
some point of supp(u), and we denote its side length by I(Q). A p-measurable function w is said
to be a weight if it is nonnegative and p-locally integrable. The Af (1) weights of Muckenhoupt
type in the setting of non-doubling measures were first introduced by Orobitg and Pérez [11] for

p =1 and by Komori [2] for p € [1, c0).

Definition 1 Let p € [1,00), p € [1,00) and p’ = p/(p —1). A weight u is said to be an Af(u)

weight if there exists a positive constant C' such that for any cube @,

(@/@u(a@)du(m)) (@/@U(ﬂc)lﬂdu(m))pl “c

Also, a weight u is said to be an Af(p) weight if there exists a positive constant C' such that for

any cube @,

1 .

As in the classical setting, we set AS (u) = U;ozl Ap(u). For p =1, we denote Af(u), A7(u) and
A? () simply by Ap(p), Ai(p) and As (1), respectively.

As pointed out by Orobitg and Pérez [11], without the assumption that for any cube @,
w(0Q) = 0, where 9Q is the faces (or edges) of the cube @, the reverse Holder inequality, the
fact that w € Ay(u) implies u € L.f7(u) with some o € (0,00), and some other important

properties enjoyed by the A, weights in the setting of Euclidean spaces, may not be true.

Let K be a locally integral function on R% x R%\{x = y} such that for any z # y,
K (2,y)] < Clz —y|~ "7V (2)

and for any x,y and 3’ € R? with |z —y| > 2|y — v/,
1
/ 1K (9) = KGy)| + K (o) = K/ 0l —— du@) <€ (3
o —y|>2ly—y/| |z -yl

for any y,y’ € R?. The Marcinkiewicz integral M associated to the above kernel K and the
measure p as in (1) is defined by

2dt 1/2
—) , zeR% (4)

Mm@ =([ [ Kenrwaw|

0 le—y|<t
In their remarkable work [7], Hu, Lin and Yang successfully established the boundedness of
M with kernel K satisfying (2) and (3), respectively, from the Lebesgue space L' (i) to the weak
Lebesgue space L1*°(u), from the Hardy space H'(u) to L'(u) and from the Lebesgue space
L°°(u) to the space RBLO(u) (see [12]). In this note, we make some modification for the kernel
K. Besides K satisfies the size condition (2), it also satisfies that for any z, y and y’ € R? with
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ly — | < |z —y|/2, there exists 0 < € < 1 such that

|K(9c,y)—K(m,y’)|—|—|K(y,:v)—K(y',;v) < 1o _ o n—14e" (5)

Obviously, when the kernel satisfies condition (5), it also satisfies (3). Under above conditions,
we shall prove that M is bounded from LP(u) to LP(u), u € Af(u).

The following theorem is our main result.

Theorem 1 Let p € [1,00). Let K satisty (2) and (5), and M be the Marcinkiewicz integral
defined as in (4). If M is bounded on L*(u), for any p € [1,00) and u € AP(u), then M is also
bounded from LP(u) to LP”*°(u), that is, there exists a positive constant C' such that for any
A > 0 and all bounded functions f with compact support and x € R?,

u({z € RY: Mf(z) > A}) < OXP /R @) Pu(e)dn(a),

where, for a weight u and a u-measurable set FE, u(E fE ) and C only depends on
d, p and p.

Throughout the paper, C' denotes a positive constant that is independent of the main pa-
rameters involved but whose value may vary from line to line. Constants with subscript such as
C7 do not change in different occurrences. Let a cube « and (§ be positive constants such that
B > a™. For a cube Q, we say that Q is («, 8)-doubling if pu(aQ) < Su(Q), where @) denotes
the cube concentric with @ which has side length l(Q). It was pointed out by Tolsa [14] that
there exists a large constant 8 = (4,4 > 0 such that for any = € supp(u) and H > 0, there
exists some («, B4,4)-doubling cube centered at x with [(Q) > H and for p-almost all 2 € R?,
and there exists a sequence {Qg}ren of (a, §)-doubling cubes centered at x with I(Qy) — 0 as
k — co. In what follows, by a doubling cube @) we mean that @ is a (2p, 82),4) doubling cube,
where p > 1. Moreover, for a cube @, @ denotes the smallest doubling cube of the form (2p)¥Q
with £k € NU{0}. For any two cubes ) C R, set

NP
p .u((2p)kQ)
Yon =17 Z CnEn

where N{)  is the least positive integer k such that 1((2p)*Q) > I(R).

2. Some lemmas

At first, we recall the John-Stromberg maximal operator and the John-Strémberg sharp
maximal operator related to the measure in (1), and the weighted norm inequalities with AZ2_(u)-
weights related to these two operators, where p € [1,00).

For a cube with 4(Q) # 0 and a real valued p-measurable function f, we define the median
value of f on the cube @, denoted by m¢(Q), to be one of the numbers such that

py € Q: Iy) > my(@)}) < 54(Q),
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and
plly € Q: ) < mp(Q)) < 3u(@)

For the case u(Q) = 0, we define m;(Q) = 0. If f is complex-valued, the median value m;(Q)
of f is defined by

ms(Q) = mreyr(Q) + imims(Q),

where i2 = —1.
Let p € [1,00) and s € (O,ﬁ;p{d/él). For any fixed cube @) and p-measurable function f, we
define the quantity mg ..o (f) by

b () =inf{t > 0 p({y € @ [Fw)] > 1) < sl pQ)}.

if W(3pQ) # 0, and mf .. (f) = 0, if u(3pQ) = 0. The John-Stromberg maximal operator M&’Sd
is defined by setting, for all z € R?,
MELf(@) = sup mfo(f).

Q>oz,
Q doubling

And the John-Stréomberg sharp maximal function M&’g f for any p-measurable function f is
defined by

) ~ me(Q) —mys(R
M f(2) = supmf oo (f —my(@) +  sup Q@ Zmr(B)]
Qse 6

For the case that u is the d-dimensional Lebesgue measure, this sharp maximal operator was
introduced by John [3] and then rediscovered by Strémberg [14] and Lerner [4,5]. It is easy to
check that for any cube Q 2 z and € > 0,

by € Q1) ~ mp(@)] > MEEF() + €)) < spl5p0).

Let p € [1,00) be fixed. For 1 € (1,00), we define the maximal by setting, for all z € RY,
Mf@) = s s | Fwldnt) ()
QBm
A result of Komori [2] states that for any n > p, p € [1,00) and u € Af(u), M, is bounded from
LP(u) to LP*°(u). Let M?“ be the doubling maximal operator defined by setting, for all z € R,

MO () = / F@)lda(y) ()

doublmg

Notice that for any doubling cube @,
g7 | 1 0Itw) < By o [ 17@)duty) < Cint Moy (0)
(Q) o Yy y) = 2p,d (2pQ) o Yy HyY) = €0 2p .

Hu and Yang [8] proved the following result:

Theorem HY Let p € [1,00), 81 € (O,ﬁ;p{d/4), p € (0,00) and u € A2 (p). Then there exists
a constant C7 € (0,1), depending on s; and u, and a positive constant C such that for any
So € (0,0181),



Weighted estimates for Marcinkiewicz integrals with non-doubling measures 227
(i) If u(RY) = oo, f € LP>>°(u1) with po € [1,00), and for any R > 0,
sup Nu({z € R%: |f(z)| > A\}) < oo,
0<A<R

then

sup Nu({zx € R¢: Mé”slf( z) > A} < sup)\pu({x € R M’)ﬁ L () > A});
A>0 A>

(i) If u(R?) < oo, and f € LPo>°(u) with py € [1,00), then
sup Nu({z € R?: Mop’slf(x) > A}
A>0

< sup Nu({w € R : MY¥, [(2) > A}) + Cu(RY) (s11(B)) /7 | F1 1. -
A>0

Hu and Yang [8] still introduced the sharp maximal operator M##. Let r € (0,00). The
sharp maximal operator M#** was defined by setting, for all z € R4,

Wi = s (s [ 170 - m@rdnw) '+ sp AL

D
€QCR )
Qam le?.doubling Q,R

For r = 1 and p = 1, this operator is the sharp maximal operator introduced by Tolsa [15].
It is easy to check that for any cube @ and r € (0, 00),

Mol ~mi(@) <57 (s [ 156) —my(@Fanw)

Therefore, for all z € R,

1
=

Mgif(x) < s™HTMPEf (). (8)
To prove our theorem, we need some Lemmas.

Lemma 1 ([8]) Let p € [1,00), M, and M*? be the maximal operators defined (6) and (7),
respectively. For any p € [1,00) and u € Ap(u), both M, with n € (p,o0) and M?? are bounded
from LP(u) to LP*°(u).

Lemma 2 ([8]) Let p,p € [1,00),u € Af(u), and n € (p,o0). Then there exist constants
C1,Cy > 1 such that

(i) For any cube @) and p-measurable set E C Q, Zgg; >Cr (u(nQ)) )P;

(ii) For any doubling cube Q and p-measurable set E C Q, = U(Q) > Oy ( g

1);
Cy (2
Lemma 3 ([8]) Let p,p € [1,00),s € (0,627)1)(1/4). Then for all y-measurable functions f and
A>0,

(i) {zxeR:|f(z)] >\ Cc{zreR?: M&"jf(:z:) > A} U O with u(©) = 0;

(ii) Foru € Af(u),

(iii) For any doubling cube Q) and p-measurable set £ C Q, - “(E) <1-

u({z € R : M{df(x) > \}) < Cs™Pu({z € R : |f(z)] > A}),

where C' is a positive constant depending on d and p, but not on s and the weight wu.
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Lemma 4 ([8]) Let p € [1,00), s € (O,ﬁgp{d/él) and @ be a doubling cube with u(Q) # 0. For
any constant ¢ € C and p-locally integrable function f,
Imf;0(f) = lell < mo,s(f — o).

Lemma 5 ([8]) Let p € [1,00), s € (O,ﬁgp{d/él) and r € (0,00). For any cube @ and p-locally

integrable function f,

y) — CITdu(y))%

Lemma 6 Let p € [1,00), andr € (0,1). Let K satisfy (2) and (5), and M be the Marcinkiewicz
integral defined as in (4). If M is bounded on L?(u1), there exists a positive constant C' such

mp o = my(Q)) < 357V inf n(3Q)

that for all bounded functions f with compact support and x € R?,
MM ) (@) < OMy, f(x). (9)
Proof For each cube @ and each bounded function f with compact support, set
hq = mq(M(fXra\1q))-

Here and in what follows, for any p-locally integrable function h,

1
ma(f) = /Q h(2)du(z).

It follows from Lemmas 4 and 5 that for any cube @, s € (O,ﬁ;p{d/él), and an elementary

inequality,

0 M) () = mopacr) (@) du(y)

< /Q M) (y) — hal"duy) + Ihg — hgl"w(@)+

mf | S MU) = maac @) Q)+t (M(f)) = hgl (@)
)+

g/ M) (@) — hal"duly) + ha — hel"1(@
Q ~

(), (M) = (@) (@) + (mf_ S (M(F) — hg)) (@)

< /Q |M<f><y>—hQ|Tdu<y>+|hQ—h@|m<Q>+

CFs + / M) () — hgl"du(y),
where C' is a positive constant, and for any two doubling cubes Q C R,
M) (@) = map) (R)]
M(f)) = hql + |hg — hr| + Img ;. r(M(f)) — hr|+
M(F) = mpcp) (@) + [mf g g (M(F)) = Mg ()]
(f) = hQ) + |hq = hg| +mg (g (M(f) — hr)+
mg Q(M(f) ma()(Q)) + mg g (M(f) = mpa) (1))

|m8 ,8;Q
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—l/r 1/r
< 4s § | M) = haldu(w))  + lho — hal+
2
1/r
43—1/T / M — hgl"du(y )) .
2pR
Thus, the proof of (9) can be reduced to proving that for any cube @,
1/r
— hol|"d ) < Cinf M , 10
T . MO el ) < O g, f2) (10)
and for any two cubes Q C R with R a doubling cube,
lhq — hal < OB, 0k My, f(2), (1)

where C' is a positive constant.

We first consider (10). For any cube Q, write

/ M) W) - hel"du(y)

< / M) () = M(Fxro 30) @) daly / M 20) (W) — hol"duly)

< [ MUxs ) + [ 1M g)0) ~ Rl di(y).

where we use the fact that [M(f)(y) — M(fxga\1¢)W)] < [M(fx1q)()|- Recall that M is
bounded from L(u) to L1°°(u) (see [7]). It follows from the Kolmogorov inequality that

1/r C
M(f "dp < ———|Ifxaollpiw < Cinf Mo f(x).
QpQ /| D) " < el < Cint My, 1)

On the other hand, following the method of [7], for any z,y € Q, let f, = [Xpga\2¢g and set

A= (/OOO [/|y—z|9gm_z |K(y,Z)||f*(Z>|d“(z)}2 ﬁ)1/2’

3

re=([7] /|| K22 ),
and

o 2 dty 1/2
s=( ) K(y.2)~ ke 52 au(z)]* )7
( 0 [ max(|y—z|,|z—z|)<t } t3)
By the Minkowski inequality, we have

< ([T Keareawe - [ Kearowe)| F)"

e + M(f.)(y)
<AL+ Ag+ A+ M(f) ().
This together with symmetry gives
IM(fe)(x) = M(f) ()] < A1+ Az + As. (12)

Applying the Minkowski inequality and (2), we get for z,y € Q

|f(2)] dty=
A de
L= /|yz|<|mz| ly — 2" [/y A

3
—z|<t<|o—z| T
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gc/ Mlx—ylédu(z)

y— z\<\w 2| [z — 272

<cuQ Z / gy
B\ kR lrg — 2|z

R e I e
< U0 S i e I

3

o0

Z%k7 <CM9f()

k=1
By symmetry, we have

And by (5),
Ao [ K - K@ AlRGI] [ O ante)

3
maa(ly—z|,lz—z)<t ¥

|z —yl° 1
Ri\(3)Q @ — 2|0t 17

<
<C Z|du(2)

lzg —
o0

1(Q)°
) C; /<é>’““cz\<é>k@ W'ﬂz)ldu@)

(%)kJrlQ) 1 . .
<CZ/ Jhtig z(Q))n+6 (2 (%)k+1Q>| (2)|dp(2)

<OZ )M, f(z) < CMs, f(x).

Combining these estimates for A, A; and Agz, we have
1/r .
T MO el ) < O g, fo),

and obtain the estimate (10).
Next we turn to (11). Let N = N& r + 1 and by Minkowski inequality, we have,

M(fXRd\%Q)(x) < M(fXRd\(Qp)NQ)(x) + M(fX(Zp)NQ\%Q)(‘T)
and

M(fXRd\(2p)NQ)(33) < M(fX(2p)NQ\%Q)($) + M(fXRd\%Q)(I)'
By the same estimate as above, we obtain

M(fXRd\gR)(y) < M(fXRd\(2p)NQ)(y) + M(fX(Zp)NQ\%R)(y)

and
M(fxRa\(20)7 Q)W) < M(FX(2p)8 @\ 2 R)(Y) + M(fXRa\2 R)(Y)-

Then, it is easy to check that, for any z,y € R?,

M(F X 10) (@) = M(Fxpn 1) (9) SMUFX R a3 @) (@) + M(FXpror 10)(@)+
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M(fx@pyvo\ar)(Y) — MfXR\(2p)5 Q) (¥);

and

M(fxra\ar)(Y) = M(fXRa\30) (@) SM(fXRN2p)¥Q)(Y) + M(fX@pvo\ar) W)+
M(fX2pyv o 20) (@) = M(fXRa\(20)7 @) (@)-
It follows that,

IM(fXra\1Q) (@) = M(fxra\ar) W) SM(FX@pvo\10) (@) + M(fX@pvo\ar) W)+
IM(fXRa\(2p)v @) (@) — M(fXRa\(20)8 Q) (W)]-

Then we have
|hg — hr| SmQ(M(fX2pQ\%Q)) +mQ(M(fXpNo\200))+

m /Q /R IM(fXRa\(20)8 Q) — M(fXRa\(20)7 @) |dp(y)dp(z)+

mR(M(fX(zp)NQ\gR))
—I 4 Iy + I+ 1.
The size condition (2) and the Minkowski inequality, along with the growth condition (1) implies
that for any = € @,

M(Fop40)a) < [
2pQ\3Q

C
o L lante) < Cag, o

rerea( [0 9 e

@76 t°

and for any y € R,
e diy1/2

M NO\ 4 S/ 2)K (y, z / — du(z

Pxeorausn® < [ FEKE (] e 75) W)

< ¢

NIOE

Therefore, there exists a positive constant C' such that

| 1selau) < oy, f(a).

L +1, < CingMgpf(x)-

For the term I, the Minkowski inequality, the size condition (2) and the growth condition (1)
indicate that for any = € Q,
M(fX @20~ \2p0) (T) < /

(2p)N Q\2pQ
N-1

feRwa( [ ) e

3
le—z|<t

Sy G 4,0
= Jprrig\epre [T — 2|

HRM2Q) ey
¢ k=1 [1((2p)*kQ)]™ wegMQPf( )
C

N—
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So, we have
I < Cég)RingMgpf(x)'

Finally, as in the inequality (12), a familiar argument involving the condition (5) gives, for
any x € @ and y € R,

IM(FXR\ @207 Q) (@) = M(FXRN\2p)¥ Q) (W)] < € Inf My f(2)
and

I5 < CziggM%pf(x).

Then, the inequality (11) holds, and the proof of Lemma 6 is completed. O

3. Proof of Theorem 1
Now we turn to prove Theorem 1.

Proof of Theorem 1 By Lemma 1, it suffices to show that
u({z € RT: M(f)(x) > A}) < Cu({z € R*: My, f(x) > \}). (13)

Using Theorem HY, we first prove that for p € [1,00) and any bounded function f with compact
support and for any R > 0,
M(f) € L7 (), (14)
and for any p € [1,00) and u € Af(u),
sup u({z € R*: M(f)(z) > \}) < oo. (15)
0<A<R
The fact (14) was proved in [7]. So, we need only to prove (15). Let ¢ > 2 be large enough
such that the support of f is contained in the ball B(0,t). It is obvious that
sup Nu({x € B(0,2t) : M(f)(z) > A}) < RPu(B(0,2t)) < 0.
0<A<R
On the other hand, it is easy to see that if # € R¥\B(0,2t) and y € B(0,t), then we obtain
|z| ~ |z — y| and by the Minkowski inequality and the size condition (2),
1/ W)l Cy
M) < [ (o) < s
ro o=yl a7
Lemma 2 (i) and the growth condition (1) imply that if X\ < Cy||fl|11(.)/2,

u({z € RN\B(0,2t) : M(f)(z) > A}) <u({z € R*: |z|" > N/ (Cull fllrr(w)})
< u(B(0, 2p(Callll o) " A)

(B0, %p(C4||f||L1<u>)1/">\_1/")))
w(B(0,1))

< Cu(B(O,l))(

wBO, 1) -,
[u(BO, 1))

where C'y is a positive constant depending on f.

< Cy
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Notice that for A > Cy|| f[|1(,)/2, there exists no point = € R4\ B(0, 2t) satisfying M(f)(z) >
. Therefore,
sup u({z € RN\B(0,2t) : M(f)(z) > A})

A>0

= sup Ny({x € RIN\B(0,2t) : M(f)(x) > \})
Callfll g1,y /222>0

u(B(0,1))

=SB, )P

which yields (15).

Now we conclude the proof of (13).

If u(R%) = oo, by Lemma 3 (i), Theorem HY with s; = ﬁ;p{d/5 and po = 1, (8) and Lemma
6, we have that

u({z € R*: M(f)(z) > \}) < Cu({z € R : M{IM(f)(x) > A})
< Cu({w € R*: MEIM(f)(x) > A})
< Cu({z € R : MPAM(f)(x) > A})
<Cu({x€R*: M of () > A}).

If u(R?) < 00, p,p € [1,00) and u € AP(u), then for a positive constant C,

w(BY BRI MU) G 1y < ClRD BRI 15 0
< Cu(RY)( inf M3, f(2))"
< Citi]g[u({x € R": My, f(x) > A},

where in the first inequality, we have invoked the estimate

M) Loy < CNFll )

(see [7]), and the second inequality follows from the fact that

1 . 1 .
D o OO0 =, Ji gy |FOW0) < M )

The desired result again follows from Lemma 3 (i), Theorem HY with s; = ﬁ;p{ 4/5and po =1,
(8) and Lemma 6. This completes the proof of Theorem 1. O
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