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Abstract Let µ be a nonnegative Radon measure on Rd which satisfies the growth condition

µ(B(x, r)) ≤ C0r
n for all x ∈ Rd and r > 0, where C0 is a fixed constant and 0 < n ≤ d. The

purpose of this paper is to establish the boundedness of the Marcinkiewicz integrals from Lp(u)

to Lp,∞(u), where u is a weight function of Muckenhoupt type associated with µ.
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1. Introduction

Recent years, more and more people pay considerable attention to the study of function spaces

with non-doubling measures [2, 4–6, 8–10, 15–17]. Assuming that the faces (or edges) of the cubes

have the measure zero, Orobitg and Pérez in [11] introduced the weights on non-homogeneous

spaces and obtained the weighted norm inequalities for the Calderón-Zygmund operators and

the corresponding maximal singular operators. Without the above assumption, Hu and Yang

in [8] established the weighted boundedness for maximal singular integrals with non-doubling

measures from Lp(u) to Lp,∞(u), for p ∈ (1,∞) and u ∈ Aρ
p(µ) with ρ ≥ 1, where Aρ

p(µ) consists

of the weight functions of Muckenhoupt type associated with µ, see Definition 1 below.

Hu, Lin and Yang in [7] introduced the Marcinkiewicz integrals with non-doubling measures

and obtained some boundedness results. The main purpose of this paper is to establish weighted

norm inequalities with weights of Munkenhoupt type on non-homogeneous spaces.

Let µ be a nonnegative Radon measure on Rd, which only satisfies the growth condition that

there exist positive constants C0 and n ∈ (0, d] such that for all x ∈ Rd and r > 0,

µ(B(x, r)) ≤ C0r
n, (1)

where B(x, r) is the open ball centered at some point x ∈ Rd and having radius r. The measure

µ in (1) is not assumed to satisfy the doubling condition which is a key assumption in the

analysis on spaces of homogeneous type. Some important non-doubling measures satisfying (1)
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and the motivation for developing the analysis related to such measures can be found in [17].

We only point out that analysis with non-doubling measures plays an essential role in solving

the long-standing Painlevé open problem by Tolsa in [15].

At first, we recall some notations and definitions and employ the statement used in [8]. By a

cube Q ⊂ Rd we mean a closed cube whose sides are parallel to the axes and which is centered at

some point of supp(µ), and we denote its side length by l(Q). A µ-measurable function u is said

to be a weight if it is nonnegative and µ-locally integrable. The Aρ
p(µ) weights of Muckenhoupt

type in the setting of non-doubling measures were first introduced by Orobitg and Pérez [11] for

ρ = 1 and by Komori [2] for ρ ∈ [1,∞).

Definition 1 Let ρ ∈ [1,∞), p ∈ [1,∞) and p′ = p/(p − 1). A weight u is said to be an Aρ
p(µ)

weight if there exists a positive constant C such that for any cube Q,

( 1

µ(ρQ)

∫

Q

u(x)dµ(x)
)( 1

µ(ρQ)

∫

Q

u(x)1−p′

dµ(x)
)p−1

≤ C.

Also, a weight u is said to be an Aρ
1(µ) weight if there exists a positive constant C such that for

any cube Q,

1

µ(ρQ)

∫

Q

u(x)dµ(x) ≤ C inf
x∈Q

u(x).

As in the classical setting, we set Aρ
∞(µ) =

⋃∞
p=1 Aρ

p(µ). For ρ = 1, we denote Aρ
p(µ), Aρ

1(µ) and

Aρ
∞(µ) simply by Ap(µ), A1(µ) and A∞(µ), respectively.

As pointed out by Orobitg and Pérez [11], without the assumption that for any cube Q,

µ(∂Q) = 0, where ∂Q is the faces (or edges) of the cube Q, the reverse Hölder inequality, the

fact that u ∈ A1(µ) implies u ∈ L1+σ
loc (µ) with some σ ∈ (0,∞), and some other important

properties enjoyed by the Ap weights in the setting of Euclidean spaces, may not be true.

Let K be a locally integral function on Rd × Rd\{x = y} such that for any x 6= y,

|K(x, y)| ≤ C|x − y|−(n−1) (2)

and for any x, y and y′ ∈ Rd with |x − y| ≥ 2|y − y′|,
∫

|x−y|≥2|y−y′|

[|K(x, y) − K(x, y′)| + |K(y, x) − K(y′, x)|]
1

|x − y|
dµ(x) ≤ C, (3)

for any y, y′ ∈ Rd. The Marcinkiewicz integral M associated to the above kernel K and the

measure µ as in (1) is defined by

M(f)(x) =
( ∫ ∞

0

∣∣∣
∫

|x−y|≤t

K(x, y)f(y) dµ(y)
∣∣∣
2 dt

t3

)1/2

, x ∈ Rd. (4)

In their remarkable work [7], Hu, Lin and Yang successfully established the boundedness of

M with kernel K satisfying (2) and (3), respectively, from the Lebesgue space L1(µ) to the weak

Lebesgue space L1,∞(µ), from the Hardy space H1(µ) to L1(µ) and from the Lebesgue space

L∞(µ) to the space RBLO(µ) (see [12]). In this note, we make some modification for the kernel

K. Besides K satisfies the size condition (2), it also satisfies that for any x, y and y′ ∈ Rd with
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|y − y′| ≤ |x − y|/2, there exists 0 < ε ≤ 1 such that

|K(x, y) − K(x, y′)| + |K(y, x) − K(y′, x)| ≤
|y − y′|ε

|x − y|n−1+ε
. (5)

Obviously, when the kernel satisfies condition (5), it also satisfies (3). Under above conditions,

we shall prove that M is bounded from Lp(u) to Lp(u), u ∈ Aρ
p(µ).

The following theorem is our main result.

Theorem 1 Let ρ ∈ [1,∞). Let K satisfy (2) and (5), and M be the Marcinkiewicz integral

defined as in (4). If M is bounded on L2(µ), for any p ∈ [1,∞) and u ∈ Aρ
p(µ), then M is also

bounded from Lp(u) to Lp,∞(u), that is, there exists a positive constant C such that for any

λ > 0 and all bounded functions f with compact support and x ∈ Rd,

u({x ∈ Rd : Mf(x) > λ}) ≤ Cλ−p

∫

Rd

|f(x)|pu(x)dµ(x),

where, for a weight u and a µ-measurable set E, u(E) =
∫

E
u(x)dµ(x) and C only depends on

d, ρ and p.

Throughout the paper, C denotes a positive constant that is independent of the main pa-

rameters involved but whose value may vary from line to line. Constants with subscript such as

C1 do not change in different occurrences. Let a cube α and β be positive constants such that

β > αn. For a cube Q, we say that Q is (α, β)-doubling if µ(αQ) ≤ βµ(Q), where αQ denotes

the cube concentric with Q which has side length αl(Q). It was pointed out by Tolsa [14] that

there exists a large constant β = βα,d > 0 such that for any x ∈ supp(µ) and H > 0, there

exists some (α, βα,d)-doubling cube centered at x with l(Q) > H and for µ-almost all x ∈ Rd,

and there exists a sequence {Qk}k∈N of (α, β)-doubling cubes centered at x with l(Qk) → 0 as

k → ∞. In what follows, by a doubling cube Q we mean that Q is a (2ρ, β2ρ,d) doubling cube,

where ρ ≥ 1. Moreover, for a cube Q, Q̃ denotes the smallest doubling cube of the form (2ρ)kQ

with k ∈ N ∪ {0}. For any two cubes Q ⊂ R, set

δρ
Q,R = 1 +

Nρ

Q,R∑

k=1

µ((2ρ)kQ)

[l((2ρ)kQ)]n
,

where Nρ
Q,R is the least positive integer k such that l((2ρ)kQ) ≥ l(R).

2. Some lemmas

At first, we recall the John-Strömberg maximal operator and the John-Strömberg sharp

maximal operator related to the measure in (1), and the weighted norm inequalities with Aρ
∞(µ)-

weights related to these two operators, where ρ ∈ [1,∞).

For a cube with µ(Q) 6= 0 and a real valued µ-measurable function f , we define the median

value of f on the cube Q, denoted by mf (Q), to be one of the numbers such that

µ({y ∈ Q : f(y) > mf (Q)}) ≤
1

2
µ(Q),
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and

µ({y ∈ Q : f(y) < mf (Q)}) ≤
1

2
µ(Q).

For the case µ(Q) = 0, we define mf (Q) = 0. If f is complex-valued, the median value mf (Q)

of f is defined by

mf (Q) = mRef (Q) + imImf (Q),

where i2 = −1.

Let ρ ∈ [1,∞) and s ∈ (0, β−1
2ρ,d/4). For any fixed cube Q and µ-measurable function f , we

define the quantity mρ
0,s;Q(f) by

mρ
0,s;Q(f) = inf{t > 0 : µ({y ∈ Q : |f(y)| > t}) < sµ(

3

2
ρQ)},

if µ(3
2ρQ) 6= 0, and mρ

0,s;Q(f) = 0, if µ(3
2ρQ) = 0. The John-Strömberg maximal operator Mρ,d

0,s

is defined by setting, for all x ∈ Rd,

Mρ,d
0,s f(x) = sup

Q∋x,

Q doubling

mρ
0,s;Q(f).

And the John-Strömberg sharp maximal function Mρ,♯
0,sf for any µ-measurable function f is

defined by

Mρ,♯
0,sf(x) = sup

Q∋x
mρ

0,s;Q(f − mf (Q̃)) + sup
R⊃Q∋x

Q,R doubling

|mf (Q) − mf (R)|

δρ
Q,R

.

For the case that µ is the d-dimensional Lebesgue measure, this sharp maximal operator was

introduced by John [3] and then rediscovered by Strömberg [14] and Lerner [4, 5]. It is easy to

check that for any cube Q ∋ x and ε > 0,

µ({y ∈ Q : |f(y) − mf(Q̃)| > Mρ,♯
0,sf(x) + ε}) < sµ(

3

2
ρQ).

Let ρ ∈ [1,∞) be fixed. For η ∈ (1,∞), we define the maximal by setting, for all x ∈ Rd,

Mηf(x) = sup
Q∋x

1

(ηQ)

∫

Q

|f(y)|dµ(y). (6)

A result of Komori [2] states that for any η > ρ, p ∈ [1,∞) and u ∈ Aρ
p(µ), Mη is bounded from

Lp(u) to Lp,∞(u). Let Mρ,d be the doubling maximal operator defined by setting, for all x ∈ Rd,

Mρ,df(x) = sup
Q∋x

Q doubling

1

µ(ρQ)

∫

Q

|f(y)|dµ(y). (7)

Notice that for any doubling cube Q,

1

µ(Q)

∫

Q

|f(y)|dµ(y) ≤ β2ρ,d
1

(2ρQ)

∫

Q

|f(y)|dµ(y) ≤ C inf
x∈Q

M2ρf(x).

Hu and Yang [8] proved the following result:

Theorem HY Let ρ ∈ [1,∞), s1 ∈ (0, β−1
2ρ,d/4), p ∈ (0,∞) and u ∈ Aρ

∞(µ). Then there exists

a constant C1 ∈ (0, 1), depending on s1 and u, and a positive constant C such that for any

s2 ∈ (0, C1s1),
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(i) If µ(Rd) = ∞, f ∈ Lp0,∞(µ) with p0 ∈ [1,∞), and for any R > 0,

sup
0<λ<R

λpu({x ∈ Rd : |f(x)| > λ}) < ∞,

then

sup
λ>0

λpu({x ∈ Rd : Mρ,d
0,s1

f(x) > λ}) ≤ sup
λ>0

λpu({x ∈ Rd : Mρ,♯
0,s2

f(x) > λ});

(ii) If µ(Rd) < ∞, and f ∈ Lp0,∞(µ) with p0 ∈ [1,∞), then

sup
λ>0

λpu({x ∈ Rd : Mρ,d
0,s1

f(x) > λ})

≤ sup
λ>0

λpu({x ∈ Rd : Mρ,♯
0,s2

f(x) > λ}) + Cu(Rd)(s1µ(Rd))−p/p0‖f‖p
Lp0,∞(µ).

Hu and Yang [8] still introduced the sharp maximal operator Mρ,♯
r . Let r ∈ (0,∞). The

sharp maximal operator Mρ,♯
r was defined by setting, for all x ∈ Rd,

Mρ,♯
r f(x) = sup

Q∋x

( 1

µ(3
2ρQ)

∫

Q

|f(y) − mf (Q̃)|rdµ(y)
) 1

r

+ sup
x∈Q⊂R

Q R doubling

|mf (Q) − mf (Q)|

δρ
Q,R

.

For r = 1 and ρ = 1, this operator is the sharp maximal operator introduced by Tolsa [15].

It is easy to check that for any cube Q and r ∈ (0,∞),

mρ
0,s;Q(f − mf (Q̃)) ≤ s−1/r

( 1

µ(3
2ρQ)

∫

Q

|f(y) − mf (Q̃)|rdµ(y)
) 1

r

.

Therefore, for all x ∈ Rd,

Mρ,♯
0,sf(x) ≤ s−1/rMρ,♯

r f(x). (8)

To prove our theorem, we need some Lemmas.

Lemma 1 ([8]) Let ρ ∈ [1,∞), Mη and Mρ,d be the maximal operators defined (6) and (7),

respectively. For any p ∈ [1,∞) and u ∈ Aρ
p(µ), both Mη with η ∈ (ρ,∞) and Mρ,d are bounded

from Lp(u) to Lp,∞(u).

Lemma 2 ([8]) Let ρ, p ∈ [1,∞), u ∈ Aρ
p(µ), and η ∈ (ρ,∞). Then there exist constants

C1, C2 ≥ 1 such that

(i) For any cube Q and µ-measurable set E ⊂ Q, u(E)
u(Q) ≥ C−1

1 ( µ(E)
µ(ηQ) )

p;

(ii) For any doubling cube Q and µ-measurable set E ⊂ Q, u(E)
u(Q) ≥ C−1

2 (µ(E)
µ(Q) )

p
;

(iii) For any doubling cube Q and µ-measurable set E ⊂ Q, u(E)
u(Q) ≤ 1 − C−1

2 (1−µ(E)
µ(Q) )

p
.

Lemma 3 ([8]) Let ρ, p ∈ [1,∞), s ∈ (0, β−1
2ρ,d/4). Then for all µ-measurable functions f and

λ > 0,

(i) {x ∈ Rd : |f(x)| > λ} ⊂ {x ∈ Rd : Mρ,d
0,s f(x) > λ} ∪ Θ with µ(Θ) = 0;

(ii) For u ∈ Aρ
p(µ),

u({x ∈ Rd : Mρ,d
0,s f(x) > λ}) ≤ Cs−pu({x ∈ Rd : |f(x)| > λ}),

where C is a positive constant depending on d and ρ, but not on s and the weight u.
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Lemma 4 ([8]) Let ρ ∈ [1,∞), s ∈ (0, β−1
2ρ,d/4) and Q be a doubling cube with µ(Q) 6= 0. For

any constant c ∈ C and µ-locally integrable function f ,

|mρ
0,s;Q(f) − |c|| ≤ m0,s;Q(f − c).

Lemma 5 ([8]) Let ρ ∈ [1,∞), s ∈ (0, β−1
2ρ,d/4) and r ∈ (0,∞). For any cube Q and µ-locally

integrable function f ,

mρ
0,s;Q(f − mf (Q)) ≤ 3s−1/r inf

c∈C

( 1

µ(3
2Q)

∫

Q

|f(y) − c|rdµ(y)
) 1

r

.

Lemma 6 Let ρ ∈ [1,∞), and r ∈ (0, 1). Let K satisfy (2) and (5), and M be the Marcinkiewicz

integral defined as in (4). If M is bounded on L2(µ), there exists a positive constant C such

that for all bounded functions f with compact support and x ∈ Rd,

Mρ,♯
r (Mf)(x) ≤ CM 9

8ρf(x). (9)

Proof For each cube Q and each bounded function f with compact support, set

hQ = mQ(M(fχRd\ 4
3Q)).

Here and in what follows, for any µ-locally integrable function h,

mQ(f) =
1

µ(Q)

∫

Q

h(z)dµ(z).

It follows from Lemmas 4 and 5 that for any cube Q, s ∈ (0, β−1
2ρ,d/4), and an elementary

inequality,
∫

Q

|M(f)(y) − mM(f)(Q̃)|rdµ(y)

≤

∫

Q

|M(f)(y) − hQ|
rdµ(y) + |hQ − hQ̃|rµ(Q)+

|mρ

0,s;Q̃
(M(f)) − mM(f)(Q̃)|rµ(Q) + |mρ

0,s;Q̃
(M(f)) − hQ̃|

rµ(Q)

≤

∫

Q

|M(f)(y) − hQ|
rdµ(y) + |hQ − hQ̃|rµ(Q)+

(mρ

0,s;Q̃
(M(f) − mM(f)(Q̃)))rµ(Q) + (mρ

0,s;Q̃
(M(f) − hQ̃))rµ(Q)

≤

∫

Q

|M(f)(y) − hQ|
rdµ(y) + |hQ − hQ̃|rµ(Q)+

C(3rs−1 + s−1)
µ(Q)

µ(Q̃)

∫

Q̃

|M(f)(y) − hQ̃|rdµ(y),

where C is a positive constant, and for any two doubling cubes Q ⊂ R,

|mM(f)(Q) − mM(f)(R)|

≤ |mρ
0,s;Q(M(f)) − hQ| + |hQ − hR| + |mρ

0,s;R(M(f)) − hR|+

|mρ
0,s;Q(M(f)) − mM(f)(Q)| + |mρ

0,s;R(M(f)) − mM(f)(R)|

≤ mρ
0,s;Q(M(f) − hQ) + |hQ − hR| + mρ

0,s;R(M(f) − hR)+

mρ
0,s;Q(M(f) − mM(f)(Q)) + mρ

0,s;R(M(f) − mM(f)(R))
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≤ 4s−1/r
( 1

µ(3
2ρQ)

∫

Q

|M(f)(y) − hQ|
rdµ(y)

)1/r

+ |hQ − hR|+

4s−1/r
( 1

µ(3
2ρR)

∫

R

|M(f)(y) − hR|
rdµ(y)

)1/r

.

Thus, the proof of (9) can be reduced to proving that for any cube Q,
( 1

µ(3
2ρQ)

∫

Q

|M(f)(y) − hQ|
rdµ(y)

)1/r

≤ C inf
x∈Q

M 9
8 ρf(x), (10)

and for any two cubes Q ⊂ R with R a doubling cube,

|hQ − hR| ≤ Cδρ
Q,R inf

x∈Q
M 9

8ρf(x), (11)

where C is a positive constant.

We first consider (10). For any cube Q, write
∫

Q

|M(f)(y) − hQ|
rdµ(y)

≤

∫

Q

|M(f)(y) −M(fχRd\ 4
3Q)(y)|rdµ(y) +

∫

Q

|M(fχRd\ 4
3Q)(y) − hQ|

rdµ(y)

≤

∫

Q

|M(fχ 4
3Q)(y)|rdµ(y) +

∫

Q

|M(fχRd\ 4
3Q)(y) − hQ|

rdµ(y),

where we use the fact that |M(f)(y) − M(fχRd\ 4
3 Q)(y)| ≤ |M(fχ 4

3Q)(y)|. Recall that M is

bounded from L1(µ) to L1,∞(µ) (see [7]). It follows from the Kolmogorov inequality that
( 1

µ(3
2ρQ)

∫

Q

|M(fχ 4
3Q)(y)|rdµ(y)

)1/r

≤
C

µ(3
2ρQ)

‖fχ 4
3Q‖L1(µ) ≤ C inf

x∈Q
M 9

8ρf(x).

On the other hand, following the method of [7], for any x, y ∈ Q, let f∗ = fχRd\ 4
3 Q and set

A1 =
(∫ ∞

0

[ ∫

|y−z|≤t≤|x−z|

|K(y, z)||f∗(z)| dµ(z)
]2 dt

t3

)1/2

,

A2 =
(∫ ∞

0

[ ∫

|x−z|≤t≤|y−z|

|K(y, z)||f∗(z)| dµ(z)
]2 dt

t3

)1/2

,

and

A3 =
(∫ ∞

0

[ ∫

max(|y−z|,|x−z|)≤t

|K(y, z)− k(x, z)||f∗(z)| dµ(z)
]2 dt

t3

)1/2

.

By the Minkowski inequality, we have

M(f∗)(x) ≤
(∫ ∞

0

∣∣∣
∫

|x−z|≤t

K(x, z)f∗(z)dµ(z) −

∫

|y−z|≤t

K(y, z)f∗(z) dµ(z)
∣∣∣
2 dt

t3

)1/2

+ M(f∗)(y)

≤ A1 + A2 + A3 + M(f∗)(y).

This together with symmetry gives

|M(f∗)(x) −M(f∗)(y)| ≤ A1 + A2 + A3. (12)

Applying the Minkowski inequality and (2), we get for x, y ∈ Q

A1 ≤

∫

|y−z|≤|x−z|

|f∗(z)|

|y − z|n−1

[ ∫

|y−z|≤t≤|x−z|

dt

t3

] 1
2

dµ(z)
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≤ C

∫

|y−z|≤|x−z|

|f∗(z)|

|xQ − z|n+ 1
2

|x − y|
1
2 dµ(z)

≤ Cl(Q)
1
2

∞∑

k=1

∫

( 4
3 )k+1Q\( 4

3 )kQ

|f(z)|

|xQ − z|n+ 1
2

dµ(z)

≤ Cl(Q)
1
2

∞∑

k=1

µ(9
8ρ(4

3 )k+1Q)

(4
3

k
l(Q))n+ 1

2

1

µ(9
8ρ(4

3 )k+1Q)

∫

( 4
3 )k+1Q

|f(z)|dµ(z)

≤ C

∞∑

k=1

(
4

3
)−kM 9

8ρf(x) ≤ CM 9
8ρf(x).

By symmetry, we have

A2 ≤ CM 9
8 ρf(x).

And by (5),

A3 ≤

∫

Rd

|K(y, z)− K(x, z)||f∗(z)|
[ ∫

max(|y−z|,|x−z|)≤t

dt

t3

]1/2

dµ(z)

≤ C

∫

Rd\( 4
3 )Q

|x − y|δ

|x − z|n+δ−1
|f(z)|

1

|xQ − z|
dµ(z)

≤ C

∞∑

k=1

∫

( 4
3 )k+1Q\( 4

3 )kQ

l(Q)δ

|xQ − z|n+δ
|f(z)|dµ(z)

≤ C
∞∑

k=1

∫

( 4
3 )k+1Q

l(Q)δµ(9
8ρ(4

3 )k+1Q)

((4
3 )kl(Q))n+δ

1

µ(9
8ρ(4

3 )k+1Q)
|f(z)|dµ(z)

≤ C

∞∑

k=1

(
4

3
)−kM 9

8ρf(x) ≤ CM 9
8ρf(x).

Combining these estimates for A1, A2 and A3, we have
( 1

µ(3
2ρQ)

∫

Q

|M(f)(y) − hQ|
rdµ(y)

)1/r

≤ C inf
x∈Q

M 9
8 ρf(x),

and obtain the estimate (10).

Next we turn to (11). Let N = Nρ
Q,R + 1 and by Minkowski inequality, we have,

M(fχRd\ 4
3Q)(x) ≤ M(fχRd\(2ρ)N Q)(x) + M(fχ(2ρ)N Q\ 4

3Q)(x)

and

M(fχRd\(2ρ)N Q)(x) ≤ M(fχ(2ρ)N Q\ 4
3 Q)(x) + M(fχRd\ 4

3 Q)(x).

By the same estimate as above, we obtain

M(fχRd\ 4
3R)(y) ≤ M(fχRd\(2ρ)N Q)(y) + M(fχ(2ρ)N Q\ 4

3R)(y)

and

M(fχRd\(2ρ)N Q)(y) ≤ M(fχ(2ρ)N Q\ 4
3R)(y) + M(fχRd\ 4

3R)(y).

Then, it is easy to check that, for any x, y ∈ Rd,

M(fχRd\ 4
3Q)(x) −M(fχRd\ 4

3R)(y) ≤M(fχRd\(2ρ)N Q)(x) + M(fχ(2ρ)N Q\ 4
3Q)(x)+
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M(fχ(2ρ)N Q\ 4
3R)(y) −M(fχRd\(2ρ)N Q)(y),

and

M(fχRd\ 4
3 R)(y) −M(fχRd\ 4

3Q)(x) ≤M(fχRd\(2ρ)N Q)(y) + M(fχ(2ρ)N Q\ 4
3R)(y)+

M(fχ(2ρ)N Q\ 4
3Q)(x) −M(fχRd\(2ρ)N Q)(x).

It follows that,

|M(fχRd\ 4
3Q)(x) −M(fχRd\ 4

3R)(y)| ≤M(fχ(2ρ)N Q\ 4
3 Q)(x) + M(fχ(2ρ)N Q\ 4

3 R)(y)+

|M(fχRd\(2ρ)N Q)(x) −M(fχRd\(2ρ)N Q)(y)|.

Then we have

|hQ − hR| ≤mQ(M(fχ2ρQ\ 4
3Q)) + mQ(M(fχ(2ρ)N Q\2ρQ))+

1

µ(Q)µ(R)

∫

Q

∫

R

|M(fχRd\(2ρ)N Q) −M(fχRd\(2ρ)N Q)|dµ(y)dµ(x)+

mR(M(fχ(2ρ)N Q\ 4
3R))

=I1 + I2 + I3 + I4.

The size condition (2) and the Minkowski inequality, along with the growth condition (1) implies

that for any x ∈ Q,

M(fχ2ρQ\ 4
3Q)(x) ≤

∫

2ρQ\ 4
3Q

|f(z)K(x, z)|
(∫ ∞

l(Q)/6

dt

t3

)1/2

dµ(z)

≤
C

[l(Q)]n

∫

2ρQ

|f(z)|dµ(z) ≤ CM 9
8 ρf(x)

and for any y ∈ R,

M(fχ(2ρ)N Q\ 4
3R)(y) ≤

∫

4ρR\ 4
3 R

|f(z)K(y, z)|
(∫ ∞

l(R)/6

dt

t3

)1/2

dµ(z)

≤
C

[l(R)]n

∫

4ρR

|f(z)|dµ(z) ≤ CM 9
8ρf(x).

Therefore, there exists a positive constant C such that

I1 + I4 ≤ C inf
x∈Q

M 9
8ρf(x).

For the term I2, the Minkowski inequality, the size condition (2) and the growth condition (1)

indicate that for any x ∈ Q,

M(fχ(2ρ)N Q\2ρQ)(x) ≤

∫

(2ρ)N Q\2ρQ

|f(z)K(y, z)|
(∫

|x−z|≤t

dt

t3

)1/2

dµ(z)

≤ C
N−1∑

k=1

∫

(2ρ)k+1Q\(2ρ)kQ

|f(z)|

|x − z|n
dµ(z)

≤ C

N−1∑

k=1

µ((2ρ)k+2Q)

[l((2ρ)kQ)]n
inf
x∈Q

M2ρf(x)

≤ Cδρ
Q,R inf

x∈Q
M 9

8ρf(x).
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So, we have

I2 ≤ Cδρ
Q,R inf

x∈Q
M 9

8ρf(x).

Finally, as in the inequality (12), a familiar argument involving the condition (5) gives, for

any x ∈ Q and y ∈ R,

|M(fχRd\(2ρ)N Q)(x) −M(fχRd\(2ρ)N Q)(y)| ≤ C inf
x∈Q

M 9
8ρf(x)

and

I3 ≤ C inf
x∈Q

M 9
8ρf(x).

Then, the inequality (11) holds, and the proof of Lemma 6 is completed. 2

3. Proof of Theorem 1

Now we turn to prove Theorem 1.

Proof of Theorem 1 By Lemma 1, it suffices to show that

u({x ∈ Rd : M(f)(x) > λ}) ≤ Cu({x ∈ Rd : M 9
8 ρf(x) > λ}). (13)

Using Theorem HY, we first prove that for p ∈ [1,∞) and any bounded function f with compact

support and for any R > 0,

M(f) ∈ Lp,∞(µ), (14)

and for any ρ ∈ [1,∞) and u ∈ Aρ
p(µ),

sup
0<λ<R

u({x ∈ Rd : M(f)(x) > λ}) < ∞. (15)

The fact (14) was proved in [7]. So, we need only to prove (15). Let t > 2 be large enough

such that the support of f is contained in the ball B(0, t). It is obvious that

sup
0<λ<R

λpu({x ∈ B(0, 2t) : M(f)(x) > λ}) ≤ Rpu(B(0, 2t)) ≤ ∞.

On the other hand, it is easy to see that if x ∈ Rd\B(0, 2t) and y ∈ B(0, t), then we obtain

|x| ∼ |x − y| and by the Minkowski inequality and the size condition (2),

M(f)(x) ≤

∫

Rd

|f(y)|

|x − y|n
dµ(y) ≤

C4

|x|n
‖f‖L1(µ).

Lemma 2 (i) and the growth condition (1) imply that if λ ≤ C4‖f‖L1(µ)/2,

u({x ∈ Rd\B(0, 2t) : M(f)(x) > λ}) ≤ u({x ∈ Rd : |x|n > λ/(C4‖f‖L1(µ))})

≤ u(B(0,
9

8
ρ(C4‖f‖L1(µ))

1/nλ−1/n))

≤ Cu(B(0, 1))
(µ(B(0, 9

8ρ(C4‖f‖L1(µ))
1/nλ−1/n))

µ(B(0, 1))

)

≤ Cf
u(B(0, 1))

[µ(B(0, 1))]p
λ−p,

where Cf is a positive constant depending on f .
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Notice that for λ > C4‖f‖L1(µ)/2, there exists no point x ∈ Rd\B(0, 2t) satisfying M(f)(x) >

λ. Therefore,

sup
λ>0

λpu({x ∈ Rd\B(0, 2t) : M(f)(x) > λ})

= sup
C4‖f‖L1(µ)/2≥λ>0

λpu({x ∈ Rd\B(0, 2t) : M(f)(x) > λ})

≤ Cf
u(B(0, 1))

[µ(B(0, 1))]p
,

which yields (15).

Now we conclude the proof of (13).

If µ(Rd) = ∞, by Lemma 3 (i), Theorem HY with s1 = β−1
2ρ,d/5 and p0 = 1, (8) and Lemma

6, we have that

u({x ∈ Rd : M(f)(x) > λ}) ≤ Cu({x ∈ Rd : Mρ,d
0,s M(f)(x) > λ})

≤ Cu({x ∈ Rd : Mρ,♯
0,sM(f)(x) > λ})

≤ Cu({x ∈ Rd : Mρ,d
r M(f)(x) > λ})

≤ Cu({x ∈ Rd : M 9
8 ρf(x) > λ}).

If µ(Rd) < ∞, p, ρ ∈ [1,∞) and u ∈ Aρ
p(µ), then for a positive constant C,

u(Rd)[µ(Rd)]−p‖M(f)‖p
L1,∞(µ) ≤ Cu(Rd)[µ(Rd)]−p‖f‖p

L1(µ)

≤ Cu(Rd)( inf
x∈Rd

M 9
8 ρf(x))p

≤ Csup
λ>0

[u({x ∈ Rd : M 9
8ρf(x) > λ})],

where in the first inequality, we have invoked the estimate

‖M(f)‖L1,∞(µ) ≤ C‖f‖L1(µ),

(see [7]), and the second inequality follows from the fact that

1

µ(Rd)

∫

Rd

|f(y)|dµ(y) = lim
l(Q)→∞

1

µ(9
8ρQ)

∫

Q

|f(y)|dµ(y) ≤ inf
x∈Rd

M 9
8ρf(x).

The desired result again follows from Lemma 3 (i), Theorem HY with s1 = β−1
2ρ,d/5 and p0 = 1,

(8) and Lemma 6. This completes the proof of Theorem 1. 2
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