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Abstract Let Bs(H) be the real linear space of all self-adjoint operators on a complex Hilbert

space H with dimH ≥ 2. It is proved that a linear surjective map ϕ on Bs(H) preserves the

nonzero projections of Jordan products of two operators if and only if there is a unitary or an

anti-unitary operator U on H such that ϕ(X) = λU∗XU,∀X ∈ Bs(H) for some constant λ with

λ ∈ {1,−1}.
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1. Introduction

Preserver problems are the most extensively studied both on operator algebras and on op-

erator spaces in the last few decades. In recent years, many authors have considered preserver

problems concerning certain properties of products or triple Jordan products of operators [1, 2].

For example, maps preserving projections or idempotency of products or triple Jordan products

of two operators on operator algebras are characterized. Moreover, those preserver problems on

the space of self-adjoint operators attract much attention of many authors [3–7]. In particular,

maps preserving zero Jordan products of two operators and linear maps preserving projections

of products or triple Jordan products of two operators on the space of Hermitian operators were

discussed in [6] and [7], respectively. Motivated by comparing [6] with [7], we study in this paper

those linear maps preserving nonzero projections of Jordan products of two operators on the

space of self-adjoint operators.

Before starting our main results, we first introduce some notations. Let H be a Hilbert space

over the complex field C. Let B(H) be the algebra of all bounded linear operators on H and

Bs(H) the real linear space of all self-adjoint operators in B(H). dimH denotes the dimension

of H. For every pair of vectors x, y ∈ H, 〈x, y〉 denotes the inner product of x and y. For any

vector x ∈ H, ‖x‖ =
√

〈x, x〉 denotes the norm of x. The rank-1 operator x ⊗ x is a projection

for any unit vector x. For any A ∈ B(H), we denote by rankA the rank of A and by σ(A) the

spectrum of A, respectively. We denote by P the set of all nonzero projections in B(H). Given
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two projections P,Q ∈ B(H), we say P ≤ Q if PQ = QP = P and we say P < Q if P ≤ Q and

P 6= Q. P and Q are orthogonal if PQ = QP = 0. We recall that a conjugate linear bijective map

U on H is said to be anti-unitary if 〈Ux,Uy〉 = 〈y, x〉 for all x, y ∈ H. For any A,B ∈ B(H), we

denote by A◦B the Jordan product 1

2
(AB+BA) of A and B. Note that A◦B ∈ Bs(H) whenever

A,B ∈ Bs(H). A map ϕ on Bs(H) is said to preserve nonzero projections of Jordan products of

two operators if ϕ(A) ◦ ϕ(B) ∈ P whenever A ◦B ∈ P for all A,B ∈ Bs(H). Throughout this

paper, we will denote by I the identity operator on a Hilbert space without confusion.

In this paper, we consider a linear surjective map ϕ on Bs(H) which preserves nonzero

projections of Jordan products of two operators.

2. Linear maps preserving projections of Jordan products on B
s
(H)

Let ϕ be a linear map on Bs(H) preserving nonzero projections of Jordan products of two

operators, that is, ϕ(A) ◦ ϕ(B) is a nonzero projection whenever A ◦ B is for all A,B ∈ Bs(H)

in this section. Our main result is the following theorem.

Theorem 1 Let H be a complex Hilbert space with dimH ≥ 2 and let ϕ be a linear surjective

map on Bs(H). Then ϕ preserves nonzero projections of Jordan products of two operators if and

only if there exist a unitary or anti-unitary operator U ∈ B(H) and a constant λ with λ ∈ {1,−1}

such that ϕ(X) = λU∗XU for all X ∈ Bs(H).

Proof It is obvious that the “if” part of the theorem is true. We need only to check the “only

if” part.

Assume that ϕ is a linear surjective map and preserves nonzero projections of Jordan products

of two operators. In the following, we proceed in steps.

Step 1. ϕ is injective.

If ϕ(A) = 0 for some non-zero operator A ∈ Bs(H), then there exists at least a nonzero

λ ∈ σ(A). Choose a closed subset △ ⊆ σ(A) such that λ ∈ △ and 0 /∈ △. Under the direct sum

decomposition H = E(△)H⊕E(△)⊥H, we have A =

(

A1 0

0 A2

)

, where A1 is invertible. Put

B =

(

A−1

1 0

0 0

)

. Note that A ◦B = 1

2
(AB +BA) =

(

I 0

0 0

)

∈ P, while ϕ(A) ◦ ϕ(B) = 0.

This is a contradiction. Thus A = 0.

Step 2. ϕ(I) = I or ϕ(I) = −I.

We first note an elementary fact.

AP = PA ∈ P for all P ∈ P and A ∈ Bs(H) with A ◦ P ∈ P . (1)

In fact, under the direct sum decomposition H = PH⊕ P⊥H, we set

A =

(

A1 A2

A∗
2 A3

)

.
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Then

A ◦ P =
1

2
(AP + PA) =

(

A1
1

2
A2

1

2
A∗

2 0

)

∈ P.

So we have A1 ∈ P and A2 = 0. Hence

PA = AP =

(

A1 0

0 0

)

∈ P.

Take any P,Q ∈ P with P ⊥ Q. Then for all λ ∈ R we have that P ◦ (P + λQ) = P (P +λQ) =

(P+λQ)P = P ∈ P. It follows that ϕ(P )◦ϕ(P+λQ) ∈ P, that is, ϕ(P )2+λ(ϕ(P )◦ϕ(Q)) ∈ P.

In particular, ϕ(P )2 ∈ P. Thus

ϕ(P ) ◦ ϕ(Q) = 0. (2)

Taking Q = I − P , we obtain from (2) another equation

ϕ(P ) ◦ ϕ(I) = ϕ(P )2. (3)

It easily follows that

ϕ(P )2ϕ(I) = ϕ(I)ϕ(P )2, ϕ(P )ϕ(I)2 = ϕ(I)2ϕ(P ) (4)

by multiplying (3) from the left and the right by ϕ(P ) (resp., ϕ(I)), respectively. Since ϕ is

surjective, there exists a non-zero operator A ∈ Bs(H) such that ϕ(A) = B for every B ∈ Bs(H).

It is known that every bounded self-adjoint linear operator A is a real linear combination of eight

projections from Theorem 3 in [9]. That is, A =
∑8

k=1
αkPk for some projections P1, P2, . . . , P8.

Then B = ϕ(A) =
∑8

k=1
αkϕ(Pk). Thus Bϕ(I)2 = ϕ(I)2B since ϕ(Pk)ϕ(I)2 = ϕ(I)2ϕ(Pk) for

all k = 1, 2, . . . , 8 from (4). This implies that ϕ(I)2 = I. It follows that σ(ϕ(I)) ⊆ {−1, 1}. If

σ(ϕ(I)) = {−1} or {1}, then ϕ(I) = −I or ϕ(I) = I. If σ(ϕ(I)) = {−1, 1}, then

ϕ(I) =

(

I 0

0 −I

)

by the spectral decomposition. Let E = e ⊗ e for any unit vector e ∈ H. Then there exists

a nonzero operator A ∈ Bs(H) such that ϕ(A) = E. We claim that σ(A)\{0} is a singleton.

Otherwise, if there are λ1 and λ2 in σ(A) such that λ1λ2 6= 0 and λ1 6= λ2, then there exist closed

subsets △i ⊆ σ(A) (i = 1, 2) such that 0 /∈ △1

⋃

△2, λi ∈ △i (i = 1, 2) and △1∩△2 = ∅ (i = 1, 2).

Under the direct sum decomposition H = E(△1)H⊕E(△2)H⊕ (I−E(△1)−E(△2))H, we have

that

A =







A1 0 0

0 A2 0

0 0 A3






,

where A1 and A2 are invertible. Let

B1 =







A−1

1
0 0

0 0 0

0 0 0






and B2 =







0 0 0

0 A−1

2 0

0 0 0






.
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Note that A ◦ B1, A ◦ B2 and A ◦ (B1 + B2) all are in P. It easily follows that ϕ(B1)e =

ϕ(B2)e = (ϕ(B1) + ϕ(B2))e = e. This is a contradiction. Since ϕ(A) = E, σ(A) = {0, λ} for

some λ ∈ R\{0}, we have

A =

(

λI 0

0 0

)

.

Since

(
1

λ
I)A = A(

1

λ
I) =

(

I 0

0 0

)

∈ P,

we have

ϕ(
1

λ
I) ◦ ϕ(A) =

1

2
(
1

λ
ϕ(I)ϕ(A) +

1

λ
ϕ(A)ϕ(I)) =

1

λ
ϕ(I)e⊗ e ∈ P.

We thus have ϕ(I)e = λe for every unit vector e ∈ H. So ϕ(I) = λI for some constant λ ∈ R\{0}

and then λ = 1 or λ = −1 by ϕ(I)2 = I.

We may replace ϕ by −ϕ if ϕ(I) = −I. Without loss of generality, we next assume that

ϕ(I) = I. Then ϕ preserves nonzero projections and thus preserves the order as well as the

orthogonality of projections.

Step 3. ϕ preserves rank-1 projections as well as the orthogonality of rank-1 projections in

both directions.

As in Step 2, set ϕ(A) = e⊗ e for any unit vector e ∈ H. Then we know that A is a nonzero

projection. If rankA ≥ 2, then there exists two unit vectors f1, f2 ∈ H with f1 ⊥ f2 such that

A ≥ f1 ⊗ f1 and A ≥ f2 ⊗ f2 and then

e⊗ e ≥ ϕ(f1 ⊗ f1), e⊗ e ≥ ϕ(f2 ⊗ f2).

On the other hand, ϕ(f1 ⊗ f1) ⊥ ϕ(f2 ⊗ f2). This is a contradiction. Thus rankA = 1.

On the other hand, let P = ϕ(f ⊗ f) for any unit vector f ∈ H. It is clear that P ∈ P. We

prove that P is also of rank-1 . In fact, if rankP ≥ 2, put P = P1 + P2, where P1 is a rank-1

projection and P1 ⊥ P2, then P2 ∈ P and there exists a unit vector f1 ∈ H such that ϕ(f1⊗f1) =

P1.We know that ϕ−1(P ) = ϕ−1(P1)+ϕ
−1(P2). So ϕ−1(P2) = f⊗f−f1⊗f1. If σ(f⊗f−f1⊗f1)

contains two different real scalars, say, λ1 and λ2, then f ⊗ f − f1 ⊗ f1 = λ1e1 ⊗ e1 + λ2e2 ⊗ e2,

where e1, e2 are two orthogonal unit vectors. Since ( 1

λi

ei ⊗ ei) ◦ (f ⊗ f − f1 ⊗ f1) = ei ⊗ ei ∈ P,

we get ϕ( 1

λi

ei ⊗ ei) ◦ ϕ(f ⊗ f − f1 ⊗ f1) ∈ P for i = 1, 2. It follows that 1

λi

ϕ(ei ⊗ ei)P2 ∈ P

from (1). We thus have that λi = 1 for i = 1, 2. This is a contradiction. Hence rankP = 1. This

shows that ϕ preserves rank-1 projections as well as orthogonality.

We next show that ϕ−1 preserves the orthogonality of rank-1 projections as well. Take any

two orthogonal unit vectors e1, e2 ∈ H. Then there exists two unit vectors f1, f2 ∈ H such

that ϕ(f1 ⊗ f1) = e1 ⊗ e1 and ϕ(f2 ⊗ f2) = e2 ⊗ e2. It is clear that f1 and f2 are linearly

independent. Note that f1⊗f1 +f2⊗f2 = α1x1⊗x1 +α2x2⊗x2 for two orthogonal unit vectors

xi ∈ H and some nonzero constants αi ∈ R \ {0} for i = 1, 2. We know that there exist two

unit vectors yi ∈ H such that ϕ(xi ⊗ xi) = yi ⊗ yi (i = 1, 2) from the above proof. Note that

( 1

αi

xi ⊗ xi)(f1 ⊗ f1 + f2 ⊗ f2) = (f1 ⊗ f1 + f2 ⊗ f2)(
1

αi

xi ⊗ xi) = xi ⊗ xi ∈ P for i = 1, 2. We



Linear maps preserving projections of Jordan products on the space of self-adjoint operators 239

have 1

αi

yi ⊗ yi(e1 ⊗ e1 + e2 ⊗ e2) ∈ P by (1) for i = 1, 2. We must have α1 = α2 = 1. It follows

that

f1 ⊗ f1 + f2 ⊗ f2 = x1 ⊗ x1 + x2 ⊗ x2

is a projection. It is elementary that the sum of two projections is also a projection if and only

if they are orthogonal. Thus f1 and f2 are orthogonal.

Step 4. There are a unitary or an anti-unitary operator U such that ϕ(E) = UEU∗ for any

rank-1 projection E.

In fact, we have that ϕ is a bijection on the set of all rank-1 projections and preserves

orthogonality in both directions. If dimH ≥ 3, then it follows from the Uhlhorn’s theorem in [8]

that there is a unitary or anti-unitary operator U on H such that ϕ(E) = UEU∗ for any rank-1

projection E.

Next we assume that dimH = 2. Let E1 and E2 be two orthogonal rank-1 projections. Then

so are ϕ(E1) and ϕ(E2). Without loss of generality, we may assume that ϕ(Ei) = Ei for i = 1, 2.

Let E 6= E1 be a rank-1 projection such that EE1 6= 0. Then E = 1

1+|z|2

(

1 z

z |z|2

)

for some

nonzero complex constant z ∈ C in terms of the decomposition H = E1H ⊕ E⊥
1 H. Let A =

(

0 z

|z|
z

|z| 0

)

. We claim that ϕ(A) =

(

0 w

w 0

)

for some w ∈ C. Put ϕ(A) =

(

a11 a12

a12 a22

)

.

It is easy to see that ϕ(A)2 = I since A2 = I. Hence we have a2
11 + |a12|2 = a2

22 + |a12|2 = 1 and

a11a12 + a12a22 = 0. On the other hand,

(

1 z

|z|
z

|z| −1

)

◦

(

1 0

0 −1

)

= I. Then

ϕ(

(

1 z

|z|
z

|z| −1

)

) ◦ ϕ(

(

1 0

0 −1

)

)

=
1

2
((E1 − E2 + ϕ(A))(E1 − E2) + (E1 − E2)(E1 − E2 + ϕ(A))

= (E1 − E2)
2 +

1

2
(ϕ(A)(E1 − E2) + (E1 − E2)ϕ(A))

=

(

1 0

0 1

)

−

(

−a11 0

0 a22

)

∈ P.

Therefore,

(

−a11 0

0 a22

)

is a projection with rank less than 1. If either −a11 or a22 is 1, then

we have a12 = 0 and ϕ(A) is of rank-1. This is a contradiction. Thus a11 = a22 = 0. Again we

have

E =
1

1 + |z|2
E1 +

|z|2

1 + |z|2
E2 +

|z|

1 + |z|2
A

and

ϕ(E) =
1

1 + |z|2
E1 +

|z|2

1 + |z|2
E2 +

|z|

1 + |z|2
ϕ(A).

An elementary calculation shows that tr(EE1) = 1

1+|z|2 = tr(ϕ(E)ϕ(E1)), where tr is the trace

of matrices. It follows from the Winger’s theorem in [10] that there is a unitary or anti-unitary
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operator U on H such that

ϕ(E) = UEU∗

for any rank-1 projection E.

We now complete the proof. Without loss of generality, we may assume that ϕ(E) = E for

every rank-1 projection E. Otherwise, we consider a map

ψ(A) = U∗ϕ(A)U = A, ∀A ∈ Bs(H).

Then ψ preserves nonzero projections of Jordan products such that ψ(E) = E for every rank-1

projection E. In this case, we have ϕ(E) = E for every finite rank projection E. Let P be an

infinite rank projection. Then we have

P = sup{E : E ≤ P,E is a finite rank projection}.

Note that ϕ preserves the order of projections. It follows that

ϕ(P ) ≥ sup{F : F ≤ P, F is a finite rank projection} = P.

We similarly have ϕ(I − P ) = I − ϕ(P ) ≥ I − P . Hence ϕ(P ) = P for every projection P . It

now follows that ϕ(X) = X for any X ∈ Bs(H) since X is a real linear combination of eight

projections from Theorem 3 in [9] and ϕ is linear. The proof is completed. 2
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