Journal of Mathematical Research with Applications Mar., 2012, Vol. 32, No. 2, pp. 241–247 DOI:10.3770/j.issn:2095-2651.2012.02.012 Http://jmre.dlut.edu.cn

On Products of Property b_1

Jianjun WANG, Peiyong ZHU^{*}

School of Mathematical Sciences, University of Electronic Science and Technology of China, Sichuan 611731, P. R. China;

Abstract In this note, we present that: (1) Let $X = \sigma\{X_{\alpha} : \alpha \in A\}$ be |A|-paracompact (resp., hereditarily |A|-paracompact). If every finite subproduct of $\{X\alpha : \alpha \in A\}$ has property b_1 (resp., hereditarily property b_1), then so is X. (2) Let X be a P-space and Y a metric space. Then, $X \times Y$ has property b_1 iff X has property b_1 . (3) Let X be a strongly zero-dimensional and compact space. Then, $X \times Y$ has property b_1 iff Y has property b_1 .

Keywords σ -product; Tychonoff products; property b_1 ; hereditarily property b_1 .

MR(2010) Subject Classification 54A35; 54B10; 54D20

1. Introduction

It is well known that θ -refinableness [2] \rightleftharpoons property b_1 (see [1]) \rightleftharpoons weak θ -refinableness [2]. And in recent years, a great advance has been achieved with the results of σ -products and Tychonoff products of topological spaces characterized by coverings. Particularly, the papers [3,4,11–13] were published such that the properties about both θ -refinable and weak θ -refinable spaces had been acquired. But no results on both σ -product and Tychonoff products of property b_1 has ever been seen since the structure of topological spaces with property b_1 is more complex than any one of θ -refinable spaces and weak θ -refinable spaces.

In this paper, the σ -product of property b_1 and hereditarily property b_1 are firstly investigated. Next, some characterizations on products of two spaces with property b_1 are proved.

Throughout this paper, X and X_{α} ($\alpha \in A$) denote topological spaces (referred to as a space or spaces); ω and κ denote respectively the first infinite ordinal and an arbitrary infinite cardinal. For a set Y, we denote by $\mathcal{P}(Y)$ the collection of all subsets of Y. For $A \in \mathcal{P}(Y)$, $\mathcal{N}(A)$ (resp., cl A, int A, |A|) denotes the open neighborhood system (resp., the closure, the interior, the cardinality) of A. For every $\mathcal{U} \in \mathcal{P}(Y)$ and $A \subset Y$, define $(\mathcal{U})_A = \{U \in \mathcal{U} : U \cap A \neq \emptyset\}$, $\mathcal{U}|_A = \{U \cap A : U \in \mathcal{U}\}$, $\operatorname{Cl}\mathcal{U} = \{\operatorname{cl} U : U \in \mathcal{U}\}$. Let Ω be a set, and Ω^n (resp., Ω^{ω}) denote the Cartesian products of n orders (resp., the family of all infinite sequences of elements) of Ω . Let $\Omega^{<\omega} = \bigcup_{<\omega} \Omega^n$, $[\Omega]^{<\omega} = \{s \in \mathcal{P}(\Omega) : |s| < \omega\}$, $s|_n = (s_0, s_1, \ldots, s_{n-1})$ if $s \in \Omega^{\omega}$ and $s \oplus a = (s_0, \ldots, s_{n-1}, a)$ if $s \in \Omega^n$. All spaces are Hausdorff spaces which contain at least two

Supported by the National Natural Science Foundation of China (Grant Nos. 10671134; 11026081). * Corresponding author

Received July 13, 2010; Accepted November 20, 2010

E-mail address: wangjianjun02@163.com (Jianjun WANG); zpy6940@126.com (Peiyong ZHU)

points in this paper.

Definition 1.1 ([5]) Let $s = (s_{\alpha})_{\alpha \in A}$ be a fixed point in Tychonoff product $\prod_{\alpha \in A} \{X_{\alpha} : \alpha \in A\}$. For each $x = (x_{\alpha})_{\alpha \in A} \in \prod_{\alpha \in A} \{X_{\alpha} : \alpha \in A\}$, put $Q(x) = \{\alpha \in A : x_{\alpha} \neq s_{\alpha}\}$ and define $\sigma\{X_{\alpha} : \alpha \in A\} = \{x \in (x_{\alpha})_{\alpha \in A} : |Q(x)| < \omega\}$. We call $\sigma\{X_{\alpha} : \alpha \in A\}$ the σ -product of $\{X_{\alpha} : \alpha \in A\}$ and s the base point of it. And for every $a \in [A]^{<\omega}$, $\prod_{\alpha \in a} X_{\alpha} \times \{\{s_{\alpha}\} : \alpha \in A\}$ is called a finite subproduct of $\sigma\{X_{\alpha} : \alpha \in A\}$.

Definition 1.2 ([1]) A space X is said to have property b_1 if each cover \mathcal{U} of X can be refined by a cover $\bigcup_{n \in \omega} \mathcal{H}_n$ such that, \mathcal{H}_n is a locally finite collection of closed sets in $X \setminus \bigcup_{i < n} (\bigcup \mathcal{H}_n)$.

Definition 1.3 ([7]) A space is called a P-space if for every set Ω and open family $\{G(s) : s \in \bigcup_{n < \omega} \Omega^n\}$ such that $G(s) \subset G(s \oplus \alpha)$ for $s \in \bigcup_{n < \omega} \Omega^n$ and $\alpha \in \Omega$, there is a closed set $K(s) \subset G(s)$ for $s \in \bigcup_{n < \omega} \Omega^n$ such that $\bigcup_{n < \omega} K(s | n) = X$ whenever $\bigcup_{n < \omega} G(s | n) = X$ for $s \in \Omega^{\omega}$.

Lemma 1.4 ([6]) Let X be a space and κ an infinite cardinal. Then the following are equivalent:

(a) X is κ -paracompact.

(b) X is countably paracompact and every open cover of X with cardinality $\leq \kappa$ has a σ -locally finite open refinement.

Lemma 1.5 ([10]) Let Y be a metric space. Then there exists a base $\mathcal{L} = \bigcup_{n < \omega} \mathcal{L}_n$ of Y satisfying the conditions:

- (a) $\mathcal{L}_n = \{ L(s) | s \in \Omega^n \}$ is a locally finite open cover of Y.
- (b) $L(s) = \bigcup \{ L(s \oplus \alpha) : \alpha \in \Omega \}$ for each $s \in \Omega^n$ and $\alpha \in \Omega$.
- (c) For each $y \in Y$, there is an $s \in \Omega^n$ such that $\{L(s|n) : n < \omega\}$ is a local base of y in Y.

Lemma 1.6 ([9]) A non-empty normal space X is strongly zero-dimensional iff every open cover $\{U_i\}_i^k$ of the space X has finite open refinement $\{V_i\}_i^m$ such that $V_i \cap V_j = \emptyset$ whenever $i \neq j$.

2. σ -product

Now, we shall show our main theorems. The proof of the following lemma is routine and hence, we omit it.

Lemma 2.1 Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of space X. Then the following are equivalent.

(1) There is a refinement $\bigcup_{n \in \omega} \mathcal{H}_n$ of \mathcal{U} such that each \mathcal{H}_n is a locally finite collection of closed sets in $X \setminus \bigcup_{i < n} (\bigcup \mathcal{H}_i)$.

(2) There is a refinement $\bigcup_{n \in \omega} \mathcal{V}_n$ of \mathcal{U} , where $\mathcal{V}_n = \{V_{n\lambda} : \lambda \in \Lambda\}$ for each $n \in \omega$, such that \mathcal{V}_n is a locally finite collection of closed sets in $X \setminus \bigcup_{i < n} (\cup \mathcal{V}_n)$, and $V_{n\lambda} \subset U_{\lambda}$ for each $\lambda \in \Lambda$.

(3) There is a refinement $\bigcup_{n \in \omega} \mathcal{V}_n$ of \mathcal{U} such that each $\mathcal{V}_n|_{X \setminus \bigcup_{i < n} (\bigcup \mathcal{V}_n)}$ is a locally finite collection of closed sets in $X \setminus \bigcup_{i < n} (\bigcup \mathcal{V}_n)$.

Jiang [8] proved that every F_{σ} -subspace of space Y has property b_1 if Y has property b_1 . So

every closed subspace of space Y has property b_1 . Now we have the following theorem.

Theorem 2.2 Let $X = \sigma \{ X\alpha : \alpha \in A \}$. Suppose X is |A|-paracompact and every finite subproduct of $\{ X\alpha : \alpha \in A \}$ has property b_1 . Then X has property b_1 .

Proof When $|A| < \omega$, clearly X has property b_1 since $X = \prod_{s \in A} X_s$. Without loss of generality, let $\mathcal{G} = \{G_{\xi} : \xi \in \Xi\}$ be an open cover of X and $A^* = [A]^{<\omega}$. For each $a \in A^*$ and each $\xi \in \Xi$, let us put $R_{a\xi} = \cup \{R : R \text{ is open in } Y_a, p_a^{-1}(R) \subset G_{\xi}\}$ and $R_a = \cup \{R_{a\xi} : \xi \in \Xi\}$, where $p_a : X \to Y_a$ is defined as follows: for $x = (x)_{\alpha \in A}$, $(P_a(x))_{\alpha} = \begin{cases} x_{\alpha}, & \alpha \in a \\ s_{\alpha}, & \alpha \in A - \{a\} \end{cases}$. Then it is easily seen that

(i) $\{p_a^{-1}(R_a) : a \in A^*\}$ is an open cover of X and $p_a^{-1}(R_a) \subset p_b^{-1}(R_b)$ if $a \subset b$.

Since X is |A|-paracompact, there exists a locally finite family $\{E_a : a \in A^*\}$ of open sets in X such that $E_a \subset p_a^{-1}(R_a)$ for each $a \in A^*$. Put $\Lambda = [A^*]^{<\omega}$.

Put $D_{\lambda} = X - \bigcup \{ \operatorname{cl} E_a : a \in A^* - \lambda \}$ for each $\lambda \in \Lambda$. Then

(ii) $\{D_{\lambda} : \lambda \in \Lambda\}$ is an open cover of X, and $\operatorname{cl} D_{\lambda} \subset p_{a_{\lambda}}^{-1}(R_{a_{\lambda}})$ with $a_{\lambda} = \bigcup \{a : a \in \lambda\}$.

Let $Z_{a_{\lambda}} = Y_{a_{\lambda}} - p_{a_{\lambda}}(X - \operatorname{cl} D_{\lambda})$ for each $\lambda \in \Lambda$. Here notice that each $Z_{a_{\lambda}}$ is closed in $Y_{a_{\lambda}}$ and hence has property b_1 . Again let $T_{\lambda} = \operatorname{int} p_{a_{\lambda}}^{-1}(Z_{a_{\lambda}})$ for $\lambda \in \Lambda$. Then

(iii) $\cup \{T_{\lambda} : \lambda \in \Lambda\} = X.$

In fact, let $x \in X$. Then $x \in D_{\lambda}$ for some $\lambda \in \Lambda$ and there exists an $a \in A^*$ and an open set R in Y_a such that $x \in p_a^{-1}(R) \subset D_{\lambda}$. Moreover, $p_a^{-1}(R) \subset p_{a_{\mu}}^{-1}(Z_{a_{\mu}})$ where $\mu = \lambda \cup \{a\}$. To show this, assume that $y \in P_a^{-1}(R) - p_{a_{\mu}}^{-1}(Z_{a_{\mu}})$. Since $y_{a_{\mu}} \notin Z_{a_{\mu}}, y_{a_{\mu}} \in p_{a_{\mu}}(X - \operatorname{cl} D_{\mu})$ and so $y_{a_{\mu}} = p_{a_{\mu}}(z)$ for some $z \in X - \operatorname{cl} D_{\mu}$. Then $p_a(z) = y_a \in R$. Furthermore, $z \in p_a^{-1}(R) \subset \operatorname{cl} D_{\mu}$. Thus $z \in \operatorname{cl} D_{\mu}$ which is a contradiction. The proof of (iii) is completed.

By (iii), it follows from Lemma 1.4 that there is a refinement $\bigcup_{m < \omega} \mathcal{K}_m$, where we may express $\mathcal{K}_m = \{K_{m,\lambda} : \lambda \in \Lambda\}$, such that $\operatorname{CL} \mathcal{K}_m$ is locally finite in X and $\operatorname{cl} K_{m,\lambda} \subset p_{a_\lambda}^{-1}(Z_{a_\lambda})$ for each $\lambda \in \Lambda$. Since $Z_{a_\lambda} \subset \bigcup \{R_{a_\lambda\xi} : \xi \in \Xi\}$ for $\lambda \in \Lambda$, there is a refinement $\bigcup_{n < \omega} \mathcal{W}_{n,a_\lambda}$ of $\{R_{a_\lambda\xi} : \xi \in \Xi\}$ such that

(iv) Each $\mathcal{W}_{n,a_{\lambda}} = \{W_{n,a_{\lambda},\xi} : \xi \in \Xi\}$ is a locally finite collection of closed sets in $Z_{a_{\lambda}} \setminus \bigcup_{i < n} (\bigcup \mathcal{W}_{i,a_{\lambda}})$.

For each $m, n \in \omega$, put $\mathcal{H}_{mn} = \{p_{a_{\lambda}}^{-1}(W_{n,a_{\lambda},\xi}) \cap \operatorname{cl} K_{m,\lambda} : \xi \in \Xi, \lambda \in \Lambda\}$. Then it is easy to check that $\mathcal{H} = \bigcup_{m,n\in\omega}\mathcal{H}_{mn}$ refines \mathcal{G} . Define a map $f : \omega \times \omega \to \omega$, where $f(m,n) = \frac{1}{2}[(m+n)^2 + n + 3m]$. Then f is an injection and onto map. Let $\mathcal{H}_k = \mathcal{H}_{mn}$ with k = f(m,n). And put $H_k = X \setminus \bigcup_{i < k} (\bigcup \mathcal{H}_i), B_{na_{\lambda}} = Z_{a_{\lambda}} \setminus \bigcup_{j < n} (\bigcup \mathcal{W}_{j,a_{\lambda}})$.

Claim 1 cl $K_{m\lambda} \cap H_k \subset p_{a_\lambda}^{-1}(B_{na_\lambda})$ for each $\lambda \in \Lambda$ with k=f(m,n).

Assume that there is an $x \in \operatorname{cl} K_{m\lambda} \cap H_k - p_{a_\lambda}^{-1}(B_{na_\lambda})$. Then $x_{a_\lambda} \in Z_{a_\lambda}$ and $x \in p_{a_\lambda}^{-1}(W_{j_o,a_\lambda,\xi_o})$ for some $j_o < n$ and some $\xi_o \in \Xi$. Put $t = f(m, j_o) < k$. Then $x \in \bigcup \mathcal{H}_t$. This contradicts $x \in H_k$ and completes the proof of Claim 1.

Claim 2 Each \mathcal{H}_k is locally finite in H_k with k = f(m, n).

Let $x \in H_k$. Since $\{ cl K_{m,\lambda} : \lambda \in \Lambda \}$ is locally finite in X, take a $U \in \mathcal{N}(x)$ such that

 $(\operatorname{CL} \mathcal{K}_{m,\lambda})_{U\cap H_k}$ is finite, say $\{\lambda \in \Lambda : \operatorname{cl} K_{m,\lambda} \cap U \cap H_k \neq \emptyset\} = \Delta$ for some $\Delta \subset \Lambda$. Let $(\lambda,\xi) \in \Lambda \times \Xi$. We can consider the following two cases.

Case 1 If $x \notin \bigcup_{\mu \in \Delta} \operatorname{cl} K_{m,\mu}$, it follows that $V = U \cap \bigcap_{\mu \in \Delta} (X \setminus \operatorname{cl} K_{m,\mu}) \cap H_k$ is an open neighborhood of x in H_k . Then it is easy to check $V \cap p_{a_\lambda}^{-1}(W_{n,a_\lambda,\xi}) \cap \operatorname{cl} K_{m,\lambda} = \emptyset$ for each $\lambda \in \Lambda$.

Case 2 If $x \in \bigcup_{\mu \in \Delta} \operatorname{cl} K_{m,\mu}$, there exists a finite set $\Delta_0 \subset \Delta$ such that $x \in \operatorname{cl} K_{m,\mu}$ for each $\mu \in \Delta_0$. Since $x_{a_{\mu}} \in B_{na_{\mu}}$ by Claim 1, $\Xi_{\mu} = \{\xi \in \Xi : O(\mu) \cap B_{na_{\mu}} \cap W_{n,a_{\mu},\xi} \neq \emptyset\}$ is finite for some $O(\mu) \in \mathcal{N}(x_{a_{\mu}})$ by (v). Put

$$V = U \cap \cap_{\mu \in \Delta \setminus \Delta_0} (X \setminus \operatorname{cl} K_{m\mu}) \cap \cap_{\mu \in \Delta_0} p_{a_{\mu}}^{-1}(O(\mu)) \cap H_k.$$

Then, $V \cap p_{a_{\lambda}}^{-1}(W_{n,a_{\lambda},\xi}) \cap \operatorname{cl} K_{m,\lambda} \subset \bigcap_{\mu \in \Delta_0} p_{a_{\mu}}^{-1}(O(\mu)) \cap \operatorname{cl} K_{m\lambda} \cap H_k \cap p_{a_{\lambda}}^{-1}(W_{n,a_{\lambda},\xi}) \subset p_{a_{\mu}}^{-1}(O(\mu)) \cap W_{n,a_{\mu},\xi} \cap B_{na_{\mu}}) = \emptyset$ for all $(\lambda,\xi) \in \Delta_0 \times (\Xi \setminus \Xi_{\mu})$; if $\lambda \in \Lambda \setminus \Delta_0$, then $V \cap p_{a_{\lambda}}^{-1}(W_{n,a_{\lambda},\xi}) \cap \operatorname{cl} K_{m,\lambda} = \emptyset$ for each $\xi \in \Xi$. Hence the proof of Claim 2 is completed.

Finally, put $\mathcal{F}_k = \mathcal{H}_k |_{H_k}$ for each $k \in \omega$ with k = f(m, n).

Claim 3 \mathcal{F}_k is a collection of closed sets in H_k .

Pick a $W \in \mathcal{F}_k$. By Claim 1, $W = p_{a_\lambda}^{-1}(W_{n,a_\lambda,\xi}) \cap \operatorname{cl} K_{m,\lambda} \cap H_k = p_{a_\lambda}^{-1}(F) \cap p_{a_\lambda}^{-1}(B_{na_\lambda}) \cap \operatorname{cl} K_{m,\lambda} = p_{a_\lambda}^{-1}(F) \cap \operatorname{cl} K_{m,\lambda} \cap H_k$ for some $\lambda \in \Lambda$ and some $\xi \in \Xi$, where F is a closed subset in $Y_{a\lambda}$. Then W is closed in H_k .

The family $\bigcup_{k \in \omega} \mathcal{H}_k$ satisfies the conditions in Lemma 2.1 by Claims 1 and 3. Hence, X has property b_1 . \Box

Recall that a space X is called hereditarily property b_1 if every subspace of X has property b_1 . And we can easily check the following by Lemma 2.1.

Lemma 2.3 A space X is said to have hereditarily property b_1 iff every open subspace of X has property b_1 .

Similarly, we have σ -products for hereditarily property b_1 .

Theorem 2.4 Let $X = \sigma \{X\alpha : \alpha \in A\}$. Suppose X is hereditarily |A|-paracompact and every finite subproduct of $\{X\alpha : \alpha \in A\}$ has hereditarily property b_1 . Then X has hereditarily property b_1 .

Proof Let G be an arbitrary open subspace of X. Assume that $\mathcal{G} = \{G_{\xi} : \xi \in \Xi\}$ is an open cover of G and $A^* = [A]^{<\omega}$. For each $a \in A^*$ and $\xi \in \Xi$, put $R_{a\xi} = \bigcup \{R : R \text{ is open in } Y_a, p_a^{-1}(R) \cap G \subset G_{\xi}\}$ and $R_a = \bigcup \{R_{a\xi} : \xi \in \Xi\}$. Then

(1) $\{p_a^{-1}(R_a) : a \in A^*\}$ is an open cover of G and $p_a^{-1}(R_a) \subset p_b^{-1}(R_a)$ if $a \subset b$.

Since X is hereditarily |A|-paracompact, there is a locally finite family $\{E_a : a \in A^*\}$ of open sets in G such that $\operatorname{cl}_G E_a \subset p_a^{-1}(R_a)$ for each $a \in A^*$. Put $\Lambda = [A^*]^{<\omega}$. For each $\lambda \in \Lambda$, let us put $D_{\lambda} = G - \cup \{\operatorname{cl}_G E_a : a \in A^* - \lambda\}$ and put $a_{\lambda} = \cup \{a : a \in \lambda\}$. Then it is easily seen that

(2) $\{D_{\lambda} : \lambda \in \Lambda\}$ is an open cover of G and $\operatorname{cl}_{G} D_{\lambda} \subset p_{a_{\lambda}}^{-1}(R_{a_{\lambda}})$ for each $\lambda \in \Lambda$.

For each $\lambda \in \Lambda$, let us put $O_{\lambda} = \bigcup \{ O : O \text{ is open in } G_{a_{\lambda}} \text{ and } p_{a_{\lambda}}^{-1}(O) \subset D_{\lambda} \}$. Then

(3) $p_{a_{\lambda}}^{-1}(O_{\lambda}) \subset D_{\lambda} \subset p_{a_{\lambda}}^{-1}(R_{a_{\lambda}})$ for each $\lambda \in \Lambda$ and $p_{a_{\lambda}}^{-1}(O_{\lambda}) \subset p_{a_{\mu}}^{-1}(O_{\mu})$ if $\lambda \subset \mu$.

It can be easily checked that $\cup \{p_{a_{\lambda}}^{-1}(O_{\lambda}) : \lambda \in \Lambda\} = G$. Put $F_{\lambda} = \operatorname{cl} O_{\lambda} \cap (\operatorname{cl} R_{a_{\lambda}} - R_{a_{\lambda}})$. Then, we have the following.

(5) $p_{a_{\lambda}}^{-1}(F_{\lambda}) \cap G = \emptyset.$

To show this, assume the contrary. Take an $x \in p_{a_{\lambda}}^{-1}(F_{\lambda}) \cap G$. Then $x_{a_{\lambda}} \in F_{\lambda} \subset \operatorname{cl} R_{a_{\lambda}} - R_{a_{\lambda}}$, $x \notin \operatorname{cl}_{G} p_{a_{\lambda}}^{-1}(O_{\lambda})$ since $\operatorname{cl}_{G} p_{a_{\lambda}}^{-1}(O_{\lambda}) \subset p_{a_{\lambda}}^{-1}(R_{a_{\lambda}})$. Next, we have $x \in \operatorname{cl}_{G} p_{a_{\lambda}}^{-1}(O_{\lambda})$. To observe this, take an $H \in \mathcal{N}_{G}(x)$. Then there are some $a \in A^{*}$ and some open set W_{a} in Y_{a} such that $x \in p_{a}^{-1}(W_{a}) \subset H$. Let $\mu = \lambda \cup \{a\}$. Put $K = (p_{a}^{a_{\mu}})^{-1}(W_{a})$. Then $x \in p_{a_{\mu}}^{-1}(K) = (p_{a}^{a_{\mu}}p_{a_{\mu}})^{-1}(W_{a}) \subset H$. Since $x_{a_{\lambda}} \in F_{\lambda} \subset \operatorname{cl} O_{\lambda}, O_{\lambda} \cap p_{a}^{a_{\mu}}(K) \neq \emptyset$. Pick a $z \in O_{\lambda} \cap p_{a}^{a_{\mu}}(K)$. Then $z = p_{a}^{a_{\mu}}(b)$ for some $b \in K$. There is a $y \in X$ such that $p_{a_{\mu}}(y) = b$. i.e., $y_{a_{\lambda}} = p_{a}^{a_{\mu}}p_{a_{\mu}}(y) = b \in O_{\lambda}$. Moreover, $y \in p_{a_{\mu}}^{-1}(K) \cap p_{a_{\lambda}}^{-1}(O_{\lambda}) \subset H \cap p_{a_{\lambda}}^{-1}(O_{\lambda}) \neq \emptyset$. Thus, $x \in \operatorname{cl}_{G} p_{a_{\lambda}}^{-1}(O_{\lambda})$. This is a contradiction. Then (5) is true.

We can easily see that $R_{a_{\lambda}} \cap O_{\lambda} = \operatorname{cl} O_{\lambda} - F_{\lambda} \subset \bigcup_{\xi \in \Xi} R_{a_{\lambda}\xi}$ for each $\lambda \in \Lambda$. By property b_1 space of $R_{a_{\lambda}} \cap O_{\lambda}$, there is a cover $\bigcup_{n < \omega} \mathcal{W}_{n,a_{\lambda}}$ of $\{R_{a_{\lambda}\xi} : \xi \in \Xi\}$ such that each $\mathcal{W}_{n,a_{\lambda}} = \{W_{n,a_{\lambda},\xi} : \xi \in \Xi\}$ is a locally finite collection of closed sets in $R_{a_{\lambda}} \cap O_{\lambda} \setminus \bigcup_{i < n} (\bigcup \mathcal{W}_{i,a_{\lambda}})$.

For each $m, n \in \omega$, put $\mathcal{H}_{mn} = \{p_{a_{\lambda}}^{-1}(W_{n,a_{\lambda},\xi}) \cap \operatorname{cl} K_{m,\lambda} : \xi \in \Xi, \lambda \in \Lambda\}$. Then it is easy to check that $\mathcal{H} = \bigcup_{m,n\in\omega}\mathcal{H}_{mn}$ refines \mathcal{G} . Define a map $f : \omega \times \omega \to \omega$, where $f(m,n) = \frac{1}{2}[(m+n)^2 + n + 3m]$. Then f is an injection and onto map. Let $\mathcal{H}_k = \mathcal{H}_{mn}$ with k = f(m,n). And put $H_k = G \setminus \bigcup_{i < k} (\bigcup \mathcal{H}_i), B_{na_{\lambda}} = R_{a_{\lambda}} \cap O_{\lambda} \setminus \bigcup_{j < n} (\bigcup \mathcal{W}_{j,a_{\lambda}})$.

Then, we assert that

(6) Each \mathcal{H}_k is locally finite in H_k ;

(7) $\mathcal{H}_k|_{H_k}$ is a collection of closed sets in H_k .

The proofs of (6), (7) are quite similar to Claims 1–3 of Theorem 2.2. So, the details are omitted.

Hence, G has property b_1 . Furthermore, X has hereditarily property b_1 . \Box

3. Tychonoff products

It is well known that most covering properties poorly maintain its products. Now we prove the following theorems.

Theorem 3.1 Let X be a P-space and Y a metric space. Then, $X \times Y$ has property b_1 iff X has property b_1 .

Proof \Leftarrow . Let $\mathcal{L} = \bigcup_{n < \omega} \mathcal{L}_n$ be a base of Y satisfying the conditions (a)–(c) in Lemma 1.5. Let $\mathcal{G} = \{G_{\xi} : \xi \in \Xi\}$ be an open cover of $X \times Y$ and $\Omega^* = \bigcup_{n < \omega} [\Omega]^n$. For each $s \in \Omega^*$ and $\xi \in \Xi$, put $L(s,\xi) = \bigcup \{E : E \text{ is open in } X, E \times L(s) \subset G_{\xi}\}$ and $E(s) = \bigcup \{E(s,\xi) : \xi \in \Xi\}$. Then $E(s) \subset E(s \oplus \alpha)$ for $\alpha \in \Omega$. Since X is a P-space, there is a closed set F(s) in X such that

(1) $F(s) \subset E(s)$ for each $s \in \Omega^*$;

(2) $\cup_{n < \omega} F(s | n) = X$ whenever $\cup_{n < \omega} E(s | n) = X$ for $s \in \Omega^{\omega}$.

Since each F(s) has property b_1 , there exists an open cover $\mathcal{B}_s = \bigcup_{n < \omega} \mathcal{B}_{s,n}$, where $\mathcal{B}_{s,n} = \{B(s, n, \xi) : \xi \in \Xi\}$, such that

(3) Each $\mathcal{B}_{s,n}$ is a locally finite collection of closed sets in $F(s) \setminus \bigcup_{i < n} (\bigcup \mathcal{B}_{s,i})$, and $B(s, n, \xi) \subset E(s, n, \xi)$ for each $\xi \in \Xi$.

For each $m, n \in \omega$, put $\mathcal{D}_{m,n} = \{B(s, n, \xi) \times \operatorname{cl} L(s) : s \in \Omega^m, \xi \in \Xi\}$. Then it is easily seen that

(4) $\mathcal{D} = \bigcup_{m,n \in \omega} \mathcal{D}_{m,n}$ is a refinement of \mathcal{G} .

Define a map $f: \omega \times \omega \to \omega$, where $f(m,n) = \frac{1}{2}[(m+n)^2 + n + 3m]$. Then, f is a bijection map. Put $\mathcal{H}_k = \mathcal{D}_{mn}$ when k = f(m,n). Then, we prove that

(5) Each \mathcal{H}_k is locally finite in $X \times Y \setminus \bigcup_{i < k} (\bigcup \mathcal{H}_i)$ with k = f(m, n).

In fact, let $(x, y) \in X \times Y \setminus \bigcup_{i < k} (\cup \mathcal{H}_i)$. Since $\{\operatorname{cl} L(s) : s \in \Omega^m\}$ is locally finite in Y, there exists $W \in N(y)$ such that $\Delta = \{s \in \Omega^m : W \cap \operatorname{cl} L(s) \neq \emptyset\}$ is a finite set. Let $(s, \xi) \in \Omega^m \times \Xi$. We can concern about the two cases.

(a) If $y \notin \bigcup_{t \in \Delta} \operatorname{cl} L(t)$, then $V = X \times (W \cap_{t \in \Delta} (Y \setminus \operatorname{cl} L(t))) \in N(y)$. It is easy to check $V \cap (B(s, n, \xi) \times \operatorname{cl} L(s)) = \emptyset$ for each $s \in \Omega^m$.

(b) If $y \in \bigcup_{t \in \Delta} \operatorname{cl} L(t)$, there is a finite set $\Delta_0 \subset \Delta$ such that $y \in \operatorname{cl} L(t)$ for each $t \in \Delta_0$. By (3), each $\mathcal{B}_{t,n}$ is a locally finite collection of closed sets in $X \setminus \bigcup_{i < n} (\bigcup \mathcal{B}_{t,i})$ since F(t) is closed in X. Take some neighborhood U_t of x in $X \setminus \bigcup_{i < n} (\bigcup \mathcal{B}_{t,i})$ for $t \in \Delta_0$. Then $\Xi_t = \{\xi \in \Xi : U_t \cap B(t,n,\xi) \neq \emptyset\}$ is a nonempty finite set. Then it follows that $V = \bigcap_{t \in \Delta_0} U_t \times (W \cap_{s \in \Delta \setminus \Delta_0} (Y \setminus \operatorname{cl} L(s)))$ is a neighborhood of (x, y) in $X \times Y \setminus \bigcup_{i < k} (\bigcup \mathcal{H}_i)$. Moreover, $V \cap (B(s, n, \xi) \times \operatorname{cl} L(s)) \subset (U_t \cap B(t, n, \xi)) \times (W \cap \operatorname{cl} L(t)) = \emptyset$ for $(s, \xi) \in \Delta_0 \times (\Xi \setminus \Xi_t)$; if $s \in \Omega^m \setminus \Delta_0$, then $V \cap (B(s, n, \xi) \times \operatorname{cl} L(s)) = \emptyset$ for each $\xi \in \Xi$.

Since $\bigcup_{i < n} ((\bigcup_{\xi \in \Xi} B(s, i, \xi)) \times \operatorname{cl} L(s)) \subset \bigcup_{r < k} (\bigcup \mathcal{H}_r)$ whenever i < n with r = f(m, i) for each $s \in \Omega^m$, each $\mathcal{H}_k |_{X \times Y \setminus \bigcup_{i < k} (\bigcup \mathcal{H}_i)}$ is a closed family in $X \times Y \setminus \bigcup_{i < k} (\bigcup \mathcal{H}_i)$. Since \mathcal{D} refines \mathcal{G} , by Lemma 2.1, X has property b_1 .

⇒. The conclusion holds trivially since $X \times \{y\}$ is closed in $X \times Y$ for a fixed point $y \in Y$. \Box

Theorem 3.2 Let X be a strongly zero-dimensional and compact space. Then, $X \times Y$ has property b_1 iff Y has property b_1 .

Proof Let \mathcal{U} be an open cover of $X \times Y$. Take some $U(x, y) \in \mathcal{U}$ for each $(x, y) \in X \times Y$. There exist $S(x, y) \in \mathcal{N}(x)$ and $T(x, y) \in \mathcal{N}(y)$ such that $(x, y) \in S(x, y) \times T(x, y) \subset U(x, y)$. Since $X \times \{y\}$ is compact, there exists an open cover $\{S(x, y) : x \in A(y)\}$ of X where A(y) is a finite set. By Lemma 1.6, there is a disjoint collection $\{E(x, y) : x \in A(y)\}$ such that

(i) E(x, y) is open-and-closed in X and $E(x, y) \subset S(x, y)$ for each $x \in A(y)$;

Put $T(y) = \cap \{T(x, y) : x \in A(y)\}$. Then

(ii) $X \times \{y\} \subset \cup \{E(x, y) \times T(y) : x \in A(y)\}$ and $Y = \cup \{T(y) : y \in Y\};$

Since Y has property b_1 , there is a cover $\bigcup_{n < \omega} \mathcal{B}_n$ of Y, where $\mathcal{B}_n = \{B_{n,\alpha} : \alpha \in \Lambda_n\}$, such that

(iii) \mathcal{B}_n is a locally finite collection of closed sets in $Y \setminus \bigcup_{i < n} (\cup \mathcal{B}_i)$;

(iv) Each $B_{n,\alpha} \subset T(y_{n,\alpha})$ for some $y_{n,\alpha} \in Y$.

Put $\mathcal{H}_n = \{ E(x, y_{n,\alpha}) \times B_{n,\alpha} : x \in A(y_{n,\alpha}), \alpha \in \Omega_n \}$ for each $n \in \omega$. Then it is easy to check $\mathcal{H} = \bigcup_{n < \omega} \mathcal{H}_n$ refines \mathcal{U} . Put $(X \times Y)_n = X \times Y \setminus \bigcup_{i < n} (\cup \mathcal{H}_i)$ and $Y_n = Y \setminus \bigcup_{i < n} \mathcal{H}_i$. Then

 $(X \times Y)_n = X \times Y_n$ since $\cup \mathcal{H}_n = X \times (\cup \mathcal{H}_n)$. By the similar way to that of Theorem 3.1 (5), we have each \mathcal{H}_n is locally finite in $(X \times Y)_n$ and $\mathcal{H}_n |_{(X \times Y)_n}$ is a collection of closed subsets of $(X \times Y)_n$. Hence, $X \times Y$ has property b_1 since $\cup_{n \in \omega} \mathcal{H}_n$ satisfies the conditions in Lemma 2.1.

 \Rightarrow . The conclusion holds trivially since $\{x\} \times Y$ is closed in $X \times Y$ for a fixed point $x \in X$. \Box

Acknowledgement The authors would like to express their thanks to the National Natural Science Foundation Committee of China for the support to this subject.

References

- [1] J. C. SMITH. Irreducible spaces and properties b_1 . Topology. Proc., 1980, 5: 187–200.
- [2] D. K. BUKE. Covering Properties, Handbook of Set Theoretic Topology. North Holland, Amsterdam, 1984.
- [3] K. CHIBA. Covering properties in products. Math. Japonica., 1989, 34(5): 693-713.
- [4] K. CHIBA. The submetacompactness of σ -products. Math. Japonica., 1991, **36**(4): 711–715.
- [5] H. H. CORSON. Normality in subsets of product spaces. Amer. J. Math., 1959, 81: 785–796.
- [6] Y. YASUI. Generalized Paracompactness. North-Holland, Amsterdam, 1989.
- [7] K. MORRITA. Products of normal space with metric spaces. Math. Annalen., 1964, 154: 365–382.
- [8] Jiguang JIANG. Paracompactness and property b₁. Acta Math. Sinica, 1989, **32**(4): 551–555. (in Chinese)
- [9] G. R. ENGELKIN. General Topology. Polish Scientific Publisher, Warszawa, 1977.
- [10] Y. KODAMA, K. NAGAMI. General Topology. Iwanami, Japan, 1974.
- [11] Peiyong ZHU. Inverse limits and infinite products of expandable. Sci. Math. Jpn., 2007, 65(2): 173–178.
- [12] Peiyong ZHU. Tychonoff products of weakly θ-refinable spaces. J. Math. Res. Exposition, 2004, 24(1): 155–158. (in Chinese)
- [13] Peiyong ZHU. Hereditarily screenableness and its Tychonoff products. Topology Appl., 1998, 83(3): 231–238.