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Abstract Let G be a group and πe(G) the set of element orders of G. Let k ∈ πe(G) and mk

be the number of elements of order k in G. Let τe(G) = {mk|k ∈ πe(G)}. In this paper, we

prove that L2(16) is recognizable by τe(L2(16)). In other words, we prove that if G is a group

such that τe(G) = τe(L2(16)) = {1, 255, 272, 544, 1088, 1920}, then G is isomorphic to L2(16).
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1. Introduction

Let n be an integer. We denote by π(n) the set of all prime divisors of n. If G is a finite

group, then π(|G|) is denoted by π(G). Denote by πe(G) the set of element orders of G. And

we use Pr and nr to denote a Sylow r-subgroup and the number of Sylow r-subgroups of G,

respectively. Let k ∈ πe(G). Then we denote by mk the number of elements of order k in G.

Let τe(G) = {mk|k ∈ πe(G)}. In 1987, Thompson posed a very interesting problem related to

algebraic number fields as follows (see [9] and Problem 12.37 of [6]).

Thompson Problem Let Γ(G) = {(n, Sn)|n ∈ πe(G), Sn ∈ τe(G)}, where Sn is the number of

elements with order n. Suppose that Γ(G) = Γ(H). If G is a finite solvable group, is it true that

H is also necessarily solvable?

So far, no one can solve this problem completely, even give a counterexample. We know that

Γ(G) consists of two sets, that is, πe(G) and τe(G). In 1986, the second author of this note

studied the case of the simple group A5, and he proved an interesting result using only πe(G),

that is, a finite group G is isomorphic to A5 if and only if πe(G) = {1, 2, 3, 5} (see [8]). Afterward,

many simple groups are characterized using only the set of element orders and there are many

relative papers. Of course, the following question is valuable. Consider the sizes of elements of

same order but disregard the actual orders of elements in Γ(G) of Thompson Problem. In other

words, with only τe(G), whether can one characterize finite simple groups? Namely, suppose G

is a finite simple group, whether can it be characterized using only the set τe(G)?
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We denote by k(τe(G)) the number of isomorphism classes of finite groups H satisfying

τe(G) = τe(H). By using this function we pose the following definition:

Definition 1.1 Given a natural number n, a finite group G is called n-recognizable by τe(G)

if k(τe(G)) = n. Usually a 1-recognizable group is called a recognizable group. If there exist

infinitely many non-isomorphic finite groups H such that τe(G) = τe(H), then we call G a

non-recognizable group by τe(G).

In [7], it was proved that A5 is determined by τe(A5). In [5], it was shown that if G is a

group and τe(G) = τe(PSL(2, q)), where q ∈ {7, 8, 11, 13}, then G ∼= PSL(2, q). In fact the

authors of [7] and [5] proved that some simple groups can be determined by τe(G) when |τe(G)|

is smaller than 6. Is it true that G can be characterized by τe(G) if G is a finite simple group

and |τe(G)| ≥ 6? In this paper we continue this work and we show that L2(16) is recognizable

by τe(L2(16)). And the main result is as follows:

Theorem L2(16) is recognizable by τe(L2(16)). In other words, if G is a group such that

τe(G) = τe(L2(16)) = {1, 255, 272, 544, 1088, 1920}, then G is isomorphic to L2(16).

Note that |τe(L2(16))| = 6. We find that this problem is more complicated when |τe(G)| is

larger.

2. Preliminaries

Before starting the proof of theorem, we will mention a well-known result of Frobenius [3],

which is quoted frequently in the sequel.

Lemma 2.1 Let G be a finite group and m be a positive integer dividing |G|. If Lm(G) = {g ∈

G|gm = 1}, then m||Lm(G)|.

Lemma 2.2 ([7]) Let G be a group containing more than two elements. If the maximal number

s of elements of the same order in G is finite, then G is finite and |G| ≤ s(s2 − 1).

From [1] we get the following Lemma.

Lemma 2.3 Let G be a finite 2-group and 2n | |G|. Then the number of elements of order 2n

is divisible by 2n unless G is a cyclic, an elementary abelian or a 2-group of maximal class.

Lemma 2.4 ([4]) Let G be a finite 2-group of maximal class. Then G is isomorphic to one of

the following groups:

(I) A dihedral group: 〈a, b|a2
n−1

= b2 = 1, b−1ab = a−1〉, n ≥ 2;

(II) A generalized quaternion group: 〈a, b|a2
n−1

= 1, b2 = a2
n−2

, b−1ab = a−1〉, n ≥ 3;

(III) A semi-dihedral group: 〈a, b|a2
n−1

= b2 = 1, b−1ab = a−1+2
n−2

〉, n ≥ 4.

Lemma 2.5 ([2]) Let G be a finite group and let q ≥ 5 be a prime power, q 6= 9. If πe(G) =

πe(L2(q)), then G ∼= L2(q).
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3. Proof of the main result

Theorem 3.1 Let G be a group such that τe(G) = τe(L2(16)) = {1, 255, 272, 544, 1088, 1920}.

Then G is isomorphic to L2(16).

Proof Let Sm be the number of elements of order m. By Lemma 2.2 we can assume that G is

finite. Note that Sm = kϕ(m), where k is the number of cyclic subgroups of order m and ϕ(m)

is Euler totient function. Moreover, if m > 2, then ϕ(m) is even.

First we claim that π(G) ⊆ {2, 3, 5, 17}. Since 255 ∈ τe(G), it follows that 2 ∈ π(G) and

S2 = 255. Suppose that there exists a prime p > 5 and p ∈ π(G). Then by Lemma 2.1, we

have p | 1 + Sp for some Sp ∈ {272, 544, 1088, 1920}. Note that ϕ(p) | Sp. Hence p = 17 and

S17 = 1920. Then π(G) ⊆ {2, 3, 5, 17}. In addition, if 3 and 5 ∈ π(G), similarly we can get that

S3 = 272 or 1088 and S5 = 544.

By a discussion similar to the above we will consider the possibilities of πe(G). By Lemma

2.1 and ϕ(m) | Sm, it is not hard to get that if 2i ∈ πe(G), then i ≤ 8; if 3s ∈ πe(G), then

s ≤ 1; if 5t ∈ πe(G), then t ≤ 1; if 17k ∈ πe(G), then k ≤ 1; if 2i · 3 ∈ πe(G), then i ≤ 7; if

2i · 5 ∈ πe(G), then i ≤ 6; if 2i · 17 ∈ πe(G), then i ≤ 4. Finally we claim that 85∈πe(G). If not,

then 85 | 1 + S5 + S17 + S85 by Lemma 2.1 for S85 ∈ {272, 544, 1088, 1920} and it is easy to see

that this is impossible. Thus 85∈πe(G). Therefore, πe(G) ⊆ {1, 2, 22, . . . , 28}
⋃
{3, 2, ·3, . . . , 27 ·

3}
⋃
{5, 2·5, . . . , 26·5}

⋃
{17, 2·17, . . . , 24·17}

⋃
{3·5, 3·17}

⋃
{2·3·5, . . . , 25·3·5, 2·3·17, . . . , 23·3·17}.

Now we assume that

|G| = 4080 + 272k1 + 544k2 + 1088k3 + 1920k4 = 2m · 3n · 5i · 17j , (1)

where m, n, i and j are non-negative integers. And we consider the following cases.

Case 1 Let π(G) = {2}. Then πe(G) ⊆ {1, 2, . . . , 28} and so |πe(G)| ≤ 9. From the equation (1)

it follows that 255+17k1 +34k2 +68k3 +120k4 = 2m−4. Note that 0 ≤ k1 +k2 +k3 +k4 ≤ 3 and

2 | 255+17k1, thus k1 is odd and so k1 = 1 or 3. If k1 = 3, then k2 = k3 = k4 = 0. Consequently

we have 306 = 2m−4, which is impossible. Hence k1 = 1 and 136 + 17k2 + 34k3 + 60k4 = 2m−5,

0 ≤ k2 + k3 + k4 ≤ 2. And so k2 = 0 or 2 since 2 | 17k2. If k2 = 2, then k3 = k4 = 0 and it

follows that 170 = 2m−5, which is a contradiction. Hence k2 = 0 and 68 + 17k3 + 30k4 = 2m−6.

Since 2 | 17k3 it follows that k3 = 0 or 2. If k3 = 2, then k4 = 0 and so 102 = 2m−6, which is

impossible. Therefore, k3 = 0 and 68 + 30k4 = 2m−6, 0 ≤ k4 ≤ 2. Similarly, we have k4 = 2

and so 128 = 2m−6. Therefore, m = 13 and |G| = 213. In fact such 2-group does not exist. By

Lemma 2.3 we know that G is cyclic, elementary Abelian or a 2-group of maximal class. We

have shown that exp(G) = 28, thus G is 2-group of maximal class. And it is easy to see that this

is impossible by Lemma 2.4.

Case 2 Let π(G) = {2, 17}. If P17 is a Sylow 17-subgroup of G, then it follows that |P17| | 1+S17

by Lemma 2.1. Namely, |P17| | 1921, thus |P17| = 17 and so n17 = S17/ϕ(17) = 120, which

implies that 3 and 5 ∈ π(G). This is a contradiction.

Similarly, we can prove that π(G) 6= {2, 5}, {2, 5, 17}, {2, 3, 17} and {2, 3, 5}.
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Case 3 Let π(G) = {2, 3}.

(3.1) If S3 = 272, then |P3| | 1 + S3 by Lemma 2.1. Namely, |P3| | 273. Then |P3| = 3 and

it follows that n3 = 272/ϕ(3) = 136. Thus 17 ∈ π(G), which is a contradiction.

(3.2) If S3 = 1088, then |P3| | 1 + S3 by Lemma 2.1. Thus |P3| ≤ 9. If |P3| = 3, then

similarly to (3.1) we can get a contradiction. So |P3| = 9 and it follows that 255+ 17k1 +34k2 +

68k3 + 120k4 = 2m−4 · 32. It is evident that 0 ≤ k1 + k2 + k3 + k4 ≤ 11 and m > 8. Hence

24 | 255+17k1+34k2+68k3, namely, 24 | k1+2k2+4k3−9. We know that k1+2k2+4k3−9 ≤ 35.

Therefore, k1 + 2k2 + 4k3 − 9 = 0 or 24. If k1 + 2k2 + 4k3 − 9 = 0, then 17 + 5k4 = 2m−7 · 3,

which is impossible. If k1 + 2k2 + 4k3 − 9 = 24, then 34 + 5k4 = 2m−7 · 3. Also we can see that

it is impossible.

Case 4 Let π(G) = {2, 3, 5, 17}.

(4.1) If S3 = 272, then |P3| | 1 + S3 by Lemma 2.1. Namely, |P3| | 273. Then |P3| = 3.

Similarly, we can get that |P5| = 5 and |P17| = 17. Then from the equation (1) we have

|G| = 4080 + 272k1 + 544k2 + 1088k3 + 1920k4 = 2m · 3 · 5 · 17, 0 ≤ k1 + k2 + k3 + k4 ≤ 33.

Therefore, 17 | k4 and it follows that k4 = 0 or 17. If k4 = 17, then 135+k1+2k2+4k3 = 2m−4·3·5.

Thus 15 | k1+2k2+4k3. Note that k1+2k2+4k3 ≤ 64 since 0 ≤ k1+k2+k3 ≤ 16. Consequently,

k1 +2k2 +4k3 = 0, 15, 30 or 45. If k1 +2k2 +4k3 = 0, then 135 = 2m−4 ·3 ·5, which is impossible.

Similarly, k1 +2k2 +4k3 6= 15, 30 and 45. So k4 = 0 and we have 15+k1+2k2 +4k3 = 2m−4 ·3 ·5.

If 6 ∈ πe(G), then 6 | 1 + S2 + S3 + S6 by Lemma 2.1 for S6 ∈ {272, 544, 1088, 1920}. Hence

S6 = S17 = 1920, which is a contradiction since k4 = 0. And so 6∈πe(G). By the same reason

28 and 10∈πe(G). Thus |πe(G)| ≤ 17. Therefore, 0 ≤ k1 + k2 + k3 ≤ 11, which implies that

0 ≤ k1 + 2k2 + 4k3 ≤ 44. Then k1 + 2k2 + 4k3 = 0, 15 or 30 since 15 | k1 + 2k2 + 4k3.

If k1 + 2k2 + 4k3 = 0, then k1 = k2 = k3 = 0. Thus |πe(G)| = 6. If 15∈πe(G), then we

consider P5 acts point freely on the set of elements of order 3. Therefore, |P5| | S3. Namely,

5 | 272, which is a contradiction. Thus 15 ∈ πe(G) and so πe(G) = {1, 2, 3, 5, 15, 17}. And it

follows that G ∼= L2(16) by Lemma 2.5. If k1 + 2k2 + 4k3 = 15, then m = 5. We consider P2

acts point freely on the set of elements of order 3. Thus |P2| | S3, namely 25 | 272, which is a

contradiction. If k1 + 2k2 + 4k3 = 30, then 45 = 2m−4 · 3 · 5, which is also a contradiction.

(4.2) If S3 = 1088, then |P3| ≤ 9 since |P3| | 1 + S3. We claim that |P3| = 9.

If |P3| = 3, then by a discussion similar to (4.1) we can get that |G| = 4080+272k1+544k2 +

1088k3 + 1920k4 = 2m · 3 · 5 · 17. Also we have 6, 10, 51∈πe(G), and k4 = 0, which implies that

15 + k1 + 2k2 + 4k3 = 2m−4 · 3 · 5.

By Lemma 2.1 we know that 102 | 1 + S2 + S3 + S17 + S34 for S34 ∈ {272, 544, 1088, 1920}.

Therefore, 102 | S34, which is impossible. Hence 34∈πe(G), and it follows that |πe(G)| ≤ 12,

which implies that k1 + k2 + k3 ≤ 6, and so k1 + 2k2 + 4k3 ≤ 24. Then k1 + 2k2 + 4k3 = 0 or 15

since 15 | k1 + 2k2 + 4k3.

If k1 +2k2 +4k3 = 0, then similarly to (4.1) we get that G ∼= L2(16), which is a contradiction

since we know that the number of elements of order 3 of L2(16) is 272. If k1 + 2k2 + 4k3 = 15,

then m = 5. If 25 ∈ πe(G), then π(n2) ⊆ {2, 17} since k4 = 0 and S17 = 1920. Thus 3 and 5 ∈
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π(NG(P2)). Note that NG(P2)/CG(P2) . Aut(P2) and π(CG(P2)) = {2}, then 15 | |Aut(P2)|,

which is a contradiction. Consequently, 25∈πe(G) and so |πe(G)| ≤ 9. Hence k1 + k2 + k3 ≤ 3,

which implies k1 + 2k2 + 4k3 ≤ 12. We get a contradiction. Therefore |P3| 6= 3 and so |P3| = 9.

Since 51∈πe(G) we consider P3 acts point freely on the set of elements of order 17. Then

|P3| | S17, namely, 9 | 1920, which is a contradiction.

Now the proof of Theorem 3.1 is completed. 2

Remark By [4, Chap. 2, Theorems 8.2–8.5] we can get the following statements:

(i) If 2 ∤ q, then τe(L2(q)) = {1, ϕ(d) · q · (q + 1)/2, 1 < d | (q − 1)/2, ϕ(s) · q · (q − 1)/2, 1 <

s | (q + 1)/2, q2 − 1}.

(ii) If 2 | q, then τe(L2(q)) = {1, ϕ(d) · q · (q + 1)/2, 1 < d | (q − 1), ϕ(s) · q · (q − 1)/2, 1 < s |

(q + 1), q2 − 1}, where ϕ is Euler’s totient function.

Problem 1 We try to make a further study to the problem of characterization of finite simple

groups by τe(G), thus we give the above remark. Now from [5], [7] and this paper we know that

L2(2
n) can be characterized by τe(L2(2

n)), n = 2, 3, 4. Is it true that L2(2
m) can be characterized

by τe(L2(2
m)) for an arbitrary natural number m?

Problem 2 Let G be a finite simple group. Then from Lemma 2.2 we know that G is n-

recognizable by τe(G) for some natural number n. Do there exist two finite simple groups G and

H not isomorphic to each other such that τe(G) = τe(H)?
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