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Abstract Two graphs are defined to be adjointly equivalent if and only if their complements

are chromatically equivalent. Using the properties of the adjoint polynomials and the fourth

character R4(G), the adjoint equivalence class of graph Bn−8,1,4 is determined. According to

the relations between adjoint polynomial and chromatic polynomial, we also simultaneously

determine the chromatic equivalence class of Bn−8,1,4 that is the complement of Bn−8,1,4.
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character.
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1. Introduction

The graphs considered in this paper are finite undirected and simple graphs. We follow the

notation of Bondy and Murty [1], unless otherwise stated. For a graph G, let V (G), E(G), p(G),

q(G) and G be the set of vertices, the set of edges, the order, the size and the complement of G,

respectively.

For a graph G, we denote by P (G, λ) the chromatic polynomial of G. A partition {A1, A2,

. . . , Ar} of V (G), where r is a positive integer, is called an r-independent partition of graph

G if every Ai is nonempty independent set of G. We denote by α(G, r) the number of r-

independent partitions of G. Thus the chromatic polynomial G is P (G, λ) =
∑

r≥1 α(G, r)(λ)r ,

where (λ)r = λ(λ − 1) · · · (λ − r + 1) for all r ≥ 1. The readers can turn to [17] for details on

chromatic polynomials.

Two graphsG andH are said to be chromatically equivalent, denoted by G ∼ H , if P (G, λ) =

P (H,λ). By [G] we denote the equivalence class determined by G under “∼”. It is obvious that

“∼” is an equivalence relation on the family of all graphs. A graph G is called chromatically

unique (or simply χ − unique) if H ∼= G whenever H ∼ G. See [4, 5] for many results on this

field.
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Definition 1.1 ([7]) Let G be a graph with p vertices. The polynomial

h(G, x) =

p
∑

i=1

α(G, i)xi

is called its adjoint polynomial.

Definition 1.2 ([7]) Let G be a graph and h1(G, x) the polynomial with a nonzero constant

term such that h(G, x) = xρ(G)h1(G, x). If h1(G, x) is an irreducible polynomial over the rational

number field, then G is called irreducible graph.

Two graphs G and H are said to be adjointly equivalent, denoted by G ∼h H , if h(G, x) =

h(H,x). Evidently, “∼h” is an equivalence relation on the family of all graphs. Let [G]h =

{H |H ∼h G}. A graph G is said to be adjointly unique (or simply h-unique) if G ∼= H whenever

G ∼h H .

Theorem 1.1 ([3]) (1) G ∼h H if and only if G ∼ H ; (2) [G]h = {H |H ∈ [G]}; (3) G is

χ-unique if and only if G is h-unique.

The graphs with order n used in this paper are drawn as follows (see Figure 1).

ξ

r

r

r r

r

r

@@

��

��

p
p
p
p

p
p
p
p
p
p
p
p

p s

2

1
2 r

3
r

r r

r r

r r

�� @@

p p
p p
p p
p p
p p
p p
p p
p p
p p

r s

1 1

0 0

r r

r

r

r

r r

r r

r r

@@ ��

�� @@

p
p
p
p

p p
p p
p p
p p

s t

2 2

1 1
0

1

r r r

r

r

r r

@@ ��

�� @@

p
p
p
p
p
p
p
p
p

r r

r r

r

r

r

r r

r r

@@ ��

�� @@

p p
p p
p p
p p

p p
p p
p p
p p

p
p
p
p

t+ b t+ a

t

1

0
1 1

r s

r

r r

r

�� @@

@@ ��

Cr(Ps) Qr,s Br,s,t Fn Ur,s,t,a,b K−
4

r ≥ 4, s ≥ 2 r, s ≥ 1 r, s, t ≥ 1 n ≥ 6 r, s, t, a, b ≥ 1 n = 4

ψ

r

r r

r r

�� @@

p p p p p p p p p

r

r r

r

r

�� @@
@@ ��

p
p
p
p
p
p
p
p
p

r

r

r r

r

r

r r

@@

��

��

�� @@

p
p
p
p

p
p
p
p s

2

1
2 r

3
r r

r

r

r

r r

r

r

@@ ��

�� @@

p
p
p
p
p
p
p
p
p

p
p
p
p

r

1

0

1

0

s

r r

r

@@��

r

r

r

r

r r

r

r

�� @@

p
p
p
p

p
p
p
p

p
p
p
p

s

1

0

1

1

r

t

r r

r r

r

@
@

@

�
�

�

ψ1
n ψ2

n ψ3
n(r, s) ψ4

n(r, s) ψ5
n(r, s, t) ψ6

5

n ≥ 5 n ≥ 5 r ≥ 4, s ≥ 2 r, s ≥ 1 r, s, t ≥ 1 n = 5

Figure 1 Families of ξ and ψ

Now we define some classes of graphs with order n, which will be used throughout the paper.

(1) Cn(resp., Pn) denotes the cycle (resp., the path) of order n, and write C = {Cn|n ≥ 3},
P = {Pn|n ≥ 2} and U = {U1,1,t,1,1|t ≥ 1}.

(2) Dn(n ≥ 4) denotes the graph obtained from C3 and Pn−2 by identifying a vertex of C3

with a pendent vertex of Pn−2.
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(3) Tl1,l2,l3 is a tree with a vertex v of degree 3 such that Tl1,l2,l3 − v = Pl1 ∪ Pl2 ∪ Pl3 and

l3 ≥ l2 ≥ l1, write T0 = {T1,1,l3|l3 ≥ 1} and T = {Tl1,l2,l3 |(l1, l2, l3) 6= (1, 1, 1)}.
(4) ϑ = {Cn, Dn,K1, Tl1,l2,l3 |n ≥ 4}.
(5) ξ = {Cr(Ps), Q(r, s), Br,s,t, Fn, Ur,s,t,a,b,K

−
4 }.

(6) ψ = {ψ1
n, ψ

2
n, ψ

3
n(r, s), ψ4

n(r, s), ψ5
n(r, s, t), ψ6

5}.
For convenience, we simply denote h(G, x) by h(G) and h1(G, x) by h1(G). By β(G) and

γ(G) we denote the smallest real root of h(G), respectively. Let dG(v), simply denoted by d(v),

be the degree of vertex v. For two graphs G and H , G ∪H denotes the disjoint union of G and

H , and mH stands for the disjoint union of m copies. By Kn we denote the complete graph with

order n. Let nG(K3) and nG(K4) denote the number of subgraphs isomorphic to K3 and K4,

respectively. On the real field, let g(x)|f(x) (resp., g(x) ∤ f(x)) denote g(x) divides f(x) (resp.,

g(x) does not divide f(x)) and ∂(f(x)) denote the degree of f(x). By (f(x), g(x)) we denote the

largest common factor of f(x) and g(x).

It is an important problem to determine [G] for a given graph G. From Theorem 1.1, it is

obvious that the goal of determining [G] can be realized by determining [G]h. Thus, if q(G) is

large, it may be easier to study [G]h rather than [G]. The related topics have been partially

discussed in this respect by Dong et al in [3, 14, 15]. In this paper, using the properties of adjoint

polynomials, we determine the [Bn−8,1,4]h of graph Bn−8,1,4, simultaneously, [Bn−8,1,4] is also

determined, where n ≥ 7.

2. Preliminaries

For a polynomial f(x) = xn + b1x
n−1 + b2x

n−2 + · · · + bn, we define

R1(f(x)) =

{

−
(

b1
2

)

+ 1, if n = 1.

b2 −
(

b1−1
2

)

+ 1, if n ≥ 2.

For a graph G, we write R1(G) instead of R1(h(G)).

Definition 2.1 ([2, 7]) Let G be a graph with q edges.

(1) The first character of a graph G is defined as

R1(G) =

{

0, if q = 0.

b2(G) −
(

b1(G)−1
2

)

+ 1, if q > 0.

(2) The second character of a graph G is defined as

R2(G) = b3(G) −
(

b1(G)

3

)

− (b1(G) − 2)

(

b2(G) −
(

b1(G)

2

)

)

− b1(G),

where bi(G) (0 ≤ i ≤ 3) is the first four coefficients of h(G).

Lemma 2.1 ([2, 7]) Let G be a graph with k components of G1, G2, . . . , Gk. Then

h(G) =
∏k

i=1 h(Gi) and Rj(G) =
∑k

i=1Rj(Gi) for j = 1, 2.

It is obvious that Rj(G) is an invariant of graphs. So, for any two graphs G and H , we have

Rj(G) = Rj(H) for j = 1, 2 if h(G) = h(H) or h1(G) = h1(H).
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Lemma 2.2 ([7, 8]) Let G be a graph with p vertices and q edges. Denote by M the set of the

triangles in G and by M(i) the number of triangles which cover the vertex i in G. If the degree

sequence of G is (d1, d2, . . . , dp), then the first four coefficients of h(G) are, respectively,

(1) b0(G) = 1, b1(G) = q.

(2) b2(G) =
(

q+1
2

)

− 1
2

∑p
i=1 d

2
i + nG(K3).

(3) b3(G) = q
6 (q2 + 3q + 4) − q+2

2

∑p
i=1 d

2
i + 1

3

∑p
i=1 d

3
i −∑ij∈E(G) didj −

∑

i∈M M(i)di +

(q + 2)nG(K3) + nG(K4), where bi(G) = α(G, p− i) (i = 0, 1, 2, 3).

For an edge e = v1v2 of a graph G, the graph G∗e is defined as follows: the vertex set of G∗e
is (V (G) − {v1, v2})

⋃{v}(v /∈ G), and the edge set of G ∗ e is {e′|e′ ∈ E(G), e′ is not incident

with v1 or v2} ∪ {uv|u ∈ NG(v1) ∩ NG(v2)}, where NG(v) is the set of vertices of G which are

adjacent to v.

Lemma 2.3 ([7]) Let G be a graph with e ∈ E(G). Then

h(G, x) = h(G− e, x) + h(G ∗ e, x),

where G− e denotes the graph obtained by deleting the edge e from G.

Lemma 2.4 ([7]) (1) For n ≥ 2, h(Pn) =
∑

k≤n( k
n−k)xk.

(2) For n ≥ 4, h(Dn) =
∑

k≤n

(

n
k

(

k
n−k

)

+
(

k−2
n−k−3

)

)

xk.

(3) For n ≥ 4, m ≥ 6, h(Pn) = x(h(Pn−1) + h(Pn−2)), h(Dm) = x(h(Dm−1) + h(Dm−2)).

Lemma 2.5 ([18]) Let {gi(x)}, simply denoted by {gi}, be a polynomial sequence with integer

coefficients and gn(x) = x(gn−1(x) + gn−2(x)). Then

(1) gn(x) = h(Pk)gn−k(x) + xh(Pk−1)gn−k−1(x).

(2) h1(Pn)|gk(n+1)+i(x) if and only if h1(Pn)|gi(x), where 0 ≤ i ≤ n, n ≥ 2 and k ≥ 1.

Lemma 2.6 ([6, 10]) Let G be a nontrivial connected graph with n vertices. Then

(1) R1(G) ≤ 1, and the equality holds if and only if G ∼= Pn(n ≥ 2) or G ∼= K3.

(2) R1(G) = 0 if and only if G ∈ ϑ.

(3) R1(G) = −1 if and only if G ∈ ξ, especially, q(G) = p(G) + 1 if and only if G ∈ {Fn|n ≥
6} ∪ {K−

4 }.
(4) R1(G) = −2 if and only if G ∈ ψ for q(G) = p(G) + 1 and G ∼= K4 for q(G) = p(G) + 2.

Lemma 2.7 ([11]) Let G be a connected graph. Then

(1) If R1(G) = 0,−1,−2, then q(G) − p(G) ≤ |R1(G)|;
(2) If R1(G) = −3, then q(G) − p(G) ≤ |R1(G) + 1|.

Lemma 2.8 ([18]) Let G be a connected graph and H be a proper subgraph of G. Then

β(G) < β(H).

Lemma 2.9 ([18]) Let G be a connected graph. Then

(1) β(G) = −4 if and only if

G ∈ {T (1, 2, 5), T (2, 2, 2), T (1, 3, 3),K1,4, C4(P2), Q(1, 1),K−
4 , D8} ∪ U .
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(2) β(G) > −4 if and only if

G ∈ {K1, T (1, 2, i)(2 ≤ i ≤ 4), Di(4 ≤ i ≤ 7)} ∪ P ∪ C ∪ T′.

Lemma 2.10 ([18]) Let G be a connected graph. Then −(2 +
√

5) ≤ β(G) < −4 if and only if

G is one of the following graphs:

(1) Tl1,l2,l3 for l1 = 1, l2 = 2, l3 > 5 or l1 = 1, l2 > 2, l3 > 3 or l1 = l2 = 2, l3 > 2 or

l1 = 2, l2 = l3 = 3.

(2) Ur,s,t,a,b for r = a = 1, (r, s, t) ∈ {(1, 1, 2), (2, 4, 2), (2, 5, 3), (3, 7, 3), (3, 8, 4)}, or r = a =

1, s ≥ 1, t ≥ t∗(s, b), b ≥ 1, where (s, b) 6= (1, 1) and

t∗ =











s+ b+ 2, if s ≥ 3;

b+ 3, if s = 2;

b, if s = 1.

(3) Dn for n ≥ 9.

(4) Cn(P2) for n ≥ 5.

(5) Fn for n ≥ 9.

(6) Br,s,t for r = 5, s = 1 and t = 3, or r ≥ 1, s = 1 if t = 1, or r ≥ 4, s = 1 if t = 2, or

b ≥ c+ 3, s = 1 if t ≥ 3.

(7) G ∼= C4(P3) or G ∼= Q(1, 2).

Corollary 2.1 ([14]) If graph G satisfies R1(G) ≤ −2, then β(G) < −2 −
√

5.

3. The algebraic properties of adjoint polynomials

3.1. The divisibility of adjoint polynomials and the fourth characters of graphs

Lemma 3.1 ([18]) For n,m ≥ 2, h(Pn) | h(Pm) if and only if (n+ 1)|(m+ 1).

Theorem 3.1 (1) For n ≥ 9, ρ(Bn−8,1,4) =

{

n
2 , if n is even;
n−1

2 , otherwise.

(2) For n ≥ 9, ∂(Bn−8,1,4) =

{

n
2 , if n is even;
n+1

2 , otherwise.

(3) For n ≥ 9, h(Bn−8,1,4) = x(h(Bn−9,1,4) + h(Bn−10,1,4)).

Proof (1) Choosing a pendent edge e = uv ∈ E(Bn−8,1,4) whose deletion brings about a single

vertex and a proper subgraph Dn−1 of Bn−8,1,4, and by Lemma 2.3, we have h(Bn−8,1,4) =

xh(Dn−1) + xh(P4)h(Dn−6). It follows, from Lemma 2.4, that

ρ(K1 ∪Dn−1) = 1 + ⌊n−1
2 ⌋ and ρ(K1 ∪ P4 ∪Dn−6) = 3 + ⌊n−6

2 ⌋.
If n is even, then ρ(K1∪Dn−1) = ρ(K1∪P4∪Dn−6) = n

2 , which implies that ρ(Bn−8,1,4) = n
2 .

If n is odd, then we arrive at ρ(K1 ∪Dn−1) = n+1
2 > n−1

2 = ρ(K1 ∪ P4 ∪Dn−6), which implies

that ρ(Bn−8,1,4) = n−1
2 .

(2) It obviously follows from (1).

(3) Choosing a pendent edge e = uv ∈ E(Bn−8,1,4) whose deletion brings about a single
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vertex and a proper subgraph Dn−1 of Bn−8,1,4. By Lemma 2.4, We have

h(Bn−8,1,4) = xh(Dn−1) + xh(P4)h(Dn−6)

= x(xh(Dn−2) + xh(Dn−3)) + xh(P4)(xh(Dn−7) + xh(Dn−8))

= x(xh(Dn−2) + xh(P4)h(Dn−7)) + x(xh(Dn−3) + xh(P4)h(Dn−8))

= x(h(Bn−9,1,4) + h(Bn−10,1,4)).

Theorem 3.2 For n ≥ 2, m ≥ 9, h(Pn) | h(Bm−8,1,4) if and only if n = 4 and m = 5k + 4 for

k ≥ 1.

Proof Let g0(x) = −x6−10x5−37x4−63x3−50x2−18x−2, g1(x) = x6 +9x5 +29x4 +41x3 +

25x2 + 8x+ 1 and gm(x) = x(gm−1(x) + gm−2(x)). We can deduce that

g0(x) = −x6 − 10x5 − 37x4 − 63x3 − 50x2 − 18x− 2,

g1(x) = x6 + 9x5 + 29x4 + 41x3 + 25x2 + 8x+ 1,

g2(x) = −x6 − 8x5 − 22x4 − 25x3 − 10x2 − x,

g3(x) = x6 + 7x5 + 16x4 + 15x3 + 7x2 + x,

g4(x) = −x6 − 6x5 − 10x4 − 3x3, (3.1)

g5(x) = x6 + 6x5 + 12x4 + 7x3 + x2,

g6(x) = 2x5 + 4x4 + x3,

g7(x) = x7 + 8x6 + 16x5 + 8x4 + x3,

g8(x) = x8 + 8x7 + 18x6 + 12x5 + 2x4,

gm(x) = h(Bm−8,1,4), if m ≥ 9.

Let m = (n + 1)k + i, where 0 ≤ i ≤ n. It is obvious that h1(Pn)|h(Bm−8,1,4) if and only if

h1(Pn)|gm(x). From Lemma 2.5, it follows that h1(Pn)|gm(x) if and only if h1(Pn)|gi(x), where

0 ≤ i ≤ n. We consider the following two cases:

Case 1 n ≥ 9.

If 0 ≤ i ≤ 8, from (3.1), it is not difficult to verify that h1(Pn) ∤ gi(x). If i ≥ 9, from i ≤ n,

Lemma 2.4 and Theorem 3.1, we have that

∂(h1(Pn)) = ⌊n
2
⌋ and ∂(h1(Bi−8,1,4)) = ⌊ i+ 1

2
⌋. (3.2)

The following cases are taken into account:

Subcase 1.1 i = n.

It follows from (3.2) that ∂(h1(Bi−8,1,4)) = ∂(h1(Pn)) = ⌊n
2 ⌋ if n is even and ∂(h1(Bi−8,1,4)) =

∂(h1(Pn)) + 1 = ⌊n+1
2 ⌋ if n is odd.

Subcase 1.1.1 ∂(h1(Bi−8,1,4)) = ∂(h1(Pn)).

Suppose that h1(Pn)|h1(Bi−8,1,4), we have h1(Pn) = h1(Bi−8,1,4), which implies R1(Pn) =

R1(Bi−8,1,4). By Lemma 2.6, we know it is impossible. Hence h1(Pn) ∤ h1(Bi−8,1,4), together
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with (h1(Pn), xα(Bi−8,1,4)) = 1, we have h1(Pn) ∤ h(Bi−8,1,4).

Subcase 1.1.2 ∂(h1(Bi−8,1,4)) = ∂(h1(Pn)) + 1.

Assume that h1(Pn)|h1(Bi−8,1,4), it follows that h1(Bi−8,1,4) = (x + a)h1(Pn). Note that

R1(Bi−8,1,4) = −1 and R1(Pn) = 1, so R1(x + a) = −2, which brings about a = 4. This implies

that β(Bi−8,1,4) = −4, which contradicts (6) of Lemma 2.10. Hence h1(Pn) ∤ h1(Bi−8,1,4),

together with (h1(Pn), xα(Bi−8,1,4)) = 1, we have h1(Pn) ∤ h(Bi−8,1,4).

Subcase 1.2 i ≤ n− 1.

It follows by (3.2) that ∂(h1(Bi−8,1,4)) ≤ ∂(h1(Pn)). Assume that h1(Pn)|h1(Bi−8,1,4), we

have that ∂(h1(Bi−8,1,4)) = ∂(h1(Pn)) and h1(Pn) = h1(Bi−8,1,4). So we can turn to Subcase

1.1.1 for the same contradiction.

Case 2 2 ≤ n ≤ 8.

From (1) of Lemma 2.4 and (3.1) , we can verify that h1(Pn) = gi(x) if and only if n = 4

and i = 4 for 0 ≤ i ≤ n ≤ 8. From Lemma 2.5, we have that h1(Pn)|h(Bi−8,1,4) if and only if

n = 4 and m = 5k + 4. From ρ(P4) = 1 and ρ(Bm−8,1,4) = ⌊m
2 ⌋ ≥ 4 for m ≥ 8, we obtain that

the result holds.

Theorem 3.3 For m ≥ 9, h2(P4) ∤ h(Bm−8,1,4).

Proof Suppose h2(P4) | h(Bm−8,1,4). From Theorem 3.2, we have that m = 5k + 4, where

k ≥ 1. Let gm(x) = h(Bm−8,1,4) for m ≥ 9. By (3) of Theorem 3.1, (1) of Lemma 2.5, it follows

that

gm(x) =h(P4)gm−4(x) + xh(P3)gm−5(x)

=h2(P4)gm−8(x) + 2xh(P3)h(P4)gm−9(x) + (xh(P3))
2gm−10(x)

=h2(P4)(gm−8(x) + 2xh(P3)gm−13(x)) + 3(xh(P3))
2h(P4)gm−14(x) + (xh(P3))

3gm−15(x)

=h2(P4)(gm−8(x) + 2xh(P3)gm−13(x) + 3(xh(P3))
2gm−18(x))+

4(xh(P3))
3h(P4)gm−19(x) + (xh(P3))

4gm−20(x)

= · · ·

=h2(P4)

k−2
∑

s=1

s(xh(P3))
s−1gm−5s−3(x) + (k − 1)(xh(P3))

k−2h(P4)gm+1−(5k−1)(x)+

(xh(P3))
k−1h(P4)gm−(5k−1)(x).

According to the assumption and m = 5k + 4, we arrive at, by (3.1), that

h2(P4) | (k − 1)(xh(P3))
k−2h(P4)g10(x) + (xh(P3))

k−1h(P4)g9(x)

that is

h(P4) | (k − 1)g10(x) + x3h(P3)(x
3 + 6x2 + 7x+ 1).

By direct calculation, we obtain that k = 0, which contradicts k ≥ 1.

Definition 3.1 ([14]) Let G be a graph with p vertex and q edges. The fourth character of a
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graph G is defined as follows:

R4(G) = R2(G) + p− q.

From Lemmas 2.1 and 2.2, we obtain the following two lemmas:

Lemma 3.2 ([14]) Let graph G have k components G1, G2, . . . , Gk. Then

R4(G) =

k
∑

i=1

R4(Gk).

Lemma 3.3 ([14]) Let graph G and H satisfy that h(G) = h(H) or h1(G) = h1(H). Then

R4(G) = R4(H).

From Definitions 3.1 and 2.1, we have the following lemmas:

Lemma 3.4 ([14]) (1) R4(Cn) = 0 for n ≥ 4; R4(C3) = −2; R4(K1) = 1.

(2) R4(Br,1,1) = 3 for r ≥ 1; R4(Br,1,t) = 4 for r, t > 1.

(3) R4(F6) = 4; R4(Fn) = 3 for n ≥ 7; R4(K
−
4 ) = 2.

(4) R4(D4) = 0; R4(Dn) = 1 for n ≥ 5; R4(T1,1,1) = 0.

(5) R4(T1,1,l3) = 1, R4(T1,l2,l3) = 2; R4(Tl1,l2,l3) = 3 for l3 ≥ l2 ≥ l1 ≥ 2.

(6) R4(Cr(P2)) = 3 for r ≥ 4; R4(C4(P3)) = R4(Q1,2) = 4.

(7) R4(P2) = 0; R4(Pn) = −1 for n ≥ 3.

Lemma 3.5 ([12]) Let graph G ∈ ξ\{Fn, Ur,s,t,a,b,K
−
4 }. Then

(1) R4(G) = 3 if and only if G ∈ {Cn−1(P2)|n ≥ 5} ∪ {Q1,1} ∪ {Bn−5,1,1|n ≥ 7}.
(2) R4(G) = 4 if and only if G ∈ {Cr(Ps)|r ≥ 4, s ≥ 3}∪{Q1,n−4|n ≥ 6}∪{Br,1,t, B1,1,1|r, t ≥

2}.
(3) R4(G) = 5 if and only if G ∈ {Qr,s|r, s ≥ 2} ∪ {B1,1,t, Br,s,t|r, s, t ≥ 2}.
(4) R4(G) = 6 if and only if G ∈ {B1,s,t|s, t ≥ 2}.

Corollary 3.1 Let graph G ∈ ξ\{Fn, Ur,s,t,a,b,K
−
4 }. Then R4(G) ≥ 3.

3.2 The smallest real roots of adjoint polynomials of graphs

An internal x1xk−path of a graph G is path x1x2x3 · · ·xk (possibly x1 = xk) of G such that

d(x1) and d(xk) are at least 3 and d(x2) = d(x3) = · · · = d(xk−1) = 2 (unless k = 2).

Lemma 3.6 ([18]) Let T be a tree. If uv is an internal path of T and T ≇ U(1, 1, t, 1, 1) for

t ≥ 1, then β(T ) < β(Txy), where β(Txy) is the graph obtained from T by inserting a new vertex

on the edge xy of T .

Lemma 3.7 ([14, 15, 18]) (1) For n ≥ 5, m ≥ 4, β(Cn(P2)) < β(Cn−1(P2)) ≤ β(Dm) ≤ β(Cm).

(2) For n ≥ 6, m ≥ 6, β(Fn) = β(Bm−5,1,1) if and only if n = 2k + 1 and m = k + 2.

(3) For n ≥ 4, m ≥ 6, β(Fm) < β(Fm−1) < β(Dn) and β(Bm−5,1,1) < β(Bm−4,1,1) < β(Dn).

(4) For n ≥ 7, m ≥ 6, β(Bn−6,1,2) = β(Fm) if and only if m = n− 1.

(5) For n ≥ 7, m ≥ 6, β(Bn−6,1,2) < β(Dm); β(Bn−7,1,3) < β(Dm).
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(6) For n ≥ 8, β(Bn−7,1,3) = β(Q1,2) = β(C4(P3)) if and only if n = 13.

Lemma 3.8 ([13, 14]) (1) β(B1,1,4) = β(C8(P2)), β(B1,1,4) = β(ψ1
5), β(B1,1,4) = β(ψ2

5).

(2) β(B8,1,4) = β(Q2,4), β(B1,1,4) = β(Q(1, 2)) = β(C4(P3)).

(3) For r, t ≥ 1, β(Br,1,t) < β(Br+1,1,t).

(4) β(T1,3,6) = β(C5(P2)), β(T1,3,11) = β(B8,1,2).

(5) For r, t ≥ 1, β(U1,2,r,1,t) = β(Br,1,t) and β(Bt,1,2) = β(Ft+5).

Theorem 3.4 (1) For m ≥ 11, n ≥ 19, β(B1,1,4) < β(B2,1,4) < β(B3,1,4) < β(B4,1,4) <

β(B5,1,4) < β(B6,1,4) < β(Cm(P2)) < β(B7,1,4) < β(C10(P2)) < β(C9(P2)) < β(C8(P2)) =

β(B8,1,4) = β(B6,1,3) < β(B9,1,4) < β(B10,1,4) < β(C7(P2)) < β(B11,1,4) < β(C6(P2)) <

β(Bn−8,1,4) < β(C5(P2)) < β(C4(P2)).

(2) m ≥ 11, n ≥ 19, β(B1,1,4) < β(B2,1,4) = β(F6) < β(B3,1,4) < β(F7) < β(B4,1,4) <

β(B5,1,4) < β(F8) < β(B6,1,4) < β(B7,1,4) < β(F9) = β(B8,1,4) < β(B9,1,4) < β(B10,1,4) <

β(B11,1,4) < β(Bn−8,1,4) < β(Fm−1) = β(Bm−6,1,2).

(3) For n ≥ m, t ≥ 4, β(Bm−t−4,1,t) < β(Bn−8,1,4).

(4) For n ≥ 9, m ≥ 4, β(Bn−8,1,4) < β(Dm).

(5) For n ≥ 9, β(Q(1, 2)) = β(C4(P3)) = β(Bn−8,1,4) if and only if n = 12.

(6) For n ≥ 9, m ≥ 6, β(Bn−8,1,4) = β(Bm−5,1,1) if and only if m = 6, n = 16.

(7) For n ≥ 9, m ≥ 7, β(Bm−6,1,2) = β(Bn−8,1,4) if and only if m = 7, n = 10 or m = 10,

n = 16.

(8) For n ≥ 9, m ≥ 8, β(Bm−7,1,3) = β(Bn−8,1,4) if and only if m = 13, n = 16.

Proof (1) For n ≥ 19, it is obvious that T1,3,6 is a proper subgraph of Bn−8,1,4. From Lemma

2.8 and (4) of Lemma 3.8, it follows that β(Bn−8,1,4) < β(T1,3,6) = β(C5(P2)). By (1) of Lemma

3.8 and (1) of Lemma 3.7, the result holds.

(2) Using software Mathematica and by calculation, we have that

β(B1,1,4) = −4.49086 < β(B2,1,4) = β(B1,1,2) = β(F6) = −4.39026 < β(B3,1,4) = −4.32931 <

β(F7) = −4.30278 < β(B4,1,4) = −4.28896 < β(B5,1,4) = −4.26076 < β(F8) = β(B3,1,2) =

−4.24978 < β(B6,1,4) = −4.24039 < β(B7,1,4) = −4.22541 < β(F9) = β(B8,1,4) = β(B4,1,2) =

β(B6,1,3) = −4.21432 < β(B9,1,4) = −4.20612 < β(B10,1,4) = −4.2001 < β(B11,1,4) = −4.19576 <

β(Bn−8,1,4) < β(Fm−1) = β(Bm−6,1,2). For n ≥ 22, it follows, from Lemma 2.8 and (4) of Lemma

3.8, that β(Bn−8,1,4) < β(T1,3,11) = β(B8,1,2). From (5) of Lemma 3.8 and (4) of Lemma 3.7,

the result holds.

(3) Since n ≥ m and t ≥ 4, from (3) of Lemma 3.8 and Lemma 2.8, we have that

β(Bm−t−4,1,t) < β(Bn−t−4,1,t) < β(Bn−8,1,t) < β(Bn−8,1,4).

(4) From (2) of the theorem and (3) of Lemma 3.7, the result evidently holds.

(5) Applying (2) of Lemma 3.8, we can get the result.

(6) From (2) of Lemma 3.7 and (2) of the theorem, the result evidently holds.

(7) Using (4) of Lemma 3.7 and (2) of the theorem easily yields the result.

(8) By (6) of Lemma 3.7 and (5) of the theorem, the result evidently holds.
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4. The chromaticity of graph Bn−8,1,4

Corollary 4.1 ([16]) For n ≥ 4, Dn is adjointly unique if and only if n 6= 4, 8.

Theorem 4.1 Let G be a graph such that G ∼h Bn−8,1,4, where n ≥ 9. Then G contains at

most one component whose first character is 1, furthermore, it is P4 or C3.

Proof Let G1 be one of the components of G such that R1(G) = 1. From Lemma 2.6 and

Theorem 3.3, it follows that h(G1)|h(Bn−8,1,4) if and only if G1
∼= P4 and n = 5k+4. According

to (1) of Lemma 2.5, we obtain the following equality:

h(B5k+4,1,4) = h(P5)h(B5(k−1)+4,1,4) + xh(P4)h(B5(k−1)+3,1,4).

Note that h(P4) | h(B5(k−1)+4,1,4) implies that h(P4) | h(B5k+12,1,4). From this together

with Theorem 3.3, the theorem holds.

Lemma 4.2 Let G be a graph such that G ∼h Bn−8,1,4, where n ≥ 9. Then G does not contain

K4 as one of its components.

Proof Suppose that h(K−
4 )|h(Bn−8,1,4), from Lemma 2.3, we know that h(K−

4 ) = x2(x+1)(x+

4), which implies that h1(P2)|h(Bn−8,1,4). It contradicts to Theorem 3.2.

Theorem 4.2 Let G be a graph such that G ∼h Bn−8,1,4, where n ≥ 9. Then

(1) If n = 9, then [G]h = {Q(2, 4), B1,1,4, P4 ∪ ψ1
5 , P4 ∪ ψ2

5};
(2) If n = 16, then [G]h = {C8(P2) ∪D7, Q(1, 2) ∪ C6, C4(P3) ∪ C6};
(3) If n 6= 9, 16, then [G]h = {Bn−8,1,4}.

Proof (1) When n = 9, let graph G satisfy h(G) = h(B1,1,4). From Lemmas 2.1, 2.2 and

2.6, we obtain that p(G) = q(G) = 9 and R1(G) = −1. By direct calculation, we arrive at

h(G) = h(B1,1,4) = x4(x5 + 9x4 + 26x3 + 28x2 + 10x+ 1). We consider the following cases:

Case 1 G is a connected graph.

FromR4(G) = R4(B1,1,4) = 5 and (3) of Lemma 3.5, it follows thatG ∈ {Q(2, 4), Q(3, 3), B1,1,4,

B2,2,2}. By calculation, we have that Q(2, 4), B1,1,4 ∈ [G]h.

Case 2 G is not a connected graph.

By calculation, we have h(G) = h(B1,1,4) = x4f1(x)f2(x), where f1(x) = x2 + 3x + 1 and

f2(x) = x3 + 6x2 + 7x + 1. Thus, R1(f1(x)) = 1. Noting that b1(f1(x)) = 3, we obtain that

f1(x) = h1(P4) or f1(x) = h1(C3) if f1(x) is a factor of adjoint polynomial of some graph.

Subcase 2.1 Neither P4 nor C3 is a component of G.

Since G is not connected, the expression of G is G = aK1 ∪ G1, where a ≥ 1 and G1 is

connected. It is not difficult to obtain that q(G1) − p(G1) ≥ 1. We conclude, from Lemma 2.7,

that q(G1) − p(G1) ≤ 1. Thus, q(G1) − p(G1) = 1. From Lemma 2.6, it follows that G1
∼= F8

and G = K1 ∪ F8. By calculation, we arrive at h(G) = h(K1 ∪ F8) 6= h(B1,1,4).

Subcase 2.2 Either P4 or C3 is a component of G.
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Subcase 2.2.1 P4 is a component of G.

Let G = P4 ∪G1, where h1(G1) = x3 + 6x2 + 7x+ 1. The following subcases are taken into

account:

Subcase 2.2.1.1 G1 is a connected graph.

Noting that R1(G1) = −2 and q(G1) = p(G1)+1 = 6, we have from Lemma 2.6, that G1 ∈ ψ.

Since the order of G1 is 5 and p(ψ3
p) ≥ 6, p(ψ4

p) ≥ 6, p(ψ5
p) ≥ 6, we have G1 ∈ {ψ1

5, ψ
2
5 , ψ

6
5}. By

calculation, P4 ∪ ψ1
5 , P4 ∪ ψ2

5 ∈ [G]h.

Subcase 2.2.1.2 G1 is not a connected graph.

It follows that G = P4 ∪ aK1 ∪ G1, where a ≥ 1 and h1(G1) = x3 + 6x2 + 7x + 1. It is not

difficult to get that q(G1) − p(G1) ≥ 2. Remarking that R1(G1) = −2, we obtain, from Lemma

2.7, that q(G1)−p(G1) ≤ 2, which results in q(G1)−p(G1) = 2. Thus we conclude, from Lemma

2.6, that G1
∼= K−

4 and a = 1. By calculation, G = P4 ∪K1 ∪K−
4 /∈ [G]h.

Subcase 2.2.2 C3 is a component of G.

Let G = C3 ∪ G1, where h1(G1) = x3 + 6x2 + 7x+ 1. We have the following subcases to be

considered.

Subcase 2.2.2.1 G1 is a connected graph.

Note that R1(G1) = −2 and q(G1) = p(G1) = 6. It contradicts to Lemma 2.6.

Subcase 2.2.2.2 G1 is not a connected graph.

It follows that G = C3 ∪ aK1 ∪ G1, where a ≥ 1 and h1(G1) = x3 + 6x2 + 7x + 1. It is

not difficult to get that q(G1) − p(G1) ≥ 1. Remarking that R1(G1) = −2, we conclude, from

Lemma 2.6, that 1 ≤ q(G1) − p(G1) ≤ 2. If q(G1) − p(G1) = 1, or q(G1) − p(G1) = 2. Then we

can turn to Subcase 2.2.1 for the same contradiction.

(2) When n = 10, let G be a graph such that h(G) = h(B2,1,4), which brings p(G) = q(G) =

10 and R1(G) = −1. We distinguish the following cases:

Case 1 G is a connected graph.

From R4(G) = R4(B2,1,4) = 4 and (2) of Lemma 3.5, it follows that G ∈ {C4(P7), C5(P6),

C6(P5), C7(P4), C8(P3), Q1,6, B2,1,4}. By calculation, we have that h(G) = h(B2,1,4) if and only

if G ∼= B2,1,4, which implies that B2,1,4 is adjoint uniqueness.

Case 2 G is not a connected graph.

By calculation, we obtain that h(B2,1,4) = x5f1(x)f2(x), where f1(x) = x + 3 and f2(x) =

x4 + 7x3 + 13x2 + 7x+ 1. Remarking that R1(f1(x)) = 1 and b1(f1(x)) = 2. Since f1(x) is not

a factor of adjoint polynomial of some graph G with R1(G) = 1, it means that B2,1,4 is adjoint

uniqueness.

(3) When n = 11, using the similar method to that of (2), we can show that B3,1,4 is adjoint

uniqueness. The details of the proof are omitted.
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(4) When n ≥ 12, let G =
⋃t

i=1Gi. From Lemma 2.1, we have that

h(G) =
t
∏

i=1

h(Gi) = h(Bn−8,1,4), (4.1)

which results in β(G) = β(Bn−8,1,4) ∈ [−2−
√

5,−4) by Lemma 2.10. Let si denote the number

of components Gi such that R(Gi) = −i, where i ≥ −1. From Theorem 4.1, Lemmas 2.1 and

2.2, it follows that 0 ≤ s−1 ≤ 1 and

R1(G) =

t
∑

i=1

R1(Gi) = −1, q(G) = p(G) (4.2)

which results in

s−1 = s1 + 2s2 − 1. (4.3)

We distinguish the following cases by 0 ≤ s−1 ≤ 1:

Case 1 s−1 = 0.

It follows, from (4.3), that s2 = 0, s1 = 1 with R1(G1) = −1. Without loss of generality, we

set

G = G1 ∪ (∪i∈ACi) ∪ (∪j∈BDj) ∪ fD4 ∪ aK1 ∪ bT1,1,1 ∪ (∪T∈T0
Tl1,l2,l3), (4.4)

where R1(G1) = −1, ∪T∈T0
Tl1,l2,l3 = (∪T∈T1

T1,1,l3) ∪ (∪T∈T2
T1,l2,l3) ∪ (∪T∈T3

Tl1,l2,l3), T1 =

{T1,1,l3|l3 ≥ 2}, T2 = {T1,l2,l3 |l3 ≥ l2 ≥ 2}, T3 = {Tl1,l2,l3 |l3 ≥ l2 ≥ l1 ≥ 2}, T = T1 ∪ T2 ∪ T3, the

tree Tl1,l2,l3 is denoted by T for short, A = {i|i ≥ 4} and B = {j|j ≥ 5}.
From Lemmas 3.2, 3.3 and 3.4, we arrive at

R4(G) = R4(Bn−8,1,4) = 4 = R4(G1) + |B| + a+ |T1| + 2|T2| + 3|T3|. (4.5)

From (1) of Lemma 2.7, it follows that q(G1) − p(G1) ≤ 1. Combining this with (4.2), we

know that 0 ≤ q(G1) − p(G1) ≤ 1. Thus, we consider the following subcases:

Subcase 1.1 q(G1) = p(G1) + 1.

From Lemmas 2.6 and 4.2, we have G1
∼= Fm. Recalling that q(G) = p(G), we obtain the

following equality:

a+ b+ |T1| + |T2| + |T3| = 1. (4.6)

If m ≥ 9, from (3) of Lemma 3.4, (4.5) and (4.6), we arrive at |B| + a+ |T1| + 2|T2| + 3|T3| = 1,

which leads to |B|+a+ |T1| = 1, |T2| = |T3| = 0 and a+ b+ |T1| = 1. Then we have the following

three cases to be considered:

If |B| = 1, then a = |T1| = 0 and b = 1, which results in

G = Fm ∪ (∪i∈ACi) ∪Dj ∪ fD4 ∪ T1,1,1.

If a = 1, then |B| = |T1| = b = 0, which leads to

G = Fm ∪ (∪i∈ACi) ∪ fD4 ∪K1.

If |T1| = 1, then |B| = a = b = 0, which brings about

G = Fm ∪ (∪i∈ACi) ∪ fD4 ∪ T1,1,l3.
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From the above arguments, we have, from Lemmas 2.9 and 2.10, that β(G) = β(Fm). From

(2) of Theorem 3.4 and β(G) = β(Bn−8,1,4), it follows that β(Fm) = β(Bn−8,1,4) if and only

if m = 6, n = 10, or m = 9, n = 16. Note that p(G) = p(Bn−8,1,4) = n, so we only have

G = F9∪C6∪K1, or G = F9∪T1,1,4, which contradicts to h(G) = h(B8,1,4) by direct calculation.

Subcase 1.2 q(G1) = p(G1).

Recalling that q(G) = p(G), we arrive at, from (4.4), a = b = |T1| = |T2| = |T3| = 0, which

leads to

G = G1 ∪ (∪i∈ACi) ∪ (∪j∈BDj) ∪ fD4. (4.7)

From (3) of Lemmas 2.6 and 2.10, it follows that

G1 ∈ {Bm−t−4,1,t, Cr(P2), Q(1, 2), C4(P3)}, (4.8)

where m− t− 4, t and r satisfy the conditions of Lemma 2.10.

We distinguish the following subcases by (4.8):

Subcase 1.2.1 G1
∼= Cr(P2).

From Lemmas 2.9, 2.10 and (1) of Lemma 3.7, it follows that β(G) = β(Cr(P2)). Since

β(G) = β(Bn−8,1,4), we have, from (1) of Theorem 3.4, that β(G) = β(Cr(P2)) if and only if

p(G) = n = 16, r = 8. From (4.7) and p(G) = 16, we only have that G = C8(P2) ∪ C7 or

G = C8(P2) ∪D7. By calculation, we arrive at C8(P2) ∪D7 ∈ [G]h.

Subcase 1.2.2 G1
∼= Q(1, 2) or G1

∼= C4(P3).

From (4) and (5) of Theorem 3.4 and Lemma 2.9, we have that β(G) = β(G1) = β(Bn−8,1,4)

if and only if p(G) = n = 12, which brings about G1 ∈ G1 = {Q(1, 2)∪C6, C4(P3)∪C6} by (4.7).

By calculation, we have G1 ⊆ [G]h.

Subcase 1.2.3 G1
∼= Bm−t−4,1,t.

We distinguish the following subcases:

Subcase 1.2.3.1 t = 1.

From (3) of Lemma 3.7 and Lemma 2.9, we obtain that β(G) = β(Bm−5,1,1). According to

(6) of Theorem 3.4, β(Bm−5,1,1) = β(Bn−8,1,4) if and only if m = 6, n = 16, which leads to G ∈
G2 = {B1,1,1∪C10, B1,1,1∪D10, B1,1,1∪C4∪C6, B1,1,1∪D4∪D6, B1,1,1∪C4∪D6, B1,1,1∪D4∪C6}
from (4.7). By direct calculation, G2 * [G]h.

Subcase 1.2.3.2 t = 2.

From (3) of Lemma 3.7 and Lemma 2.9, (7) of Theorem 3.4, it follows that β(G) = β(Bm−6,1,2) =

β(Bn−8,1,4) if and only if m = 7, n = 10 or m = 10, n = 16, which leads to G ∈ {B4,1,2 ∪
C6, B4,1,2 ∪D6 from (4.7). By calculation, we know that it contradicts to h(G) = h(B8,1,4).

Subcase 1.2.3.3 t = 3.

From (8) of Theorem 3.4, it follows that β(G) = β(Bm−7,1,3) = β(Bn−8,1,4) if and only if

m = 13, n = 16, which contradicts h(G) = h(B8,1,4).
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Subcase 1.2.3.4 t ≥ 5.

From Lemma 2.9, (3), (4) of Theorem 3.4 and (3) of Theorem 3.4, we arrive at β(G) =

β(Bm−t−4,1,t) < β(Bn−8,1,4), which contradicts to β(G) = β(Bn−8,1,4) by direct calculation.

As analyzed above, we obtain that t = 4. From (4) of Theorem 3.4 and Lemma 2.9, it follows

that β(G) = β(Bm−8,1,4), together with β(G) = β(Bn−8,1,4) and (3) of Lemma 3.8, we arrive at

m = n. Hence G ∼= Bn−8,1,4.

Case 2 s−1 = 1.

It follows, from (4.3), that s1 + 2s2 = 2, which leads to

s2 = 1, s1 = 0, or s2 = 0, s1 = 2. (4.9)

We distinguish the following cases by (4.9):

Subcase 2.1 s2 = 1, s1 = 0.

Without loss of generality, let G1 be the component such that R1(G1) = −2. From Corollary

2.1, we know that β(G1) < −2 −
√

5, which contradicts to β(Bn−8,1,4) ∈ [−2 −
√

5,−4).

Subcase 2.2 s2 = 0, s1 = 2.

Without loss of generality, let

G = G1 ∪G2 ∪G3 ∪ (∪i∈ACi) ∪ (∪j∈BDj) ∪ fD4 ∪ aK1 ∪ bT1,1,1 ∪ (∪T∈T0
Tl1,l2,l3), (4.10)

where G1 ∈ {P4, C3}, R1(G2) = R1(G3) = −1, ∪T∈T0
Tl1,l2,l3 = (∪T∈T1

T1,1,l3)∪ (∪T∈T2
T1,l2,l3)∪

(∪T∈T3
Tl1,l2,l3), T1 = {T1,1,l3|l3 ≥ 2}, T2 = {T1,l2,l3 |l3 ≥ l2 ≥ 2}, T3 = {Tl1,l2,l3 |l3 ≥ l2 ≥ l1 ≥ 2},

T0 = T1 ∪ T2 ∪ T3, the tree Tl1,l2,l3 is denoted by T for short, A = {i|i ≥ 4} and B = {j|j ≥ 5}.
From Lemmas 3.2, 3.3 and 3.4, we arrive at

R4(G) = R4(Bn−8,1,4) = 4 =

3
∑

i=1

R4(Gi) + |B| + a+ |T1| + 2|T2| + 3|T3|. (4.11)

Subcase 2.2.1 G1
∼= P4.

In terms of Lemmas 2.6, 2.7, (4.2) and (4.10), we have that 1 ≤ ∑3
i=2(q(Gi) − p(Gi)) ≤ 2,

which implies the following subcases:

Subcase 2.2.1.1 q(G2) − p(G2) = 1, q(G3) − p(G3) = 1.

From Lemmas 2.6, 4.2 and (4.10), it follows that Gi
∼= Fm(i = 2, 3) and a+ b+ |T1|+ |T2|+

|T3| = 1. Thus

if b = 0, then we obtain, from (4.11), that 4 = −1 + 2R4(Fm) + |B| + 1, which contradicts

R4(Fm) = 3 by Lemma 3.4.

if b = 1, then we have, from (4.11), that 4 = −1 + 2R4(Fm) + |B|, which also contradicts to

R4(Fm) = 3 by Lemma 3.4.

Subcase 2.2.1.2 q(G2) = p(G2), q(G2) − p(G2) = 1.

It is obvious that G2 ∈ ξ, G3
∼= Fm and a = b = |T1| = |T2| = |T3| = 0 by Lemmas 2.6,

4.2 and (4.10). From (4.11), we arrive at R4(G2) = 5 − R4(Fm) − |B| ≤ 2 − |B| ≤ 2, which
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contradicts G2 ∈ ξ by Corollary 3.1.

Subcase 2.2.2 G1
∼= C3.

From Lemmas 2.6, 2.7, (4.2) and (4.10), we get that 0 ≤
∑3

i=2(q(Gi) − p(Gi)) ≤ 2, which

brings about the following subcases:

Subcase 2.2.2.1
∑3

i=2(q(Gi) − p(Gi)) = 2.

Applying Lemmas 2.6, 4.2, and (4.10), we have that Gi
∼= Fm(i = 2, 3) and a + b + |T1| +

|T2| + |T3| = 2. From these together with (4.11), we know that

If b = 0, then 4 = −2 + 2R4(Fm) + |B|+ 2, which contradicts to R4(Fm) = 3 by Lemma 3.4.

If b = 1, then 4 = −2+ 2R4(Fm) + |B|+ 1, which also contradicts to R4(Fm) = 3 by Lemma

3.4.

If b = 2, then we have, from (4.11), that 4 = −2 + 2R4(Fm) + |B|, which results in

G = C3 ∪ Fm ∪ Fm ∪ (∪i∈ACi) ∪ fD4 ∪ 2T1,1,1.

In terms of Lemmas 2.9 and 2.10, we have that β(G) = min{β(Fm1
), β(Fm2

)} = β(Fm1
) if

m1 ≥ m2. By (2) of Theorem 3.4, it follows that β(G) = β(Fm1
) = β(Bn−8,1,4) if and only if

m1 = 6, n = 10 or m1 = 9, n = 16. This contradicts p(G) = p(Bn−8,1,4).

Subcase 2.2.2.2
∑3

i=2(q(Gi) − p(Gi)) = 1.

From Lemmas 2.6, 4.2 and (4.10), it follows thatG2 ∈ ξ, G3
∼= Fm and a+b+|T1|+|T2|+|T3| =

1. Thus

if b = 0, then we obtain, from (4.11), that 4 = −2+R4(G2)+R4(Fm)+ |B|+1, which results

in R4(G2) ≤ 2 − |B| ≤ 2. It contradicts G2 ∈ ξ.

if b = 1, then we have, from (4.11), that 4 = −2 + R4(G2) + R4(Fm) + |B|, which leads to

R4(G2) = 3 and |B| = 0. Thus

G = C3 ∪G2 ∪ Fm ∪ (∪i∈ACi) ∪ fD4 ∪ T1,1,1.

In terms of (1) of Lemma 3.5, we have that G2 ∈ {Cn−1(P2)} ∪ {Q1,1} ∪ {Bn−5,1,1}.
If G2

∼= Cr(P2), then we obtain, from (1) of Theorem 3.4, that β(G) = β(Bn−8,1,4) =

β(Cr(P2)) = β(Fm) if and only if r = 8, m = 9, n = 16. It contradicts to p(G) = 16.

If G2
∼= Bs,1,1, then we get, from (6) of Theorem 3.4, that β(G) = β(Bn−8,1,4) = β(Bs,1,1) =

β(Fm) if and only if s = 1, m = 9, n = 16. This contradicts to p(G) = 16.

If G2
∼= Q1,1, then from (2) of Theorem 3.4 we arrive at β(G) = β(Bn−8,1,4) = β(Fm) if and

only if m = 9, n = 16 or m = 6, n = 10. It also contradicts to p(G) = 16.

Subcase 2.2.2.3
∑3

i=2(q(Gi) − p(Gi)) = 0.

It is easy to see that Gi ∈ ξ(i = 2, 3) and a+ b+ |T1|+ |T2|+ |T3| = 1 by Lemmas 2.6, 4.2 and

(4.10). From (4.11), it follows that 4 = −2 +R4(G2) +R4(G3) + |B|. Combining with Corollary

3.1, we have |B| = 0 and R4(Gi) = 3(i = 2, 3). Then

G = C3 ∪G2 ∪G3 ∪ Fm ∪ (∪i∈ACi) ∪ fD4.
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In terms of Lemma 3.5, we have that Gi ∈ {Cn−1(P2)}∪ {Q1,1}∪ {Bn−5,1,1}(i = 2, 3). With

the same methods as that of Subcase 2.2.2.2, we can get a contradiction.

This completes the proof of the theorem. 2

Corollary 4.1 If n ≥ 9, graph Bn−8,1,4 is adjoint uniqueness if and only if n 6= 9, 16.

Corollary 4.2 If n ≥ 9, the chromatic equivalence class of Bn−8,1,4 only contains the comple-

ments of graphs that are in Theorem 4.2.

Corollary 4.3 If n ≥ 9, graph Bn−8,1,4 is chromatic uniqueness if and only if n 6= 9, 16.
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