A Complete Solution to the Chromatic Equivalence Class of Graph $\overline{B_{n-8,1,4}}$

Yaping MAO*, Chengfu YE, Shumin ZHANG
Department of Mathematics, Qinghai Normal University, Qinghai 810008, P. R. China

Abstract

Two graphs are defined to be adjointly equivalent if and only if their complements are chromatically equivalent. Using the properties of the adjoint polynomials and the fourth character $R_{4}(G)$, the adjoint equivalence class of graph $B_{n-8,1,4}$ is determined. According to the relations between adjoint polynomial and chromatic polynomial, we also simultaneously determine the chromatic equivalence class of $\overline{B_{n-8,1,4}}$ that is the complement of $B_{n-8,1,4}$.

Keywords chromatic equivalence class; adjoint polynomial; the smallest real root; the fourth character.

MR(2010) Subject Classification 05C15; 05C60; 05C31

1. Introduction

The graphs considered in this paper are finite undirected and simple graphs. We follow the notation of Bondy and Murty [1], unless otherwise stated. For a graph G, let $V(G), E(G), p(G)$, $q(G)$ and \bar{G} be the set of vertices, the set of edges, the order, the size and the complement of G, respectively.

For a graph G, we denote by $P(G, \lambda)$ the chromatic polynomial of G. A partition $\left\{A_{1}, A_{2}\right.$, $\left.\ldots, A_{r}\right\}$ of $V(G)$, where r is a positive integer, is called an r-independent partition of graph G if every A_{i} is nonempty independent set of G. We denote by $\alpha(G, r)$ the number of r independent partitions of G. Thus the chromatic polynomial G is $P(G, \lambda)=\sum_{r \geq 1} \alpha(G, r)(\lambda)_{r}$, where $(\lambda)_{r}=\lambda(\lambda-1) \cdots(\lambda-r+1)$ for all $r \geq 1$. The readers can turn to [17] for details on chromatic polynomials.

Two graphs G and H are said to be chromatically equivalent, denoted by $G \sim H$, if $P(G, \lambda)=$ $P(H, \lambda)$. By $[G]$ we denote the equivalence class determined by G under " \sim ". It is obvious that " \sim " is an equivalence relation on the family of all graphs. A graph G is called chromatically unique (or simply χ-unique) if $H \cong G$ whenever $H \sim G$. See $[4,5]$ for many results on this field.

[^0]Definition 1.1 ([7]) Let G be a graph with p vertices. The polynomial

$$
h(G, x)=\sum_{i=1}^{p} \alpha(\bar{G}, i) x^{i}
$$

is called its adjoint polynomial.
Definition $1.2([7])$ Let G be a graph and $h_{1}(G, x)$ the polynomial with a nonzero constant term such that $h(G, x)=x^{\rho(G)} h_{1}(G, x)$. If $h_{1}(G, x)$ is an irreducible polynomial over the rational number field, then G is called irreducible graph.

Two graphs G and H are said to be adjointly equivalent, denoted by $G \sim^{h} H$, if $h(G, x)=$ $h(H, x)$. Evidently, " $\sim^{h} "$ is an equivalence relation on the family of all graphs. Let $[G]_{h}=$ $\left\{H \mid H \sim^{h} G\right\}$. A graph G is said to be adjointly unique (or simply h-unique) if $G \cong H$ whenever $G \sim^{h} H$.

Theorem 1.1 ([3]) (1) $G \sim^{h} H$ if and only if $\bar{G} \sim \bar{H}$; (2) $[G]_{h}=\{H \mid \bar{H} \in[\bar{G}]\}$; (3) G is χ-unique if and only if \bar{G} is h-unique.

The graphs with order n used in this paper are drawn as follows (see Figure 1).

ξ						\Leftrightarrow
	$C_{r}\left(P_{s}\right)$	$Q_{r, s}$	$B_{r, s, t}$	F_{n}	$U_{r, s, t, a, b}$	K_{4}^{-}
	$r \geq 4, s \geq 2$	$r, s \geq 1$	$r, s, t \geq 1$	$n \geq 6$	$r, s, t, a, b \geq 1$	$n=4$
ψ						
	ψ_{n}^{1}	ψ_{n}^{2}	$\psi_{n}^{3}(r, s)$	$\psi_{n}^{4}(r, s)$	$\psi_{n}^{5}(r, s, t)$	ψ_{5}^{6}
	$n \geq 5$	$n \geq 5$	$r \geq 4, s \geq 2$	$r, s \geq 1$	$r, s, t \geq 1$	$n=5$

Figure 1 Families of ξ and ψ
Now we define some classes of graphs with order n, which will be used throughout the paper.
(1) C_{n} (resp., P_{n}) denotes the cycle (resp., the path) of order n, and write $\mathcal{C}=\left\{C_{n} \mid n \geq 3\right\}$, $\mathcal{P}=\left\{P_{n} \mid n \geq 2\right\}$ and $\mathcal{U}=\left\{U_{1,1, t, 1,1} \mid t \geq 1\right\}$.
(2) $D_{n}(n \geq 4)$ denotes the graph obtained from C_{3} and P_{n-2} by identifying a vertex of C_{3} with a pendent vertex of P_{n-2}.
(3) $T_{l_{1}, l_{2}, l_{3}}$ is a tree with a vertex v of degree 3 such that $T_{l_{1}, l_{2}, l_{3}}-v=P_{l_{1}} \cup P_{l_{2}} \cup P_{l_{3}}$ and $l_{3} \geq l_{2} \geq l_{1}$, write $\mathcal{T}_{0}=\left\{T_{1,1, l_{3}} \mid l_{3} \geq 1\right\}$ and $\mathcal{T}=\left\{T_{l_{1}, l_{2}, l_{3}} \mid\left(l_{1}, l_{2}, l_{3}\right) \neq(1,1,1)\right\}$.
(4) $\vartheta=\left\{C_{n}, D_{n}, K_{1}, T_{l_{1}, l_{2}, l_{3}} \mid n \geq 4\right\}$.
(5) $\xi=\left\{C_{r}\left(P_{s}\right), Q(r, s), B_{r, s, t}, F_{n}, U_{r, s, t, a, b}, K_{4}^{-}\right\}$.
(6) $\psi=\left\{\psi_{n}^{1}, \psi_{n}^{2}, \psi_{n}^{3}(r, s), \psi_{n}^{4}(r, s), \psi_{n}^{5}(r, s, t), \psi_{5}^{6}\right\}$.

For convenience, we simply denote $h(G, x)$ by $h(G)$ and $h_{1}(G, x)$ by $h_{1}(G)$. By $\beta(G)$ and $\gamma(G)$ we denote the smallest real root of $h(G)$, respectively. Let $d_{G}(v)$, simply denoted by $d(v)$, be the degree of vertex v. For two graphs G and $H, G \cup H$ denotes the disjoint union of G and H, and $m H$ stands for the disjoint union of m copies. By K_{n} we denote the complete graph with order n. Let $n_{G}\left(K_{3}\right)$ and $n_{G}\left(K_{4}\right)$ denote the number of subgraphs isomorphic to K_{3} and K_{4}, respectively. On the real field, let $g(x) \mid f(x)$ (resp., $g(x) \nmid f(x)$) denote $g(x)$ divides $f(x)$ (resp., $g(x)$ does not divide $f(x))$ and $\partial(f(x))$ denote the degree of $f(x)$. By $(f(x), g(x))$ we denote the largest common factor of $f(x)$ and $g(x)$.

It is an important problem to determine $[G]$ for a given graph G. From Theorem 1.1, it is obvious that the goal of determining $[G]$ can be realized by determining $[\bar{G}]_{h}$. Thus, if $q(G)$ is large, it may be easier to study $[\bar{G}]_{h}$ rather than $[G]$. The related topics have been partially discussed in this respect by Dong et al in [3,14,15]. In this paper, using the properties of adjoint polynomials, we determine the $\left[B_{n-8,1,4}\right]_{h}$ of graph $B_{n-8,1,4}$, simultaneously, $\left[\overline{B_{n-8,1,4}}\right]$ is also determined, where $n \geq 7$.

2. Preliminaries

For a polynomial $f(x)=x^{n}+b_{1} x^{n-1}+b_{2} x^{n-2}+\cdots+b_{n}$, we define

$$
R_{1}(f(x))= \begin{cases}-\binom{b_{1}}{2}+1, & \text { if } n=1 \\ b_{2}-\binom{b_{1}-1}{2}+1, & \text { if } n \geq 2\end{cases}
$$

For a graph G, we write $R_{1}(G)$ instead of $R_{1}(h(G))$.
Definition $2.1([2,7])$ Let G be a graph with q edges.
(1) The first character of a graph G is defined as

$$
R_{1}(G)= \begin{cases}0, & \text { if } q=0 \\ b_{2}(G)-\binom{b_{1}(G)-1}{2}+1, & \text { if } q>0\end{cases}
$$

(2) The second character of a graph G is defined as

$$
R_{2}(G)=b_{3}(G)-\binom{b_{1}(G)}{3}-\left(b_{1}(G)-2\right)\left(b_{2}(G)-\binom{b_{1}(G)}{2}\right)-b_{1}(G)
$$

where $b_{i}(G)(0 \leq i \leq 3)$ is the first four coefficients of $h(G)$.
Lemma 2.1 ([2, 7]) Let G be a graph with k components of $G_{1}, G_{2}, \ldots, G_{k}$. Then
$h(G)=\prod_{i=1}^{k} h\left(G_{i}\right)$ and $R_{j}(G)=\sum_{i=1}^{k} R_{j}\left(G_{i}\right)$ for $j=1,2$.
It is obvious that $R_{j}(G)$ is an invariant of graphs. So, for any two graphs G and H, we have $R_{j}(G)=R_{j}(H)$ for $j=1,2$ if $h(G)=h(H)$ or $h_{1}(G)=h_{1}(H)$.

Lemma $2.2([7,8])$ Let G be a graph with p vertices and q edges. Denote by M the set of the triangles in G and by $M(i)$ the number of triangles which cover the vertex i in G. If the degree sequence of G is $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$, then the first four coefficients of $h(G)$ are, respectively,
(1) $b_{0}(G)=1, b_{1}(G)=q$.
(2) $b_{2}(G)=\binom{q+1}{2}-\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}+n_{G}\left(K_{3}\right)$.
(3) $b_{3}(G)=\frac{q}{6}\left(q^{2}+3 q+4\right)-\frac{q+2}{2} \sum_{i=1}^{p} d_{i}^{2}+\frac{1}{3} \sum_{i=1}^{p} d_{i}^{3}-\sum_{i j \in E(G)} d_{i} d_{j}-\sum_{i \in M} M(i) d_{i}+$ $(q+2) n_{G}\left(K_{3}\right)+n_{G}\left(K_{4}\right)$, where $b_{i}(G)=\alpha(\bar{G}, p-i)(i=0,1,2,3)$.

For an edge $e=v_{1} v_{2}$ of a graph G, the graph $G * e$ is defined as follows: the vertex set of $G * e$ is $\left(V(G)-\left\{v_{1}, v_{2}\right\}\right) \bigcup\{v\}(v \notin G)$, and the edge set of $G * e$ is $\left\{e^{\prime} \mid e^{\prime} \in E(G), e^{\prime}\right.$ is not incident with v_{1} or $\left.v_{2}\right\} \cup\left\{u v \mid u \in N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)\right\}$, where $N_{G}(v)$ is the set of vertices of G which are adjacent to v.

Lemma 2.3 ([7]) Let G be a graph with $e \in E(G)$. Then

$$
h(G, x)=h(G-e, x)+h(G * e, x),
$$

where $G-e$ denotes the graph obtained by deleting the edge e from G.
Lemma 2.4 ([7]) (1) For $n \geq 2, h\left(P_{n}\right)=\sum_{k \leq n}\binom{k}{n-k} x^{k}$.
(2) For $n \geq 4, h\left(D_{n}\right)=\sum_{k \leq n}\left(\frac{n}{k}\binom{k}{n-k}+\binom{k-2}{n-k-3}\right) x^{k}$.
(3) For $n \geq 4, m \geq 6, h\left(P_{n}\right)=x\left(h\left(P_{n-1}\right)+h\left(P_{n-2}\right)\right), h\left(D_{m}\right)=x\left(h\left(D_{m-1}\right)+h\left(D_{m-2}\right)\right)$.

Lemma 2.5 ([18]) Let $\left\{g_{i}(x)\right\}$, simply denoted by $\left\{g_{i}\right\}$, be a polynomial sequence with integer coefficients and $g_{n}(x)=x\left(g_{n-1}(x)+g_{n-2}(x)\right)$. Then
(1) $g_{n}(x)=h\left(P_{k}\right) g_{n-k}(x)+x h\left(P_{k-1}\right) g_{n-k-1}(x)$.
(2) $h_{1}\left(P_{n}\right) \mid g_{k(n+1)+i}(x)$ if and only if $h_{1}\left(P_{n}\right) \mid g_{i}(x)$, where $0 \leq i \leq n, n \geq 2$ and $k \geq 1$.

Lemma 2.6 ($[6,10])$ Let G be a nontrivial connected graph with n vertices. Then
(1) $R_{1}(G) \leq 1$, and the equality holds if and only if $G \cong P_{n}(n \geq 2)$ or $G \cong K_{3}$.
(2) $R_{1}(G)=0$ if and only if $G \in \vartheta$.
(3) $R_{1}(G)=-1$ if and only if $G \in \xi$, especially, $q(G)=p(G)+1$ if and only if $G \in\left\{F_{n} \mid n \geq\right.$ $6\} \cup\left\{K_{4}^{-}\right\}$.
(4) $R_{1}(G)=-2$ if and only if $G \in \psi$ for $q(G)=p(G)+1$ and $G \cong K_{4}$ for $q(G)=p(G)+2$.

Lemma 2.7 ([11]) Let G be a connected graph. Then
(1) If $R_{1}(G)=0,-1,-2$, then $q(G)-p(G) \leq\left|R_{1}(G)\right|$;
(2) If $R_{1}(G)=-3$, then $q(G)-p(G) \leq\left|R_{1}(G)+1\right|$.

Lemma 2.8 ([18]) Let G be a connected graph and H be a proper subgraph of G. Then

$$
\beta(G)<\beta(H)
$$

Lemma 2.9 ([18]) Let G be a connected graph. Then
(1) $\beta(G)=-4$ if and only if

$$
G \in\left\{T(1,2,5), T(2,2,2), T(1,3,3), K_{1,4}, C_{4}\left(P_{2}\right), Q(1,1), K_{4}^{-}, D_{8}\right\} \cup \mathcal{U}
$$

(2) $\beta(G)>-4$ if and only if

$$
G \in\left\{K_{1}, T(1,2, i)(2 \leq i \leq 4), D_{i}(4 \leq i \leq 7)\right\} \cup \mathcal{P} \cup \mathcal{C} \cup \mathcal{T}
$$

Lemma 2.10 ([18]) Let G be a connected graph. Then $-(2+\sqrt{5}) \leq \beta(G)<-4$ if and only if G is one of the following graphs:
(1) $T_{l_{1}, l_{2}, l_{3}}$ for $l_{1}=1, l_{2}=2, l_{3}>5$ or $l_{1}=1, l_{2}>2, l_{3}>3$ or $l_{1}=l_{2}=2, l_{3}>2$ or $l_{1}=2, l_{2}=l_{3}=3$.
(2) $U_{r, s, t, a, b}$ for $r=a=1$, $(r, s, t) \in\{(1,1,2),(2,4,2),(2,5,3),(3,7,3),(3,8,4)\}$, or $r=a=$ $1, s \geq 1, t \geq t^{*}(s, b), b \geq 1$, where $(s, b) \neq(1,1)$ and

$$
t^{*}= \begin{cases}s+b+2, & \text { if } s \geq 3 \\ b+3, & \text { if } s=2 \\ b, & \text { if } s=1\end{cases}
$$

(3) D_{n} for $n \geq 9$.
(4) $C_{n}\left(P_{2}\right)$ for $n \geq 5$.
(5) F_{n} for $n \geq 9$.
(6) $B_{r, s, t}$ for $r=5, s=1$ and $t=3$, or $r \geq 1, s=1$ if $t=1$, or $r \geq 4, s=1$ if $t=2$, or $b \geq c+3, s=1$ if $t \geq 3$.
(7) $G \cong C_{4}\left(P_{3}\right)$ or $G \cong Q(1,2)$.

Corollary 2.1 ([14]) If graph G satisfies $R_{1}(G) \leq-2$, then $\beta(G)<-2-\sqrt{5}$.

3. The algebraic properties of adjoint polynomials

3.1. The divisibility of adjoint polynomials and the fourth characters of graphs

Lemma $3.1([18])$ For $n, m \geq 2, h\left(P_{n}\right) \mid h\left(P_{m}\right)$ if and only if $(n+1) \mid(m+1)$.
Theorem 3.1 (1) For $n \geq 9, \rho\left(B_{n-8,1,4}\right)= \begin{cases}\frac{n}{2}, & \text { if } n \text { is even; } \\ \frac{n-1}{2}, & \text { otherwise. }\end{cases}$
(2) For $n \geq 9, \partial\left(B_{n-8,1,4}\right)= \begin{cases}\frac{n}{2}, & \text { if } n \text { is even; } \\ \frac{n+1}{2}, & \text { otherwise. }\end{cases}$
(3) For $n \geq 9, h\left(B_{n-8,1,4}\right)=x\left(h\left(B_{n-9,1,4}\right)+h\left(B_{n-10,1,4}\right)\right)$.

Proof (1) Choosing a pendent edge $e=u v \in E\left(B_{n-8,1,4}\right)$ whose deletion brings about a single vertex and a proper subgraph D_{n-1} of $B_{n-8,1,4}$, and by Lemma 2.3, we have $h\left(B_{n-8,1,4}\right)=$ $x h\left(D_{n-1}\right)+x h\left(P_{4}\right) h\left(D_{n-6}\right)$. It follows, from Lemma 2.4, that $\rho\left(K_{1} \cup D_{n-1}\right)=1+\left\lfloor\frac{n-1}{2}\right\rfloor$ and $\rho\left(K_{1} \cup P_{4} \cup D_{n-6}\right)=3+\left\lfloor\frac{n-6}{2}\right\rfloor$.
If n is even, then $\rho\left(K_{1} \cup D_{n-1}\right)=\rho\left(K_{1} \cup P_{4} \cup D_{n-6}\right)=\frac{n}{2}$, which implies that $\rho\left(B_{n-8,1,4}\right)=\frac{n}{2}$. If n is odd, then we arrive at $\rho\left(K_{1} \cup D_{n-1}\right)=\frac{n+1}{2}>\frac{n-1}{2}=\rho\left(K_{1} \cup P_{4} \cup D_{n-6}\right)$, which implies that $\rho\left(B_{n-8,1,4}\right)=\frac{n-1}{2}$.
(2) It obviously follows from (1).
(3) Choosing a pendent edge $e=u v \in E\left(B_{n-8,1,4}\right)$ whose deletion brings about a single
vertex and a proper subgraph D_{n-1} of $B_{n-8,1,4}$. By Lemma 2.4, We have

$$
\begin{aligned}
h\left(B_{n-8,1,4}\right) & =x h\left(D_{n-1}\right)+x h\left(P_{4}\right) h\left(D_{n-6}\right) \\
& =x\left(x h\left(D_{n-2}\right)+x h\left(D_{n-3}\right)\right)+x h\left(P_{4}\right)\left(x h\left(D_{n-7}\right)+x h\left(D_{n-8}\right)\right) \\
& =x\left(x h\left(D_{n-2}\right)+x h\left(P_{4}\right) h\left(D_{n-7}\right)\right)+x\left(x h\left(D_{n-3}\right)+x h\left(P_{4}\right) h\left(D_{n-8}\right)\right) \\
& =x\left(h\left(B_{n-9,1,4}\right)+h\left(B_{n-10,1,4}\right)\right) .
\end{aligned}
$$

Theorem 3.2 For $n \geq 2, m \geq 9, h\left(P_{n}\right) \mid h\left(B_{m-8,1,4}\right)$ if and only if $n=4$ and $m=5 k+4$ for $k \geq 1$ 。

Proof Let $g_{0}(x)=-x^{6}-10 x^{5}-37 x^{4}-63 x^{3}-50 x^{2}-18 x-2, g_{1}(x)=x^{6}+9 x^{5}+29 x^{4}+41 x^{3}+$ $25 x^{2}+8 x+1$ and $g_{m}(x)=x\left(g_{m-1}(x)+g_{m-2}(x)\right)$. We can deduce that

$$
\begin{align*}
& g_{0}(x)=-x^{6}-10 x^{5}-37 x^{4}-63 x^{3}-50 x^{2}-18 x-2, \\
& g_{1}(x)=x^{6}+9 x^{5}+29 x^{4}+41 x^{3}+25 x^{2}+8 x+1, \\
& g_{2}(x)=-x^{6}-8 x^{5}-22 x^{4}-25 x^{3}-10 x^{2}-x, \\
& g_{3}(x)=x^{6}+7 x^{5}+16 x^{4}+15 x^{3}+7 x^{2}+x, \\
& g_{4}(x)=-x^{6}-6 x^{5}-10 x^{4}-3 x^{3}, \tag{3.1}\\
& g_{5}(x)=x^{6}+6 x^{5}+12 x^{4}+7 x^{3}+x^{2}, \\
& g_{6}(x)=2 x^{5}+4 x^{4}+x^{3} \\
& g_{7}(x)=x^{7}+8 x^{6}+16 x^{5}+8 x^{4}+x^{3}, \\
& g_{8}(x)=x^{8}+8 x^{7}+18 x^{6}+12 x^{5}+2 x^{4}, \\
& g_{m}(x)=h\left(B_{m-8,1,4}\right), \text { if } m \geq 9 .
\end{align*}
$$

Let $m=(n+1) k+i$, where $0 \leq i \leq n$. It is obvious that $h_{1}\left(P_{n}\right) \mid h\left(B_{m-8,1,4}\right)$ if and only if $h_{1}\left(P_{n}\right) \mid g_{m}(x)$. From Lemma 2.5, it follows that $h_{1}\left(P_{n}\right) \mid g_{m}(x)$ if and only if $h_{1}\left(P_{n}\right) \mid g_{i}(x)$, where $0 \leq i \leq n$. We consider the following two cases:

Case $1 n \geq 9$.
If $0 \leq i \leq 8$, from (3.1), it is not difficult to verify that $h_{1}\left(P_{n}\right) \nmid g_{i}(x)$. If $i \geq 9$, from $i \leq n$, Lemma 2.4 and Theorem 3.1, we have that

$$
\begin{equation*}
\partial\left(h_{1}\left(P_{n}\right)\right)=\left\lfloor\frac{n}{2}\right\rfloor \text { and } \partial\left(h_{1}\left(B_{i-8,1,4}\right)\right)=\left\lfloor\frac{i+1}{2}\right\rfloor . \tag{3.2}
\end{equation*}
$$

The following cases are taken into account:
Subcase $1.1 \quad i=n$.
It follows from (3.2) that $\partial\left(h_{1}\left(B_{i-8,1,4}\right)\right)=\partial\left(h_{1}\left(P_{n}\right)\right)=\left\lfloor\frac{n}{2}\right\rfloor$ if n is even and $\partial\left(h_{1}\left(B_{i-8,1,4}\right)\right)=$ $\partial\left(h_{1}\left(P_{n}\right)\right)+1=\left\lfloor\frac{n+1}{2}\right\rfloor$ if n is odd.

Subcase 1.1.1 $\partial\left(h_{1}\left(B_{i-8,1,4}\right)\right)=\partial\left(h_{1}\left(P_{n}\right)\right)$.
Suppose that $h_{1}\left(P_{n}\right) \mid h_{1}\left(B_{i-8,1,4}\right)$, we have $h_{1}\left(P_{n}\right)=h_{1}\left(B_{i-8,1,4}\right)$, which implies $R_{1}\left(P_{n}\right)=$ $R_{1}\left(B_{i-8,1,4}\right)$. By Lemma 2.6, we know it is impossible. Hence $h_{1}\left(P_{n}\right) \nmid h_{1}\left(B_{i-8,1,4}\right)$, together
with $\left(h_{1}\left(P_{n}\right), x^{\alpha\left(B_{i-8,1,4}\right)}\right)=1$, we have $h_{1}\left(P_{n}\right) \nmid h\left(B_{i-8,1,4}\right)$.
Subcase 1.1.2 $\partial\left(h_{1}\left(B_{i-8,1,4}\right)\right)=\partial\left(h_{1}\left(P_{n}\right)\right)+1$.
Assume that $h_{1}\left(P_{n}\right) \mid h_{1}\left(B_{i-8,1,4}\right)$, it follows that $h_{1}\left(B_{i-8,1,4}\right)=(x+a) h_{1}\left(P_{n}\right)$. Note that $R_{1}\left(B_{i-8,1,4}\right)=-1$ and $R_{1}\left(P_{n}\right)=1$, so $R_{1}(x+a)=-2$, which brings about $a=4$. This implies that $\beta\left(B_{i-8,1,4}\right)=-4$, which contradicts (6) of Lemma 2.10. Hence $h_{1}\left(P_{n}\right) \nmid h_{1}\left(B_{i-8,1,4}\right)$, together with $\left(h_{1}\left(P_{n}\right), x^{\alpha\left(B_{i-8,1,4}\right)}\right)=1$, we have $h_{1}\left(P_{n}\right) \nmid h\left(B_{i-8,1,4}\right)$.

Subcase $1.2 \quad i \leq n-1$.
It follows by (3.2) that $\partial\left(h_{1}\left(B_{i-8,1,4}\right)\right) \leq \partial\left(h_{1}\left(P_{n}\right)\right)$. Assume that $h_{1}\left(P_{n}\right) \mid h_{1}\left(B_{i-8,1,4}\right)$, we have that $\partial\left(h_{1}\left(B_{i-8,1,4}\right)\right)=\partial\left(h_{1}\left(P_{n}\right)\right)$ and $h_{1}\left(P_{n}\right)=h_{1}\left(B_{i-8,1,4}\right)$. So we can turn to Subcase 1.1.1 for the same contradiction.

Case $22 \leq n \leq 8$.
From (1) of Lemma 2.4 and (3.1), we can verify that $h_{1}\left(P_{n}\right)=g_{i}(x)$ if and only if $n=4$ and $i=4$ for $0 \leq i \leq n \leq 8$. From Lemma 2.5, we have that $h_{1}\left(P_{n}\right) \mid h\left(B_{i-8,1,4}\right)$ if and only if $n=4$ and $m=5 k+4$. From $\rho\left(P_{4}\right)=1$ and $\rho\left(B_{m-8,1,4}\right)=\left\lfloor\frac{m}{2}\right\rfloor \geq 4$ for $m \geq 8$, we obtain that the result holds.

Theorem 3.3 For $m \geq 9, h^{2}\left(P_{4}\right) \nmid h\left(B_{m-8,1,4}\right)$.
Proof Suppose $h^{2}\left(P_{4}\right) \mid h\left(B_{m-8,1,4}\right)$. From Theorem 3.2, we have that $m=5 k+4$, where $k \geq 1$. Let $g_{m}(x)=h\left(B_{m-8,1,4}\right)$ for $m \geq 9$. By (3) of Theorem 3.1, (1) of Lemma 2.5, it follows that

$$
\begin{aligned}
g_{m}(x)= & h\left(P_{4}\right) g_{m-4}(x)+x h\left(P_{3}\right) g_{m-5}(x) \\
= & h^{2}\left(P_{4}\right) g_{m-8}(x)+2 x h\left(P_{3}\right) h\left(P_{4}\right) g_{m-9}(x)+\left(x h\left(P_{3}\right)\right)^{2} g_{m-10}(x) \\
= & h^{2}\left(P_{4}\right)\left(g_{m-8}(x)+2 x h\left(P_{3}\right) g_{m-13}(x)\right)+3\left(x h\left(P_{3}\right)\right)^{2} h\left(P_{4}\right) g_{m-14}(x)+\left(x h\left(P_{3}\right)\right)^{3} g_{m-15}(x) \\
= & h^{2}\left(P_{4}\right)\left(g_{m-8}(x)+2 x h\left(P_{3}\right) g_{m-13}(x)+3\left(x h\left(P_{3}\right)\right)^{2} g_{m-18}(x)\right)+ \\
& 4\left(x h\left(P_{3}\right)\right)^{3} h\left(P_{4}\right) g_{m-19}(x)+\left(x h\left(P_{3}\right)\right)^{4} g_{m-20}(x) \\
= & \cdots \\
= & h^{2}\left(P_{4}\right) \sum_{s=1}^{k-2} s\left(x h\left(P_{3}\right)\right)^{s-1} g_{m-5 s-3}(x)+(k-1)\left(x h\left(P_{3}\right)\right)^{k-2} h\left(P_{4}\right) g_{m+1-(5 k-1)}(x)+ \\
& \left(x h\left(P_{3}\right)\right)^{k-1} h\left(P_{4}\right) g_{m-(5 k-1)}(x) .
\end{aligned}
$$

According to the assumption and $m=5 k+4$, we arrive at, by (3.1), that

$$
h^{2}\left(P_{4}\right) \mid(k-1)\left(x h\left(P_{3}\right)\right)^{k-2} h\left(P_{4}\right) g_{10}(x)+\left(x h\left(P_{3}\right)\right)^{k-1} h\left(P_{4}\right) g_{9}(x)
$$

that is

$$
h\left(P_{4}\right) \mid(k-1) g_{10}(x)+x^{3} h\left(P_{3}\right)\left(x^{3}+6 x^{2}+7 x+1\right)
$$

By direct calculation, we obtain that $k=0$, which contradicts $k \geq 1$.
Definition 3.1 ([14]) Let G be a graph with p vertex and q edges. The fourth character of a
graph G is defined as follows:

$$
R_{4}(G)=R_{2}(G)+p-q .
$$

From Lemmas 2.1 and 2.2, we obtain the following two lemmas:
Lemma 3.2 ([14]) Let graph G have k components $G_{1}, G_{2}, \ldots, G_{k}$. Then

$$
R_{4}(G)=\sum_{i=1}^{k} R_{4}\left(G_{k}\right)
$$

Lemma 3.3 ([14]) Let graph G and H satisfy that $h(G)=h(H)$ or $h_{1}(G)=h_{1}(H)$. Then

$$
R_{4}(G)=R_{4}(H)
$$

From Definitions 3.1 and 2.1, we have the following lemmas:
Lemma 3.4 ([14]) (1) $R_{4}\left(C_{n}\right)=0$ for $n \geq 4 ; R_{4}\left(C_{3}\right)=-2 ; R_{4}\left(K_{1}\right)=1$.
(2) $R_{4}\left(B_{r, 1,1}\right)=3$ for $r \geq 1 ; R_{4}\left(B_{r, 1, t}\right)=4$ for $r, t>1$.
(3) $R_{4}\left(F_{6}\right)=4 ; R_{4}\left(F_{n}\right)=3$ for $n \geq 7 ; R_{4}\left(K_{4}^{-}\right)=2$.
(4) $\quad R_{4}\left(D_{4}\right)=0 ; R_{4}\left(D_{n}\right)=1$ for $n \geq 5 ; R_{4}\left(T_{1,1,1}\right)=0$.
(5) $R_{4}\left(T_{1,1, l_{3}}\right)=1, R_{4}\left(T_{1, l_{2}, l_{3}}\right)=2 ; R_{4}\left(T_{l_{1}, l_{2}, l_{3}}\right)=3$ for $l_{3} \geq l_{2} \geq l_{1} \geq 2$.
(6) $R_{4}\left(C_{r}\left(P_{2}\right)\right)=3$ for $r \geq 4 ; R_{4}\left(C_{4}\left(P_{3}\right)\right)=R_{4}\left(Q_{1,2}\right)=4$.
(7) $R_{4}\left(P_{2}\right)=0 ; R_{4}\left(P_{n}\right)=-1$ for $n \geq 3$.

Lemma 3.5 ([12]) Let graph $G \in \xi \backslash\left\{F_{n}, U_{r, s, t, a, b}, K_{4}^{-}\right\}$. Then
(1) $R_{4}(G)=3$ if and only if $G \in\left\{C_{n-1}\left(P_{2}\right) \mid n \geq 5\right\} \cup\left\{Q_{1,1}\right\} \cup\left\{B_{n-5,1,1} \mid n \geq 7\right\}$.
(2) $R_{4}(G)=4$ if and only if $G \in\left\{C_{r}\left(P_{s}\right) \mid r \geq 4, s \geq 3\right\} \cup\left\{Q_{1, n-4} \mid n \geq 6\right\} \cup\left\{B_{r, 1, t}, B_{1,1,1} \mid r, t \geq\right.$ $2\}$.
(3) $R_{4}(G)=5$ if and only if $G \in\left\{Q_{r, s} \mid r, s \geq 2\right\} \cup\left\{B_{1,1, t}, B_{r, s, t} \mid r, s, t \geq 2\right\}$.
(4) $R_{4}(G)=6$ if and only if $G \in\left\{B_{1, s, t} \mid s, t \geq 2\right\}$.

Corollary 3.1 Let graph $G \in \xi \backslash\left\{F_{n}, U_{r, s, t, a, b}, K_{4}^{-}\right\}$. Then $R_{4}(G) \geq 3$.

3.2 The smallest real roots of adjoint polynomials of graphs

An internal $x_{1} x_{k}$-path of a graph G is path $x_{1} x_{2} x_{3} \cdots x_{k}$ (possibly $x_{1}=x_{k}$) of G such that $d\left(x_{1}\right)$ and $d\left(x_{k}\right)$ are at least 3 and $d\left(x_{2}\right)=d\left(x_{3}\right)=\cdots=d\left(x_{k-1}\right)=2$ (unless $k=2$).

Lemma 3.6 ([18]) Let T be a tree. If $u v$ is an internal path of T and $T \nsubseteq U(1,1, t, 1,1)$ for $t \geq 1$, then $\beta(T)<\beta\left(T_{x y}\right)$, where $\beta\left(T_{x y}\right)$ is the graph obtained from T by inserting a new vertex on the edge $x y$ of T.

Lemma 3.7 ([14, 15, 18]) (1) For $n \geq 5, m \geq 4$, $\beta\left(C_{n}\left(P_{2}\right)\right)<\beta\left(C_{n-1}\left(P_{2}\right)\right) \leq \beta\left(D_{m}\right) \leq \beta\left(C_{m}\right)$.
(2) For $n \geq 6, m \geq 6, \beta\left(F_{n}\right)=\beta\left(B_{m-5,1,1}\right)$ if and only if $n=2 k+1$ and $m=k+2$.
(3) For $n \geq 4$, $m \geq 6, \beta\left(F_{m}\right)<\beta\left(F_{m-1}\right)<\beta\left(D_{n}\right)$ and $\beta\left(B_{m-5,1,1}\right)<\beta\left(B_{m-4,1,1}\right)<\beta\left(D_{n}\right)$.
(4) For $n \geq 7, m \geq 6, \beta\left(B_{n-6,1,2}\right)=\beta\left(F_{m}\right)$ if and only if $m=n-1$.
(5) For $n \geq 7, m \geq 6, \beta\left(B_{n-6,1,2}\right)<\beta\left(D_{m}\right) ; \beta\left(B_{n-7,1,3}\right)<\beta\left(D_{m}\right)$.
(6) For $n \geq 8, \beta\left(B_{n-7,1,3}\right)=\beta\left(Q_{1,2}\right)=\beta\left(C_{4}\left(P_{3}\right)\right)$ if and only if $n=13$.

Lemma $3.8([13,14])(1) \beta\left(B_{1,1,4}\right)=\beta\left(C_{8}\left(P_{2}\right)\right), \beta\left(B_{1,1,4}\right)=\beta\left(\psi_{5}^{1}\right), \beta\left(B_{1,1,4}\right)=\beta\left(\psi_{5}^{2}\right)$.
(2) $\beta\left(B_{8,1,4}\right)=\beta\left(Q_{2,4}\right), \beta\left(B_{1,1,4}\right)=\beta(Q(1,2))=\beta\left(C_{4}\left(P_{3}\right)\right)$.
(3) For $r, t \geq 1, \beta\left(B_{r, 1, t}\right)<\beta\left(B_{r+1,1, t}\right)$.
(4) $\beta\left(T_{1,3,6}\right)=\beta\left(C_{5}\left(P_{2}\right)\right), \beta\left(T_{1,3,11}\right)=\beta\left(B_{8,1,2}\right)$.
(5) For $r, t \geq 1, \beta\left(U_{1,2, r, 1, t}\right)=\beta\left(B_{r, 1, t}\right)$ and $\beta\left(B_{t, 1,2}\right)=\beta\left(F_{t+5}\right)$.

Theorem 3.4 (1) For $m \geq 11$, $n \geq 19$, $\beta\left(B_{1,1,4}\right)<\beta\left(B_{2,1,4}\right)<\beta\left(B_{3,1,4}\right)<\beta\left(B_{4,1,4}\right)<$ $\beta\left(B_{5,1,4}\right)<\beta\left(B_{6,1,4}\right)<\beta\left(C_{m}\left(P_{2}\right)\right)<\beta\left(B_{7,1,4}\right)<\beta\left(C_{10}\left(P_{2}\right)\right)<\beta\left(C_{9}\left(P_{2}\right)\right)<\beta\left(C_{8}\left(P_{2}\right)\right)=$ $\beta\left(B_{8,1,4}\right)=\beta\left(B_{6,1,3}\right)<\beta\left(B_{9,1,4}\right)<\beta\left(B_{10,1,4}\right)<\beta\left(C_{7}\left(P_{2}\right)\right)<\beta\left(B_{11,1,4}\right)<\beta\left(C_{6}\left(P_{2}\right)\right)<$ $\beta\left(B_{n-8,1,4}\right)<\beta\left(C_{5}\left(P_{2}\right)\right)<\beta\left(C_{4}\left(P_{2}\right)\right)$.
(2) $m \geq 11, n \geq 19, \beta\left(B_{1,1,4}\right)<\beta\left(B_{2,1,4}\right)=\beta\left(F_{6}\right)<\beta\left(B_{3,1,4}\right)<\beta\left(F_{7}\right)<\beta\left(B_{4,1,4}\right)<$ $\beta\left(B_{5,1,4}\right)<\beta\left(F_{8}\right)<\beta\left(B_{6,1,4}\right)<\beta\left(B_{7,1,4}\right)<\beta\left(F_{9}\right)=\beta\left(B_{8,1,4}\right)<\beta\left(B_{9,1,4}\right)<\beta\left(B_{10,1,4}\right)<$ $\beta\left(B_{11,1,4}\right)<\beta\left(B_{n-8,1,4}\right)<\beta\left(F_{m-1}\right)=\beta\left(B_{m-6,1,2}\right)$.
(3) For $n \geq m, t \geq 4, \beta\left(B_{m-t-4,1, t}\right)<\beta\left(B_{n-8,1,4}\right)$.
(4) For $n \geq 9, m \geq 4, \beta\left(B_{n-8,1,4}\right)<\beta\left(D_{m}\right)$.
(5) For $n \geq 9, \beta(Q(1,2))=\beta\left(C_{4}\left(P_{3}\right)\right)=\beta\left(B_{n-8,1,4}\right)$ if and only if $n=12$.
(6) For $n \geq 9, m \geq 6, \beta\left(B_{n-8,1,4}\right)=\beta\left(B_{m-5,1,1}\right)$ if and only if $m=6, n=16$.
(7) For $n \geq 9, m \geq 7, \beta\left(B_{m-6,1,2}\right)=\beta\left(B_{n-8,1,4}\right)$ if and only if $m=7, n=10$ or $m=10$, $n=16$.
(8) For $n \geq 9, m \geq 8, \beta\left(B_{m-7,1,3}\right)=\beta\left(B_{n-8,1,4}\right)$ if and only if $m=13, n=16$.

Proof (1) For $n \geq 19$, it is obvious that $T_{1,3,6}$ is a proper subgraph of $B_{n-8,1,4}$. From Lemma 2.8 and (4) of Lemma 3.8, it follows that $\beta\left(B_{n-8,1,4}\right)<\beta\left(T_{1,3,6}\right)=\beta\left(C_{5}\left(P_{2}\right)\right)$. By (1) of Lemma 3.8 and (1) of Lemma 3.7, the result holds.
(2) Using software Mathematica and by calculation, we have that

$$
\beta\left(B_{1,1,4}\right)=-4.49086<\beta\left(B_{2,1,4}\right)=\beta\left(B_{1,1,2}\right)=\beta\left(F_{6}\right)=-4.39026<\beta\left(B_{3,1,4}\right)=-4.32931<
$$ $\beta\left(F_{7}\right)=-4.30278<\beta\left(B_{4,1,4}\right)=-4.28896<\beta\left(B_{5,1,4}\right)=-4.26076<\beta\left(F_{8}\right)=\beta\left(B_{3,1,2}\right)=$ $-4.24978<\beta\left(B_{6,1,4}\right)=-4.24039<\beta\left(B_{7,1,4}\right)=-4.22541<\beta\left(F_{9}\right)=\beta\left(B_{8,1,4}\right)=\beta\left(B_{4,1,2}\right)=$ $\beta\left(B_{6,1,3}\right)=-4.21432<\beta\left(B_{9,1,4}\right)=-4.20612<\beta\left(B_{10,1,4}\right)=-4.2001<\beta\left(B_{11,1,4}\right)=-4.19576<$ $\beta\left(B_{n-8,1,4}\right)<\beta\left(F_{m-1}\right)=\beta\left(B_{m-6,1,2}\right)$. For $n \geq 22$, it follows, from Lemma 2.8 and (4) of Lemma 3.8, that $\beta\left(B_{n-8,1,4}\right)<\beta\left(T_{1,3,11}\right)=\beta\left(B_{8,1,2}\right)$. From (5) of Lemma 3.8 and (4) of Lemma 3.7, the result holds.

(3) Since $n \geq m$ and $t \geq 4$, from (3) of Lemma 3.8 and Lemma 2.8, we have that $\beta\left(B_{m-t-4,1, t}\right)<\beta\left(B_{n-t-4,1, t}\right)<\beta\left(B_{n-8,1, t}\right)<\beta\left(B_{n-8,1,4}\right)$.
(4) From (2) of the theorem and (3) of Lemma 3.7, the result evidently holds.
(5) Applying (2) of Lemma 3.8, we can get the result.
(6) From (2) of Lemma 3.7 and (2) of the theorem, the result evidently holds.
(7) Using (4) of Lemma 3.7 and (2) of the theorem easily yields the result.
(8) By (6) of Lemma 3.7 and (5) of the theorem, the result evidently holds.

4. The chromaticity of graph $\overline{B_{n-8,1,4}}$

Corollary 4.1 ([16]) For $n \geq 4, D_{n}$ is adjointly unique if and only if $n \neq 4,8$.
Theorem 4.1 Let G be a graph such that $G \sim^{h} B_{n-8,1,4}$, where $n \geq 9$. Then G contains at most one component whose first character is 1 , furthermore, it is P_{4} or C_{3}.

Proof Let G_{1} be one of the components of G such that $R_{1}(G)=1$. From Lemma 2.6 and Theorem 3.3, it follows that $h\left(G_{1}\right) \mid h\left(B_{n-8,1,4}\right)$ if and only if $G_{1} \cong P_{4}$ and $n=5 k+4$. According to (1) of Lemma 2.5, we obtain the following equality:

$$
h\left(B_{5 k+4,1,4}\right)=h\left(P_{5}\right) h\left(B_{5(k-1)+4,1,4}\right)+x h\left(P_{4}\right) h\left(B_{5(k-1)+3,1,4}\right) .
$$

Note that $h\left(P_{4}\right) \mid h\left(B_{5(k-1)+4,1,4}\right)$ implies that $h\left(P_{4}\right) \mid h\left(B_{5 k+12,1,4}\right)$. From this together with Theorem 3.3, the theorem holds.

Lemma 4.2 Let G be a graph such that $G \sim^{h} B_{n-8,1,4}$, where $n \geq 9$. Then G does not contain K_{4} as one of its components.

Proof Suppose that $h\left(K_{4}^{-}\right) \mid h\left(B_{n-8,1,4}\right)$, from Lemma 2.3, we know that $h\left(K_{4}^{-}\right)=x^{2}(x+1)(x+$ 4), which implies that $h_{1}\left(P_{2}\right) \mid h\left(B_{n-8,1,4}\right)$. It contradicts to Theorem 3.2.

Theorem 4.2 Let G be a graph such that $G \sim^{h} B_{n-8,1,4}$, where $n \geq 9$. Then
(1) If $n=9$, then $[G]_{h}=\left\{Q(2,4), B_{1,1,4}, P_{4} \cup \psi_{5}^{1}, P_{4} \cup \psi_{5}^{2}\right\}$;
(2) If $n=16$, then $[G]_{h}=\left\{C_{8}\left(P_{2}\right) \cup D_{7}, Q(1,2) \cup C_{6}, C_{4}\left(P_{3}\right) \cup C_{6}\right\}$;
(3) If $n \neq 9,16$, then $[G]_{h}=\left\{B_{n-8,1,4}\right\}$.

Proof (1) When $n=9$, let graph G satisfy $h(G)=h\left(B_{1,1,4}\right)$. From Lemmas 2.1, 2.2 and 2.6, we obtain that $p(G)=q(G)=9$ and $R_{1}(G)=-1$. By direct calculation, we arrive at $h(G)=h\left(B_{1,1,4}\right)=x^{4}\left(x^{5}+9 x^{4}+26 x^{3}+28 x^{2}+10 x+1\right)$. We consider the following cases:

Case $1 G$ is a connected graph.
From $R_{4}(G)=R_{4}\left(B_{1,1,4}\right)=5$ and (3) of Lemma 3.5, it follows that $G \in\left\{Q(2,4), Q(3,3), B_{1,1,4}\right.$, $\left.B_{2,2,2}\right\}$. By calculation, we have that $Q(2,4), B_{1,1,4} \in[G]_{h}$.

Case $2 G$ is not a connected graph.
By calculation, we have $h(G)=h\left(B_{1,1,4}\right)=x^{4} f_{1}(x) f_{2}(x)$, where $f_{1}(x)=x^{2}+3 x+1$ and $f_{2}(x)=x^{3}+6 x^{2}+7 x+1$. Thus, $R_{1}\left(f_{1}(x)\right)=1$. Noting that $b_{1}\left(f_{1}(x)\right)=3$, we obtain that $f_{1}(x)=h_{1}\left(P_{4}\right)$ or $f_{1}(x)=h_{1}\left(C_{3}\right)$ if $f_{1}(x)$ is a factor of adjoint polynomial of some graph.

Subcase 2.1 Neither P_{4} nor C_{3} is a component of G.
Since G is not connected, the expression of G is $G=a K_{1} \cup G_{1}$, where $a \geq 1$ and G_{1} is connected. It is not difficult to obtain that $q\left(G_{1}\right)-p\left(G_{1}\right) \geq 1$. We conclude, from Lemma 2.7, that $q\left(G_{1}\right)-p\left(G_{1}\right) \leq 1$. Thus, $q\left(G_{1}\right)-p\left(G_{1}\right)=1$. From Lemma 2.6, it follows that $G_{1} \cong F_{8}$ and $G=K_{1} \cup F_{8}$. By calculation, we arrive at $h(G)=h\left(K_{1} \cup F_{8}\right) \neq h\left(B_{1,1,4}\right)$.

Subcase 2.2 Either P_{4} or C_{3} is a component of G.

Subcase 2.2.1 P_{4} is a component of G.
Let $G=P_{4} \cup G_{1}$, where $h_{1}\left(G_{1}\right)=x^{3}+6 x^{2}+7 x+1$. The following subcases are taken into account:

Subcase 2.2.1.1 G_{1} is a connected graph.
Noting that $R_{1}\left(G_{1}\right)=-2$ and $q\left(G_{1}\right)=p\left(G_{1}\right)+1=6$, we have from Lemma 2.6, that $G_{1} \in \psi$. Since the order of G_{1} is 5 and $p\left(\psi_{p}^{3}\right) \geq 6, p\left(\psi_{p}^{4}\right) \geq 6, p\left(\psi_{p}^{5}\right) \geq 6$, we have $G_{1} \in\left\{\psi_{5}^{1}, \psi_{5}^{2}, \psi_{5}^{6}\right\}$. By calculation, $P_{4} \cup \psi_{5}^{1}, P_{4} \cup \psi_{5}^{2} \in[G]_{h}$.

Subcase 2.2.1.2 G_{1} is not a connected graph.
It follows that $G=P_{4} \cup a K_{1} \cup G_{1}$, where $a \geq 1$ and $h_{1}\left(G_{1}\right)=x^{3}+6 x^{2}+7 x+1$. It is not difficult to get that $q\left(G_{1}\right)-p\left(G_{1}\right) \geq 2$. Remarking that $R_{1}\left(G_{1}\right)=-2$, we obtain, from Lemma 2.7, that $q\left(G_{1}\right)-p\left(G_{1}\right) \leq 2$, which results in $q\left(G_{1}\right)-p\left(G_{1}\right)=2$. Thus we conclude, from Lemma 2.6 , that $G_{1} \cong K_{4}^{-}$and $a=1$. By calculation, $G=P_{4} \cup K_{1} \cup K_{4}^{-} \notin[G]_{h}$.

Subcase 2.2.2 C_{3} is a component of G.
Let $G=C_{3} \cup G_{1}$, where $h_{1}\left(G_{1}\right)=x^{3}+6 x^{2}+7 x+1$. We have the following subcases to be considered.

Subcase 2.2.2.1 G_{1} is a connected graph.
Note that $R_{1}\left(G_{1}\right)=-2$ and $q\left(G_{1}\right)=p\left(G_{1}\right)=6$. It contradicts to Lemma 2.6.
Subcase 2.2.2.2 G_{1} is not a connected graph.
It follows that $G=C_{3} \cup a K_{1} \cup G_{1}$, where $a \geq 1$ and $h_{1}\left(G_{1}\right)=x^{3}+6 x^{2}+7 x+1$. It is not difficult to get that $q\left(G_{1}\right)-p\left(G_{1}\right) \geq 1$. Remarking that $R_{1}\left(G_{1}\right)=-2$, we conclude, from Lemma 2.6, that $1 \leq q\left(G_{1}\right)-p\left(G_{1}\right) \leq 2$. If $q\left(G_{1}\right)-p\left(G_{1}\right)=1$, or $q\left(G_{1}\right)-p\left(G_{1}\right)=2$. Then we can turn to Subcase 2.2.1 for the same contradiction.
(2) When $n=10$, let G be a graph such that $h(G)=h\left(B_{2,1,4}\right)$, which brings $p(G)=q(G)=$ 10 and $R_{1}(G)=-1$. We distinguish the following cases:

Case $1 G$ is a connected graph.
From $R_{4}(G)=R_{4}\left(B_{2,1,4}\right)=4$ and (2) of Lemma 3.5, it follows that $G \in\left\{C_{4}\left(P_{7}\right), C_{5}\left(P_{6}\right)\right.$, $\left.C_{6}\left(P_{5}\right), C_{7}\left(P_{4}\right), C_{8}\left(P_{3}\right), Q_{1,6}, B_{2,1,4}\right\}$. By calculation, we have that $h(G)=h\left(B_{2,1,4}\right)$ if and only if $G \cong B_{2,1,4}$, which implies that $B_{2,1,4}$ is adjoint uniqueness.

Case $2 G$ is not a connected graph.
By calculation, we obtain that $h\left(B_{2,1,4}\right)=x^{5} f_{1}(x) f_{2}(x)$, where $f_{1}(x)=x+3$ and $f_{2}(x)=$ $x^{4}+7 x^{3}+13 x^{2}+7 x+1$. Remarking that $R_{1}\left(f_{1}(x)\right)=1$ and $b_{1}\left(f_{1}(x)\right)=2$. Since $f_{1}(x)$ is not a factor of adjoint polynomial of some graph G with $R_{1}(G)=1$, it means that $B_{2,1,4}$ is adjoint uniqueness.
(3) When $n=11$, using the similar method to that of (2), we can show that $B_{3,1,4}$ is adjoint uniqueness. The details of the proof are omitted.
(4) When $n \geq 12$, let $G=\bigcup_{i=1}^{t} G_{i}$. From Lemma 2.1, we have that

$$
\begin{equation*}
h(G)=\prod_{i=1}^{t} h\left(G_{i}\right)=h\left(B_{n-8,1,4}\right) \tag{4.1}
\end{equation*}
$$

which results in $\beta(G)=\beta\left(B_{n-8,1,4}\right) \in[-2-\sqrt{5},-4)$ by Lemma 2.10. Let s_{i} denote the number of components G_{i} such that $R\left(G_{i}\right)=-i$, where $i \geq-1$. From Theorem 4.1, Lemmas 2.1 and 2.2 , it follows that $0 \leq s_{-1} \leq 1$ and

$$
\begin{equation*}
R_{1}(G)=\sum_{i=1}^{t} R_{1}\left(G_{i}\right)=-1, q(G)=p(G) \tag{4.2}
\end{equation*}
$$

which results in

$$
\begin{equation*}
s_{-1}=s_{1}+2 s_{2}-1 \tag{4.3}
\end{equation*}
$$

We distinguish the following cases by $0 \leq s_{-1} \leq 1$:
Case $1 s_{-1}=0$.
It follows, from (4.3), that $s_{2}=0, s_{1}=1$ with $R_{1}\left(G_{1}\right)=-1$. Without loss of generality, we set

$$
\begin{equation*}
G=G_{1} \cup\left(\cup_{i \in A} C_{i}\right) \cup\left(\cup_{j \in B} D_{j}\right) \cup f D_{4} \cup a K_{1} \cup b T_{1,1,1} \cup\left(\cup_{T \in \mathcal{T}_{0}} T_{l_{1}, l_{2}, l_{3}}\right) \tag{4.4}
\end{equation*}
$$

where $R_{1}\left(G_{1}\right)=-1, \cup_{T \in \mathcal{T}_{0}} T_{l_{1}, l_{2}, l_{3}}=\left(\cup_{T \in \mathcal{T}_{1}} T_{1,1, l_{3}}\right) \cup\left(\cup_{T \in \mathcal{T}_{2}} T_{1, l_{2}, l_{3}}\right) \cup\left(\cup_{T \in \mathcal{T}_{3}} T_{l_{1}, l_{2}, l_{3}}\right), \mathcal{T}_{1}=$ $\left\{T_{1,1, l_{3}} \mid l_{3} \geq 2\right\}, \mathcal{T}_{2}=\left\{T_{1, l_{2}, l_{3}} \mid l_{3} \geq l_{2} \geq 2\right\}, \mathcal{T}_{3}=\left\{T_{l_{1}, l_{2}, l_{3}} \mid l_{3} \geq l_{2} \geq l_{1} \geq 2\right\}, \mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \mathcal{T}_{3}$, the tree $T_{l_{1}, l_{2}, l_{3}}$ is denoted by \mathcal{T} for short, $A=\{i \mid i \geq 4\}$ and $B=\{j \mid j \geq 5\}$.

From Lemmas 3.2, 3.3 and 3.4, we arrive at

$$
\begin{equation*}
R_{4}(G)=R_{4}\left(B_{n-8,1,4}\right)=4=R_{4}\left(G_{1}\right)+|B|+a+\left|\mathcal{T}_{1}\right|+2\left|\mathcal{T}_{2}\right|+3\left|\mathcal{T}_{3}\right| \tag{4.5}
\end{equation*}
$$

From (1) of Lemma 2.7, it follows that $q\left(G_{1}\right)-p\left(G_{1}\right) \leq 1$. Combining this with (4.2), we know that $0 \leq q\left(G_{1}\right)-p\left(G_{1}\right) \leq 1$. Thus, we consider the following subcases:

Subcase $1.1 q\left(G_{1}\right)=p\left(G_{1}\right)+1$.
From Lemmas 2.6 and 4.2 , we have $G_{1} \cong F_{m}$. Recalling that $q(G)=p(G)$, we obtain the following equality:

$$
\begin{equation*}
a+b+\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right|+\left|\mathcal{T}_{3}\right|=1 \tag{4.6}
\end{equation*}
$$

If $m \geq 9$, from (3) of Lemma 3.4, (4.5) and (4.6), we arrive at $|B|+a+\left|\mathcal{T}_{1}\right|+2\left|\mathcal{T}_{2}\right|+3\left|\mathcal{I}_{3}\right|=1$, which leads to $|B|+a+\left|\mathcal{T}_{1}\right|=1,\left|\mathcal{T}_{2}\right|=\left|\mathcal{T}_{3}\right|=0$ and $a+b+\left|\mathcal{T}_{1}\right|=1$. Then we have the following three cases to be considered:

If $|B|=1$, then $a=\left|\mathcal{T}_{1}\right|=0$ and $b=1$, which results in

$$
G=F_{m} \cup\left(\cup_{i \in A} C_{i}\right) \cup D_{j} \cup f D_{4} \cup T_{1,1,1} .
$$

If $a=1$, then $|B|=\left|\mathcal{T}_{1}\right|=b=0$, which leads to

$$
G=F_{m} \cup\left(\cup_{i \in A} C_{i}\right) \cup f D_{4} \cup K_{1}
$$

If $\left|\mathcal{T}_{1}\right|=1$, then $|B|=a=b=0$, which brings about

$$
G=F_{m} \cup\left(\cup_{i \in A} C_{i}\right) \cup f D_{4} \cup T_{1,1, l_{3}}
$$

From the above arguments, we have, from Lemmas 2.9 and 2.10 , that $\beta(G)=\beta\left(F_{m}\right)$. From (2) of Theorem 3.4 and $\beta(G)=\beta\left(B_{n-8,1,4}\right)$, it follows that $\beta\left(F_{m}\right)=\beta\left(B_{n-8,1,4}\right)$ if and only if $m=6, n=10$, or $m=9, n=16$. Note that $p(G)=p\left(B_{n-8,1,4}\right)=n$, so we only have $G=F_{9} \cup C_{6} \cup K_{1}$, or $G=F_{9} \cup T_{1,1,4}$, which contradicts to $h(G)=h\left(B_{8,1,4}\right)$ by direct calculation.

Subcase $1.2 q\left(G_{1}\right)=p\left(G_{1}\right)$.
Recalling that $q(G)=p(G)$, we arrive at, from (4.4), $a=b=\left|\mathcal{T}_{1}\right|=\left|\mathcal{T}_{2}\right|=\left|\mathcal{T}_{3}\right|=0$, which leads to

$$
\begin{equation*}
G=G_{1} \cup\left(\cup_{i \in A} C_{i}\right) \cup\left(\cup_{j \in B} D_{j}\right) \cup f D_{4} . \tag{4.7}
\end{equation*}
$$

From (3) of Lemmas 2.6 and 2.10, it follows that

$$
\begin{equation*}
G_{1} \in\left\{B_{m-t-4,1, t}, C_{r}\left(P_{2}\right), Q(1,2), C_{4}\left(P_{3}\right)\right\}, \tag{4.8}
\end{equation*}
$$

where $m-t-4, t$ and r satisfy the conditions of Lemma 2.10.
We distinguish the following subcases by (4.8):
Subcase 1.2.1 $G_{1} \cong C_{r}\left(P_{2}\right)$.
From Lemmas 2.9, 2.10 and (1) of Lemma 3.7, it follows that $\beta(G)=\beta\left(C_{r}\left(P_{2}\right)\right)$. Since $\beta(G)=\beta\left(B_{n-8,1,4}\right)$, we have, from (1) of Theorem 3.4, that $\beta(G)=\beta\left(C_{r}\left(P_{2}\right)\right)$ if and only if $p(G)=n=16, r=8$. From (4.7) and $p(G)=16$, we only have that $G=C_{8}\left(P_{2}\right) \cup C_{7}$ or $G=C_{8}\left(P_{2}\right) \cup D_{7}$. By calculation, we arrive at $C_{8}\left(P_{2}\right) \cup D_{7} \in[G]_{h}$.

Subcase 1.2.2 $G_{1} \cong Q(1,2)$ or $G_{1} \cong C_{4}\left(P_{3}\right)$.
From (4) and (5) of Theorem 3.4 and Lemma 2.9, we have that $\beta(G)=\beta\left(G_{1}\right)=\beta\left(B_{n-8,1,4}\right)$ if and only if $p(G)=n=12$, which brings about $G_{1} \in \mathscr{G}_{1}=\left\{Q(1,2) \cup C_{6}, C_{4}\left(P_{3}\right) \cup C_{6}\right\}$ by (4.7). By calculation, we have $\mathscr{G}_{1} \subseteq[G]_{h}$.

Subcase 1.2.3 $G_{1} \cong B_{m-t-4,1, t}$.
We distinguish the following subcases:
Subcase 1.2.3.1 $t=1$.
From (3) of Lemma 3.7 and Lemma 2.9, we obtain that $\beta(G)=\beta\left(B_{m-5,1,1}\right)$. According to (6) of Theorem 3.4, $\beta\left(B_{m-5,1,1}\right)=\beta\left(B_{n-8,1,4}\right)$ if and only if $m=6, n=16$, which leads to $G \in$ $\mathscr{G}_{2}=\left\{B_{1,1,1} \cup C_{10}, B_{1,1,1} \cup D_{10}, B_{1,1,1} \cup C_{4} \cup C_{6}, B_{1,1,1} \cup D_{4} \cup D_{6}, B_{1,1,1} \cup C_{4} \cup D_{6}, B_{1,1,1} \cup D_{4} \cup C_{6}\right\}$ from (4.7). By direct calculation, $\mathscr{G}_{2} \nsubseteq[G]_{h}$.

Subcase 1.2.3.2 $t=2$.
From (3) of Lemma 3.7 and Lemma 2.9, (7) of Theorem 3.4, it follows that $\beta(G)=\beta\left(B_{m-6,1,2}\right)=$ $\beta\left(B_{n-8,1,4}\right)$ if and only if $m=7, n=10$ or $m=10, n=16$, which leads to $G \in\left\{B_{4,1,2} \cup\right.$ $C_{6}, B_{4,1,2} \cup D_{6}$ from (4.7). By calculation, we know that it contradicts to $h(G)=h\left(B_{8,1,4}\right)$.

Subcase 1.2.3.3 $t=3$.
From (8) of Theorem 3.4, it follows that $\beta(G)=\beta\left(B_{m-7,1,3}\right)=\beta\left(B_{n-8,1,4}\right)$ if and only if $m=13, n=16$, which contradicts $h(G)=h\left(B_{8,1,4}\right)$.

Subcase 1.2.3.4 $t \geq 5$.
From Lemma 2.9, (3), (4) of Theorem 3.4 and (3) of Theorem 3.4, we arrive at $\beta(G)=$ $\beta\left(B_{m-t-4,1, t}\right)<\beta\left(B_{n-8,1,4}\right)$, which contradicts to $\beta(G)=\beta\left(B_{n-8,1,4}\right)$ by direct calculation.

As analyzed above, we obtain that $t=4$. From (4) of Theorem 3.4 and Lemma 2.9, it follows that $\beta(G)=\beta\left(B_{m-8,1,4}\right)$, together with $\beta(G)=\beta\left(B_{n-8,1,4}\right)$ and (3) of Lemma 3.8, we arrive at $m=n$. Hence $G \cong B_{n-8,1,4}$.

Case $2 s_{-1}=1$.
It follows, from (4.3), that $s_{1}+2 s_{2}=2$, which leads to

$$
\begin{equation*}
s_{2}=1, s_{1}=0, \text { or } s_{2}=0, s_{1}=2 \tag{4.9}
\end{equation*}
$$

We distinguish the following cases by (4.9):
Subcase $2.1 s_{2}=1, s_{1}=0$.
Without loss of generality, let G_{1} be the component such that $R_{1}\left(G_{1}\right)=-2$. From Corollary 2.1, we know that $\beta\left(G_{1}\right)<-2-\sqrt{5}$, which contradicts to $\beta\left(B_{n-8,1,4}\right) \in[-2-\sqrt{5},-4)$.

Subcase $2.2 s_{2}=0, s_{1}=2$.
Without loss of generality, let

$$
\begin{equation*}
G=G_{1} \cup G_{2} \cup G_{3} \cup\left(\cup_{i \in A} C_{i}\right) \cup\left(\cup_{j \in B} D_{j}\right) \cup f D_{4} \cup a K_{1} \cup b T_{1,1,1} \cup\left(\cup_{T \in \mathcal{T}_{0}} T_{l_{1}, l_{2}, l_{3}}\right), \tag{4.10}
\end{equation*}
$$

where $G_{1} \in\left\{P_{4}, C_{3}\right\}, R_{1}\left(G_{2}\right)=R_{1}\left(G_{3}\right)=-1, \cup_{T \in \mathcal{T}_{0}} T_{l_{1}, l_{2}, l_{3}}=\left(\cup_{T \in \mathcal{T}_{1}} T_{1,1, l_{3}}\right) \cup\left(\cup_{T \in \mathcal{T}_{2}} T_{1, l_{2}, l_{3}}\right) \cup$ $\left(\cup_{T \in \mathcal{T}_{3}} T_{l_{1}, l_{2}, l_{3}}\right), \mathcal{T}_{1}=\left\{T_{1,1, l_{3}} \mid l_{3} \geq 2\right\}, \mathcal{T}_{2}=\left\{T_{1, l_{2}, l_{3}} \mid l_{3} \geq l_{2} \geq 2\right\}, \mathcal{T}_{3}=\left\{T_{l_{1}, l_{2}, l_{3}} \mid l_{3} \geq l_{2} \geq l_{1} \geq 2\right\}$, $\mathcal{T}_{0}=\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \mathcal{T}_{3}$, the tree $T_{l_{1}, l_{2}, l_{3}}$ is denoted by T for short, $A=\{i \mid i \geq 4\}$ and $B=\{j \mid j \geq 5\}$.

From Lemmas 3.2, 3.3 and 3.4, we arrive at

$$
\begin{equation*}
R_{4}(G)=R_{4}\left(B_{n-8,1,4}\right)=4=\sum_{i=1}^{3} R_{4}\left(G_{i}\right)+|B|+a+\left|\mathcal{T}_{1}\right|+2\left|\mathcal{T}_{2}\right|+3\left|\mathcal{T}_{3}\right| \tag{4.11}
\end{equation*}
$$

Subcase 2.2.1 $G_{1} \cong P_{4}$.
In terms of Lemmas 2.6, 2.7, (4.2) and (4.10), we have that $1 \leq \sum_{i=2}^{3}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right) \leq 2$, which implies the following subcases:

Subcase 2.2.1.1 $q\left(G_{2}\right)-p\left(G_{2}\right)=1, q\left(G_{3}\right)-p\left(G_{3}\right)=1$.
From Lemmas 2.6, 4.2 and (4.10), it follows that $G_{i} \cong F_{m}(i=2,3)$ and $a+b+\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right|+$ $\left|\mathcal{T}_{3}\right|=1$. Thus
if $b=0$, then we obtain, from (4.11), that $4=-1+2 R_{4}\left(F_{m}\right)+|B|+1$, which contradicts $R_{4}\left(F_{m}\right)=3$ by Lemma 3.4.
if $b=1$, then we have, from (4.11), that $4=-1+2 R_{4}\left(F_{m}\right)+|B|$, which also contradicts to $R_{4}\left(F_{m}\right)=3$ by Lemma 3.4.

Subcase 2.2.1.2 $q\left(G_{2}\right)=p\left(G_{2}\right), q\left(G_{2}\right)-p\left(G_{2}\right)=1$.
It is obvious that $G_{2} \in \xi, G_{3} \cong F_{m}$ and $a=b=\left|\mathcal{T}_{1}\right|=\left|\mathcal{T}_{2}\right|=\left|\mathcal{T}_{3}\right|=0$ by Lemmas 2.6, 4.2 and (4.10). From (4.11), we arrive at $R_{4}\left(G_{2}\right)=5-R_{4}\left(F_{m}\right)-|B| \leq 2-|B| \leq 2$, which
contradicts $G_{2} \in \xi$ by Corollary 3.1.
Subcase 2.2.2 $G_{1} \cong C_{3}$.
From Lemmas 2.6, 2.7, (4.2) and (4.10), we get that $0 \leq \sum_{i=2}^{3}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right) \leq 2$, which brings about the following subcases:

Subcase 2.2.2.1 $\sum_{i=2}^{3}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right)=2$.
Applying Lemmas 2.6, 4.2, and (4.10), we have that $G_{i} \cong F_{m}(i=2,3)$ and $a+b+\left|\mathcal{T}_{1}\right|+$ $\left|\mathcal{T}_{2}\right|+\left|\mathcal{T}_{3}\right|=2$. From these together with (4.11), we know that

If $b=0$, then $4=-2+2 R_{4}\left(F_{m}\right)+|B|+2$, which contradicts to $R_{4}\left(F_{m}\right)=3$ by Lemma 3.4.
If $b=1$, then $4=-2+2 R_{4}\left(F_{m}\right)+|B|+1$, which also contradicts to $R_{4}\left(F_{m}\right)=3$ by Lemma 3.4.

If $b=2$, then we have, from (4.11), that $4=-2+2 R_{4}\left(F_{m}\right)+|B|$, which results in

$$
G=C_{3} \cup F_{m} \cup F_{m} \cup\left(\cup_{i \in A} C_{i}\right) \cup f D_{4} \cup 2 T_{1,1,1}
$$

In terms of Lemmas 2.9 and 2.10, we have that $\beta(G)=\min \left\{\beta\left(F_{m_{1}}\right), \beta\left(F_{m_{2}}\right)\right\}=\beta\left(F_{m_{1}}\right)$ if $m_{1} \geq m_{2}$. By (2) of Theorem 3.4, it follows that $\beta(G)=\beta\left(F_{m_{1}}\right)=\beta\left(B_{n-8,1,4}\right)$ if and only if $m_{1}=6, n=10$ or $m_{1}=9, n=16$. This contradicts $p(G)=p\left(B_{n-8,1,4}\right)$.

Subcase 2.2.2.2 $\sum_{i=2}^{3}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right)=1$.
From Lemmas 2.6, 4.2 and (4.10), it follows that $G_{2} \in \xi, G_{3} \cong F_{m}$ and $a+b+\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right|+\left|\mathcal{T}_{3}\right|=$ 1. Thus
if $b=0$, then we obtain, from (4.11), that $4=-2+R_{4}\left(G_{2}\right)+R_{4}\left(F_{m}\right)+|B|+1$, which results in $R_{4}\left(G_{2}\right) \leq 2-|B| \leq 2$. It contradicts $G_{2} \in \xi$.
if $b=1$, then we have, from (4.11), that $4=-2+R_{4}\left(G_{2}\right)+R_{4}\left(F_{m}\right)+|B|$, which leads to $R_{4}\left(G_{2}\right)=3$ and $|B|=0$. Thus

$$
G=C_{3} \cup G_{2} \cup F_{m} \cup\left(\cup_{i \in A} C_{i}\right) \cup f D_{4} \cup T_{1,1,1} .
$$

In terms of (1) of Lemma 3.5, we have that $G_{2} \in\left\{C_{n-1}\left(P_{2}\right)\right\} \cup\left\{Q_{1,1}\right\} \cup\left\{B_{n-5,1,1}\right\}$.
If $G_{2} \cong C_{r}\left(P_{2}\right)$, then we obtain, from (1) of Theorem 3.4, that $\beta(G)=\beta\left(B_{n-8,1,4}\right)=$ $\beta\left(C_{r}\left(P_{2}\right)\right)=\beta\left(F_{m}\right)$ if and only if $r=8, m=9, n=16$. It contradicts to $p(G)=16$.

If $G_{2} \cong B_{s, 1,1}$, then we get, from (6) of Theorem 3.4, that $\beta(G)=\beta\left(B_{n-8,1,4}\right)=\beta\left(B_{s, 1,1}\right)=$ $\beta\left(F_{m}\right)$ if and only if $s=1, m=9, n=16$. This contradicts to $p(G)=16$.

If $G_{2} \cong Q_{1,1}$, then from (2) of Theorem 3.4 we arrive at $\beta(G)=\beta\left(B_{n-8,1,4}\right)=\beta\left(F_{m}\right)$ if and only if $m=9, n=16$ or $m=6, n=10$. It also contradicts to $p(G)=16$.

Subcase 2.2.2.3 $\sum_{i=2}^{3}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right)=0$.
It is easy to see that $G_{i} \in \xi(i=2,3)$ and $a+b+\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right|+\left|\mathcal{T}_{3}\right|=1$ by Lemmas 2.6, 4.2 and (4.10). From (4.11), it follows that $4=-2+R_{4}\left(G_{2}\right)+R_{4}\left(G_{3}\right)+|B|$. Combining with Corollary 3.1, we have $|B|=0$ and $R_{4}\left(G_{i}\right)=3(i=2,3)$. Then

$$
G=C_{3} \cup G_{2} \cup G_{3} \cup F_{m} \cup\left(\cup_{i \in A} C_{i}\right) \cup f D_{4}
$$

In terms of Lemma 3.5, we have that $G_{i} \in\left\{C_{n-1}\left(P_{2}\right)\right\} \cup\left\{Q_{1,1}\right\} \cup\left\{B_{n-5,1,1}\right\}(i=2,3)$. With the same methods as that of Subcase 2.2.2.2, we can get a contradiction.

This completes the proof of the theorem.
Corollary 4.1 If $n \geq 9$, graph $B_{n-8,1,4}$ is adjoint uniqueness if and only if $n \neq 9,16$.
Corollary 4.2 If $n \geq 9$, the chromatic equivalence class of $\overline{B_{n-8,1,4}}$ only contains the complements of graphs that are in Theorem 4.2.

Corollary 4.3 If $n \geq 9$, graph $\overline{B_{n-8,1,4}}$ is chromatic uniqueness if and only if $n \neq 9,16$.
Acknowledgements We are grateful to the referees for their careful reading of the paper, and for their comments and suggestions, which are very helpful for improving the presentation of this paper.

References

[1] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, 1976.
[2] F. M. DONG, K. M. KOH, K. L. TEO, et al. Two invariants for adjoint equivalent graphs. Australasian J. Combin., 2002, 25: 133-143.
[3] F. M. DONG, K. L. TEO, C. H. C. LITTLE, et al. Chromaticity of some families of dense graphs. Discrete Math., 2002, 258(1-3): 303-321.
[4] K. M. KOH, K. L. TEO. The search for chromatically unique graphs. Graphs Combin., 1990, 6(3): $259-285$.
[5] K. M. KOH, K. L. TEO. The search for chromatically unique graphs (II). Discrete Math., 1997, 172(1-3): 59-78.
[6] Ruying LIU, Lianchang ZHAO. A new method for proving chromatic uniqueness of graphs. Discrete Math., 1997, 171(1-3): 169-177.
[7] Ruying LIU. Adjoint polynomials and chromatically unique graphs. Discrete Math., 1997, 172(1-3): 85-92.
[8] Ruying LIU. Several results on adjoint polynomials of graphs. Qinghai Normal Univ. Nat. Sci. Ed., 1992, 1: 1-6.
[9] Ruying LIU. On the irreducible graph. Neimonggol Univ. Nat. Sci. Ed., 1995, 26: 258-262.
[10] Qingyan DU. The graph parameter $\pi(G)$ and the classification of graphs according to it. Qinghai Normal Univ. (Natur. Sci.), 1993, 4: 29-33.
[11] Bofeng HUO. Relations between three parameters $A(G), R(G)$ and $D_{2}(G)$. Qinghai Normal Univ. Nat. Sci. Ed., 1998, 2: 1-6.
[12] Haizhen REN, Ruying LIU. On the fourth coefficients of adjoint polynomials of some graphs. Pure Appl. Math. (Xi'an), 2003, 19(3): 213-218.
[13] Jianshu MAO. Adjoint uniqueness of two kinds of tree. The Thesis for Master Degree, Qinghai Normal University, 2004.
[14] Jianfeng WANG, Ruying LIU, Chengfu YE, et al. A complete solution to the adjoint equivalence class of graph $\overline{B_{n-7,1,3}}$. Discrete Math., 2008, 308(16): 3607-3623.
[15] Jianfeng WANG, Qiongxiang HUANG, Chengfu YE, et al. The chromatic equivalence class of graph $\overline{B_{n-6,1,2}}$. Discuss. Math. Graph Theory, 2008, 28(2): 189-218.
[16] Chengfu YE. The roots of adjoint polynomial of the graphs containing triangles. Chinese Quart. J. Math., 2004, 19(3): 280-285.
[17] R. C. READ, W. T. TUTTE. Chromatic Polynomials. Academic Press, New York, 1998.
[18] Haixing ZHAO. Chromaticity and adjoint polynomials of graphs. The Thesis for Docter Degree (University of Twente), The Netherland, Wöhrmann Print Service, 2005.

[^0]: Received October 14, 2010; Accepted January 13, 2011
 Supported by the National Natural Science Foundation of China (Grant No. 11161037) and the Science Found of Qinghai Province (Grant No. 2011-z-907).

 * Corresponding author

 E-mail address: maoyaping@ymail.com (Yaping MAO); yechf@qhnu.edu.cn (Chengfu YE); zhsm@qhnu.edu.cn (Shumin ZHANG)

