The Signless Laplacian Spectral Radius of Tricyclic Graphs with k Pendant Vertices

Jingming ZHANG ${ }^{1,2 *}$, Jiming GUO ${ }^{2}$
1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Sichuan 611731, P. R. China;
2. College of Mathematics and Computational Science, China University of Petroleum, Shandong 257061, P. R. China

Abstract

In this paper, we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices.

Keywords signless Laplacian spectral radius; tricyclic graph; pendant vertex.
MR(2010) Subject Classification 05C50

1. Introduction

Let $G=(V, E)$ be a simple connected graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Denote by $d\left(v_{i}\right)$ the degree of the graph $G, N\left(v_{i}\right)$ the set of vertices which are adjacent to vertex v_{i}. Let $A(G)$ be the adjacency matrix and $Q(G)=D(G)+A(G)$ be the signless Laplacian matrix of the graph G, where $D(G)=\operatorname{diag}\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)\right)$ denotes the diagonal matrix of vertex degrees of G. It is well known that $Q(G)$ is a positive semidefinite matrix. Hence the eigenvalues of $Q(G)$ can be ordered as

$$
q_{1}(G) \geq q_{2}(G) \geq \cdots \geq q_{n}(G) \geq 0
$$

The largest eigenvalues of $A(G), L(G)=D(G)-A(G)$ and $Q(G)$ are called the spectral radius, the Laplacian spectral radius and the signless Laplacian spectral radius of G, respectively. The signless Laplacian spectral radius is denoted by $q(G)$ for convenience. It is easy to see that if G is connected, then $Q(G)$ is nonegative irreducible matrix. By the Perron-Frobenius theory, we can see that $q(G)$ has multiplicity one and exists a unique positive unit eigenvector corresponding to $q(G)$. We refer to such an eigenvector as the Perron vector of G.

A tricyclic graph is a connected graph with the number of edges equal to the number of vertices plus two. Denote by T_{n}^{k} the set of tricyclic graphs on n vertices and k pendant vertices. Recently, the problem concerning graphs with maximal spectral radius or the Laplacian spectral radius of a given class of graphs has been studied by many authors. Guo [1] determined the graph

[^0]with the largest spectral radius among all the unicyclic and bicyclic graphs with n vertices and k pendant vertices. Guo [2] determined the graph with the largest Laplacian spectral radius among all the unicyclic and bicyclic graphs with n vertices and k pendant vertices. Guo and Wang [3] also determined the graph with the largest Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices. Geng and Li [4] determined the graph with the largest spectral radius among all the tricyclic graphs with n vertices and k pendant vertices. In this paper, we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic and graph with n vertices and k pendant vertices.

Denote by C_{n} the cycle on n vertices. And a path $P: v v_{1} v_{2} \cdots v_{k}$ is such a graph that v_{1} joins v and v_{i+1} joins $v_{i}(i=1,2, \ldots, k-1)$.

2. Preliminaries

Let $G-x$ or $G-x y$ denote the graph obtained from G by deleting the vertex $x \in V(G)$ or the edge $x y \in E(G)$. Similarly, $G+x y$ is a graph obtained from G by adding an edge $x y$, where $x, y \in V(G)$ and $x y \notin E(G)$. A pendant vertex of G is a vertex with degree 1. A path $P: v_{0} v_{1} v_{2} \cdots v_{k}$ in G is called a pendant path, where v_{i} is adjacent to $v_{i+1}(i=0,1, \ldots, k-1)$ and $d\left(v_{1}\right)=d\left(v_{2}\right)=\cdots=d\left(v_{k-1}\right)=2, d\left(v_{k}\right)=1$. If $k=1$, then we say $v v_{1}$ is a pendant edge of the graph $G . k$ paths $P_{l_{1}}, P_{l_{2}}, \ldots, P_{l_{k}}$ are said to have almost equal lengths if $l_{1}, l_{2}, \ldots, l_{k}$ satisfy $\left|l_{i}-l_{j}\right| \leq 1$ for $1 \leq i, j \leq k$. We know, by [5], that a tricyclic graph G contains at least 3 cycles and at most 7 cycles, furthermore, there do not exist 5 cycles in G. Then let $T_{n}^{k}=T_{n}^{k, 3} \bigcup T_{n}^{k,, 4} \bigcup T_{n}^{k, 6} \bigcup T_{n}^{k, 7}$, where $T_{n}^{k, i}$ denotes the set of tricyclic graphs in T_{n}^{k} with exact i cycles for $i=3,4,6,7$.

In order to complete the proof of our main result, we need the following lemmas.
Lemma 1 ([6, 7]) Let G be a connected graph, and u, v be two vertices of G. Suppose that $v_{1}, v_{2}, \ldots, v_{s} \in N(v) \backslash(N(u) \bigcup\{u\})(1 \leq s \leq d(v))$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the Perron vector of G, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $v v_{i}$ and adding the edges $u v_{i}(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $q(G)<q\left(G^{*}\right)$.

Let G be a connected graph, and $u v \in E(G)$. The graph $G_{u v}$ is obtained from G by subdividing the edge $u v$, i.e., adding a new vertex w and edges $w u, w v$ in $G-u v$.

An internal path of a graph G is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{m}$ with $m \geq 2$ such that:
(1) The vertices in the sequences are distinct (except possibly $v_{1}=v_{m}$);
(2) v_{i} is adjacent to $v_{i+1}(i=1,2, \ldots, m-1)$;
(3) The vertex degrees $d\left(v_{i}\right)$ satisfy $d\left(v_{1}\right) \geq 3, d\left(v_{2}\right)=\cdots=d\left(v_{m-1}\right)=2($ unless $m=2)$ and $d\left(v_{m}\right) \geq 3$.

By similar reasoning to that of Theorem 3.1 of [8] and Lemmas 2 and 7 of [15], we have the following result.

Lemma 2 Let $P: v_{1} v_{2} \cdots v_{k}(k \geq 2)$ be an internal path of a connected graph G. Let G^{\prime} be a graph obtained from G by subdividing some edge of P. Then we have $q\left(G^{\prime}\right)<q(G)$.

Let $m_{i}=\frac{\sum_{v_{i} v_{j} \in E} d\left(v_{j}\right)}{d\left(v_{i}\right)}$ be the average of the degrees of the vertices of G adjacent to v_{i}, which is called average 2-degree of vertex v_{i}.

From the proof of Theorem 3 of [9] and Theorem 2.10 of [10], we have the following result.
Lemma 3 If G is a graph, then

$$
q(G) \leq \max \left\{\frac{d_{u}\left(d_{u}+m_{u}\right)+d_{v}\left(d_{v}+m_{v}\right)}{d_{u}+d_{v}}: u v \in E(G)\right\}
$$

with equality if and only if G is regular or semiregular bipartite.
Let $S(G)$ be a graph obtained by subdividing every edge of G. Then
Lemma $4([11,12])$ Let G be a graph on n vertices and m edges, $P_{G}(x)=\operatorname{det}(x I-A(G))$, $Q_{G}(x)=\operatorname{det}(x I-Q(G))$. Then $P_{S(G)}=x^{m-n} Q_{G}\left(x^{2}\right)$.

Lemma 5 Let u be a vertex of a connected graph G and $d(u) \geq 2$. Let $G_{k, l}(k, l \geq 0)$ be the graph obtained from G by attaching two pendant paths of lengths k and l at u, respectively. If $k \geq l \geq 1$, then $q\left(G_{k, l}\right)>q\left(G_{k+1, l-1}\right)$.

Proof Let $S_{1}=S\left(G_{k, l}\right)$ and $S_{2}=S\left(G_{k+1, l-1}\right)$. It is easy to see that $S_{1}\left(S_{2}\right)$ can be obtained from $S(G)$ by attaching pendant paths of lengths $2 k-1(2 k+1)$ and $2 l-1(2 l-3)$ at u, respectively. Then applying Theorem 5 ([13]) and Lemma 4, we have

$$
\rho\left(S_{1}\right)>\rho\left(S_{2}\right)
$$

and consequently $q\left(G_{k, l}\right)>q\left(G_{k+1, l-1}\right)$.
Lemma 6 ([6]) Let G be a simple graph on n vertices which has at least one edge. Then

$$
\triangle(G)+1 \leq q(G) \leq 2 \triangle(G)
$$

where $\triangle(G)$ is the largest degree of G. Moreover, if G is connected, then the first equality holds if and only if G is the star $K_{1, n-1}$; and the second equality holds if and only if G is a regular graph.

Lemma 7 ([14]) Let e be an edge of the graph G. Then

$$
q_{1}(G) \geq q_{1}(G-e) \geq q_{2}(G) \geq q_{2}(G-e) \geq \cdots \geq q_{n}(G) \geq q_{n}(G-e) \geq 0
$$

Let $B_{3}(1)$ be a tricyclic graph in T_{n}^{k} obtained from the graph G_{1} in Figure 1 by attaching k paths with almost equal lengths to the vertex with degree 6 .

Let $B_{4}(1)$ be a tyicyclic graph in T_{n}^{k} obtained from the graph G_{2} in Figure 1 by attaching k paths with almost equal lengths to the vertex with degree 5.

Let $B_{6}(1)$ be a tyicyclic graph in T_{n}^{k} obtained from the graph G_{3} in Figure 1 by attaching k paths with almost equal lengths to some vertex with degree 4.

Let $B_{7}(1)$ be a tyicyclic graph in T_{n}^{k} obtained from K_{4} by attaching k paths with almost equal lengths to a vertex of K_{4}.

If $G \in T_{n}^{k, 3}$, then G is obtained by attaching some trees to some vertices of graph G^{\prime}, where $G^{\prime} \in\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}\right\}$ (see Figure 1).

If $G \in T_{n}^{k, 4}$, then G is obtained by attaching some trees to some vertices of graph G^{\prime}, where $G^{\prime} \in\left\{T_{8}, T_{9}, T_{10}, T_{11}\right\}$ (see Figure 1).

If $G \in T_{n}^{k, 6}$, then G is obtained by attaching some trees to some vertices of graph G^{\prime}, where $G^{\prime} \in\left\{T_{12}, T_{13}, T_{14}\right\}$ (see Figure 1).

If $G \in T_{n}^{k, 7}$, then G is obtained by attaching some trees to some vertices of graph T_{15} (see Figure 1).

$T_{11} \quad T_{12}$
T_{12}
T_{13}
T_{14}

Figure 1 Graphs $G_{1}-G_{3} T_{1}-T_{15}$

3. Main results

Lemma 8 If both $B_{3}(1)$ and $B_{4}(1)$ exist, then $q\left(B_{4}(1)\right)<q\left(B_{3}(1)\right)$.
Proof Let

$$
\begin{aligned}
& t_{1}=\frac{(k+5)\left(k+5+\frac{2 k+2+3+2+2+2}{k+5}\right)+3\left(3+\frac{2+k+5+2}{3}\right)}{k+5+3} \\
& t_{2}=\frac{(k+5)\left(k+5+\frac{2 k+2+3+2+2+2}{k+5}\right)+2\left(2+\frac{3+k+5}{2}\right)}{k+5+2} \\
& t_{3}=\frac{(k+5)\left(k+5+\frac{2 k+2+3+2+2+2}{k+5}\right)+2\left(2+\frac{2+k+5}{2}\right)}{k+5+2} \\
& t_{4}=\frac{(k+5)\left(k+5+\frac{2 k+2+3+2+2+2}{k+5}\right)+2\left(2+\frac{k+5+2}{2}\right)}{k+5+2} \\
& t_{5}=\frac{3\left(3+\frac{2+2+k+5}{3}\right)+2\left(2+\frac{3+k+5}{2}\right)}{3+2}
\end{aligned}
$$

$$
\begin{aligned}
& t_{6}=\frac{2\left(2+\frac{k+5+2}{2}\right)+2\left(2+\frac{k+5+2}{2}\right)}{2+2}, \\
& t_{7}=\frac{2\left(2+\frac{k+5+2}{2}\right)+2\left(2+\frac{2+2}{2}\right)}{2+2}, \\
& t_{8}=\frac{2\left(2+\frac{2+2}{2}\right)+2\left(2+\frac{2+2}{2}\right)}{2+2}, \\
& t_{9}=\frac{(k+5)\left(k+5+\frac{2 k+2+3+2+2+2}{k+5}\right)+1\left(1+\frac{k+5}{1}\right)}{k+5+1} .
\end{aligned}
$$

By Lemmas 3 and 6 , we can get

$$
q\left(B_{4}(1)\right) \leq \max \left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}, t_{9}\right\} \leq k+7=\triangle\left(B_{3}(1)\right)+1<q\left(B_{3}(1)\right) .
$$

By similar reasoning to that of Lemma 8, we can get the following lemma.
Lemma 9 If $B_{3}(1), B_{6}(1)$ and $B_{7}(1)$ exist, then $q\left(B_{6}(1)\right)<q\left(B_{3}(1)\right), q\left(B_{7}(1)\right)<q\left(B_{3}(1)\right)$.
Theorem 1 Let $G \in T_{n}^{k, 3}$. Then $q(G) \leq q\left(B_{3}(1)\right)$; the equality holds if and only if $G \cong B_{3}(1)$.
Proof Choose $G \in T_{n}^{k, 3}$ such that $q(G)$ is as large as possible. Denote by C_{p}, C_{q}, C_{h} the three cycles of G, respectively.

We first prove that G must be obtained by attaching some trees to some vertices of T_{1} in Figure 1.

Denote the vertex set of G by $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the Perron vector of G by $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where x_{i} corresponds to v_{i}.

Assume G is obtained by attaching some trees to some vertices of graph T_{3} in Figure 1. If $x_{r} \geq x_{u}$, then let $G^{*}=G-u v_{i+1}-u v_{i-1}-u f_{1}-\cdots-u f_{z}+r v_{i+1}+r v_{i-1}+r f_{1}+\cdots+r f_{z}$, where $u v_{i+1}, u v_{i-1} \in E\left(C_{h}\right)$, and f_{1}, \ldots, f_{z} are all the neighbors of u in those trees (if exist) attaching to u. If $x_{r}<x_{u}$, then let $G^{*}=G-r v_{j+1}-r v_{j-1}-r q_{1}-\cdots-r q_{s}+u v_{j+1}+u v_{j-1}+u q_{1}+\cdots+u q_{s}$, where $r v_{j+1}, r v_{j-1} \in E\left(C_{p}\right)$, and q_{1}, \ldots, q_{s} are all the neighbors of r in those trees (if exist) attaching to r. Combining two cases above, by Lemma 1 , we can see that $q\left(G^{*}\right)>q(G)$ and $G^{*} \in T_{n}^{k, 3}$, a contradiction. Hence G cannot be obtained by attaching some trees to some vertices of graph T_{3}.

By similar reasoning, it is easy to prove that G cannot be obtained by attaching trees to some vertices of graph $T_{2}, T_{4}, T_{5}, T_{6}, T_{7}$. Hence G must be obtained by attaching some trees to vertices of T_{1}.

Next, we will prove that G must be obtained by attaching exactly one tree to some vertex of T_{1}.

Assume there exist two trees, say $T_{1}^{\prime}, T_{2}^{\prime}$ are attached to vertices w_{1}, w_{2} of T_{1}, respectively. If $x_{w_{1}} \leq x_{w_{2}}$, then let $G^{*}=G-w_{1} u_{1}-w_{1} u_{2}-\cdots-w_{1} u_{g}+w_{2} u_{1}+\cdots+w_{2} u_{g}$, where u_{1}, \ldots, u_{g} are all the neighbors of w_{1} in T_{1}^{\prime}. If $x_{w_{1}}>x_{w_{2}}$, then let $G^{*}=G-w_{2} u_{1}^{\prime}-w_{2} u_{2}^{\prime}-\cdots-w_{2} u_{l}^{\prime}+$ $w_{1} u_{1}^{\prime}+\cdots+w_{1} u_{l}^{\prime}$, where $u_{1}^{\prime}, \ldots, u_{l}^{\prime}$ are all the neighbors of w_{2} in T_{2}^{\prime}. By Lemma 1 , we can see that $q\left(G^{*}\right)>q(G)$ and $G^{*} \in T_{n}^{k, 3}$, a contradiction. Hence G has only one tree, say T^{*}, attached to some vertex, say v, of T_{1}.

Thirdly, we prove that $d(u) \leq 2$, for any $u \in V\left(T^{*}\right), u \notin V\left(T_{1}\right)$, where T^{*} is a tree which attaches to some vertex of T_{1}. If $d(u)>2$, denote $N(u)=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$ and $N(v)=$ $\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}, t \geq 3$. Let z_{1}, w_{3} belong to the path joining v and u, and w_{1} belong to one cycle in G. If $x_{v} \geq x_{u}$, let $G^{*}=G-u z_{3}-\cdots-u z_{s}+v z_{3}+\cdots+v z_{s}$. If $x_{v}<x_{u}$, let $G^{*}=G-v w_{1}+u w_{1}$. It is easy to see that $G^{*} \in T_{n}^{k, 3}$. By Lemma 1, we can get that $q\left(G^{*}\right)>q(G)$, a contradiction. Hence, G is a graph obtained from T_{1} by attaching k paths.

By Lemma 5 , it is easy to get that the k paths attached to v of T_{1} have almost equal lengths.
Let v_{1} be the common vertex of the three cycles of T_{1}. Finally, we prove that $v=v_{1}$.
Assume that $v \neq v_{1}$. Without loss of generality, suppose that $v \in C_{p}$, where C_{p} is some cycle of T_{1}. Let $P_{1}, P_{2}, \ldots, P_{k}$ be the k paths attached to v, and $v w_{i 1} \in P_{i}(i=1,2, \ldots, k)$. Denote $v_{1} v_{m-1}^{\prime}, v_{1} v_{m+1}^{\prime} \in C_{q}, v_{1} v_{j-1}^{\prime}, v_{1} v_{j+1}^{\prime} \in C_{h}$, where C_{q} and C_{h} are the two cycles except C_{p} of T_{1}.

If $x_{v} \geq x_{v_{1}}$, then let $G^{*}=G-v_{1} v_{i-1}^{\prime}-v_{1} v_{i+1}^{\prime}-v_{1} v_{j-1}^{\prime}-v_{1} v_{j+1}^{\prime}+v v_{i-1}^{\prime}+v v_{i+1}^{\prime}+v v_{j-1}^{\prime}+v v_{j+1}^{\prime}$. If $x_{v}<x_{v_{1}}$, then let $G^{*}=G-v w_{11}-v w_{21}-\cdots-v w_{k 1}+v_{1} w_{11}+v_{1} w_{21}+\cdots+v_{1} w_{k 1}$. Obviously, $G^{*} \in T_{n}^{k, 3}$, and by Lemma 1 , we get $q\left(G^{*}\right)>q(G)$, a contradiction. Hence $v=v_{1}$.

By Lemmas 2 and 7 , it is easy to prove that all the cycles in G have length 3. Then $G \cong B_{3}(1)$.

By similar reasoning to that of Theorem 1, it is not difficult to prove the following theorems.
Theorem 2 Let $G \in T_{n}^{k, 4}$. Then $q(G) \leq q\left(B_{4}(1)\right)$, and the equality holds if and only if $G \cong B_{4}(1)$.

Theorem 3 Let $G \in T_{n}^{k, 6}$. Then $q(G) \leq q\left(B_{6}(1)\right)$, and the equality holds if and only if $G \cong B_{6}(1)$.

Theorem 4 Let $G \in T_{n}^{k, 7}$. Then $q(G) \leq q\left(B_{7}(1)\right)$, and the equality holds if and only if $G \cong B_{7}(1)$.

From Lemmas 8, 9 and Theorems 1-4, we get the main result.
Theorem 5 Let $G \in T_{n}^{k}, k \geq 1$. Then $q(G) \leq q\left(B_{3}(1)\right)$, and the equality holds if and only if $G \cong B_{3}(1)$.

References

[1] Shuguang GUO. The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl., 2005, 408: 78-85.
[2] Jiming GUO. The Laplacian spectral radii of unicyclic and bicyclic graphs with n vertices and k pendant vertices. Sci. China Math., 2010, 53(8): 2135-2142.
[3] Shuguang GUO, Yanfeng WANG. The Laplacian spectral radius of tricyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl., 2009, 431(1-2): 139-147.
[4] Xianya GENG, Shuchao LI. The spectral radius of tricyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl., 2008, 428(1-2): 2639-2653.
[5] Shuchao LI, Xuechao LI, Zhongxun ZHU. On tricyclic graphs with minimal energy. MATCH Commun. Math. Comput. Chem., 2008, 59(2): 397-419.
[6] D. CVETKOVIĆ, P. ROWLINSON, K. SIMIC. Signless Laplacian of finite graphs. Linear Algebra Appl., 2007, 423(1): 155-171.
[7] Yuan HONG, Xiaodong ZHANG. Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees. Discrete Math., 2005, 296(2-3): 187-197.
[8] Jiming GUO. The Laplacian spectral radius of a graph under perturbation. Comput. Math. Appl., 2007, 54(5): 709-720.
[9] Jiongsheng LI, Xiaodong ZHANG. On the Laplacian eigenvalues of a graph. Linear Algebra Appl., 1998, 285(1-3): 305-307.
[10] Yongliang PAN. Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl., 2002, 355: 287-295.
[11] D. CVETKOVIĆ, M. DOOB, H. SACHS. Spectra of Graphs, Theory and Applications. Third Edition. Johann Ambrosius Barth, Heidelberg, 1995.
[12] Bo ZHOU, I. GUTMAN. A connection between ordinary and Laplacian spectra of bipartite graphs. Linear Multilinear Algebra, 2008, 56(3): 305-310.
[13] Qiao LI, Keqin FENG. On the largest eigenvalue of a graph. Acta Math. Appl. Sinica, 1979, 2(2): 167-175. (in Chinese)
[14] D. M. CARDOSO, D. CVETKOVIĆ, P. ROWLINSON, et al. A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph. Linear Algebra Appl., 2008, 429(11-12): 2770-2780.
[15] Lihua FENG, Qiao LI, Xiaodong ZHANG. Minimizing the Laplacian spectral radius of trees with given matching number. Linear Algebra Appl., 2007, 55(2): 199-207.

[^0]: Received August 10, 2010; Accepted January 13, 2011
 Supported by the National Natural Science Foundation of China (Grant Nos. 10871204; 61170311) and the Fundamental Research Funds for the Central Universities (Grant No. 09CX04003A).

 * Corresponding author

 E-mail address: zhangjm7519@126.com (Jingming ZHANG); jimingguo@hotmail.com (Jiming GUO)

