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Abstract This paper concerns with the statistical methods for solving general linear systems.

After a brief review of Bayesian perspective for inverse problems, a new and efficient iterative

method for general linear systems from a Bayesian perspective is proposed. The convergence

of this iterative method is proved, and the corresponding error analysis is studied. Finally,

numerical experiments are given to support the efficiency of this iterative method, and some

conclusions are obtained.
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1. Introduction

Consider the linear system of equations:

Ax = b, A ∈ Rm×n and b ∈ Rm,

where m ≥ n. There are many numerical methods to solve the system, such as direct methods

(Gaussian elimination, LU and Cholesky decompositions) and iterative methods (Jacobi, Gauss-

Seidel, and Krylov subspace methods), etc. (e.g. see [1]). Besides these methods based on matrix

analysis, there are also some numerical methods from statistical ideas for solving the linear

system (1).

By constructing a discrete Markovian chain, Forsythe and Leibler in [2] used Monte Carlo

methods to find the inverse of a matrix in 1950. Since then, some different numerical algorithms

based on Monte Carlo methods have been proposed to find the inverse of diagonally dominant

matrices. For instance, Halton in [3] presented the sequential Monte Carlo techniques, Dimov et

al proposed a Monte Carlo almost optimal algorithm in [4], etc. Recently, some authors presented

new ideas based on Monte Carlo methods to find the inverse of a general matrix. A brief survey

with numerical comparison for these methods can be found in [5].
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The idea of another statistical method is from the Bayesian inversion perspective. The

Kaipoi and Somersalo’s book [6] provides a good introduction to the Bayesian approach to

inverse problems. Furthermore, the Calvetti and Somersalo’s book [7] gives a useful introduction

to the Bayesian perspective in scientific computing. Recently, Stuart’s paper [8] surveys the

newest development of the subject of Bayesian inverse problems. As a classical inverse problem,

solving the linear system (1) from a Bayesian inversion perspective is also considered by several

researchers (e.g. see [9–11] and references therein).

In this paper, we study the numerical approximation of the linear system (1) from a Bayesian

inversion perspective. After this introduction, the Bayesian framework for solving the linear

system (1), including the conditional mean estimate and the maximum a posterior estimate, is

introduced in Section 2. In Section 3, we first propose a theoretical iterative scheme, and show

some sufficient conditions of convergence for such scheme, as well as we discuss the corresponding

error analysis. Then, based on an idea from the paper [9], we modify the iterative scheme into

a numerical iterative scheme in practice, which is very efficient for the system with the general

matrix A. The corresponding error analysis is also considered. Finally, we give some results of

numerical experiments to support the presented numerical scheme, and we get some conclusions

about this scheme in Section 4.

2. The Bayesian framework

In Bayesian inversion problems, the system (1) with additive noise term is replaced by its

stochastic extension:

Y = AX + E, (2)

where X is an Rn-valued random vector, Y and E are Rm-valued random vectors, and A ∈ Rm×n

is a given matrix. Denote by πpr(x) the prior density of X , and by πnoise(e) the noise density of

E. From (2), the conditional density of Y given X = x, which is called the likelihood density, is

given by

π(y | x) = πnoise

(

y − Ax
)

. (3)

Then, the conditional density of X given Y = b, which is called the posterior density of X , is

provided by Bayes’ formula:

πpost(x) = π(x | b) ∝ πpr(x)π(b | x) = πpr(x)πnoise

(

b − Ax
)

. (4)

Here the notation ‘∝’ means to ignore the normalizing constant.

Based on the posterior density there are different estimates of the random variable X given

Y = b, which are used to approximate the solution of system (1). The most commonly used

statistical estimates are the conditional mean (CM):

xCM =

∫

Rn

xπ(x | b)dx,

and the maximum a posterior (MAP):

xMAP = arg max
x∈Rn

π(x | b).
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Assume that X and E are mutually independent Gaussian random vectors such that

X ∼ N (x0, Γpr) and E ∼ N (e0, Γnoise), (5)

where covariance matrices Γpr ∈ Rn×n and Γnoise ∈ Rm×m are positive definite. Then, we have

the following result:

Theorem 1 (Theorem 3.7 in [6]) Under the Bayesian setting (5), the posterior density of X

given Y = b is Gaussian and is given by

π(x | b) ∝ exp
{

−
1

2
(x − x̄)TΓ−1

post(x − x̄)
}

,

where

x̄ = x0 + ΓprA
T
(

AΓprA
T + Γnoise

)−1
(b − Ax0 − e0), (6)

and

Γpost = Γpr − ΓprA
T
(

AΓprA
T + Γnoise

)−1
AΓpr. (7)

Moreover, x̄ = xCM = xMAP.

As mentioned in [6], the posterior covariance matrix Γpost has an alternative representation:

Γpost =
(

Γ−1
pr + ATΓ−1

noiseA
)−1

. (8)

Furthermore, the posterior mean x̄ can be written as

x̄ = Γpost

(

ATΓ−1
noise(b − e0) + Γ−1

pr x0

)

. (9)

However, there are some other methods in practice to find the estimates xCM and xMAP.

The first method is the application of Markov chain Monte Carlo (MCMC) methods to

calculate the CM estimate xCM:

xCM ≈
1

K

K
∑

k=1

xk, (10)

where xk, k = 1, . . . , K, are the random numbers sampled under the posterior density πpost(x)

in (4) by some MCMC algorithms. For instance, the well-known Metropolis-Hastings algorithm

provides a foundational and central role in MCMC computation [6, 12].

The main idea of another method is to consider the MAP estimate xMAP. Let e0 = 0 and

take the Cholesky factorizations:

Γ−1
pr = LTL and Γ−1

noise = STS.

Then, the posterior density in (4) can be rewritten as

π(x | b) ∝ exp
{

−
1

2

(

∥

∥L(x − x0)
∥

∥

2

2
+

∥

∥S(b − Ax)
∥

∥

2

2

)}

,

where ‖ · ‖2 is the vector 2-norm in Rn or Rm. Therefore, the MAP estimate xMAP is also the

Tikhonov solution:

xMAP = L−1w + x0,
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where w is the minimizer of the functional:

G(w) =
∥

∥S(b − Ax0) − SAL−1w
∥

∥

2

2
+ ‖w‖2

2.

The observations above suggest that the xMAP can be approximated by solving iteratively the

following preconditioning system:

SAL−1y = S(b − Ax0), L(x − x0) = y.

Hence, this method is also called the preconditioned iterative method from a Bayesian inversion

perspective [10, 11].

Each of these methods has its advantages and disadvantages and specific applications. For

example, according to our numerical experiments, the Metropolis-Hastings algorithm suffers from

the local-trap problem in the most cases in the linear system (1), which has been pointed out

by many researchers [6, 12]. On the other hand, the second method seriously depends on the

selection of prior covariance Γpr and noise covariance Γnoise.

Recently, Akçelik et al in [9] presented a fast method for computation of an approximation

to the posterior covariance Γpost, which is given in (7). In the next section, we will propose an

iterative method based on their idea.

3. The Bayesian iterative scheme

In this section, based on Theorem 1 we present an iterative scheme for solving the linear

system (1). First, we randomly select an initial vector x0 ∈ Rn and set e0 = 0. We also

appropriately select positive numbers γpr and γnoise and set

Γpr = γprIn×n and Γnoise = γnoiseIm×m, (11)

where In×n and Im×m are identity matrices. We consider the first iterative formula:

xk = ΓpostA
TΓ−1

noiseb + ΓpostΓ
−1
pr xk−1, (12)

where Γpost is given in (7) or (8). In the following, we need the concept of matrix 2-norm, which

is defined by
∥

∥M
∥

∥

2
=

√

λmax(MTM) = σmax(M), M ∈ Rm×n,

where λmax(M
TM) is the largest eigenvalue of MTM , and σmax(M) is the largest singular value

of M . We also assume the system (1) has an exact solution xb.

Theorem 2 Let {xk} be a sequence generated by the iterative formula (12). Then, under the

Bayesian setting (5), for every k,

‖xk − xb‖2 ≤
∥

∥ΓpostΓ
−1
pr

∥

∥

k

2
‖x0 − xb‖2, (13)

i.e. the sequence {xk} converges to xb if
∥

∥ΓpostΓ
−1
pr

∥

∥

2
< 1.

Proof From (8) and (12) we have

xk − xb = ΓpostA
TΓ−1

noiseb + ΓpostΓ
−1
pr xk−1 − xb
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= Γpost

(

ATΓ−1
noiseAxb + Γ−1

pr xk−1 − Γ−1
postxb

)

= Γpost

[

ATΓ−1
noiseAxb + Γ−1

pr xk−1 −
(

Γ−1
pr + ATΓ−1

noiseA
)

xb

]

= ΓpostΓ
−1
pr (xk−1 − xb).

Thus, we obtain

‖xk − xb‖2 =
∥

∥ΓpostΓ
−1
pr (xk−1 − xb)

∥

∥

2
≤

∥

∥ΓpostΓ
−1
pr

∥

∥

2
‖xk−1 − xb‖2

≤ · · · ≤
∥

∥ΓpostΓ
−1
pr

∥

∥

k

2
‖x0 − xb‖2.

The theorem is proved. �

Theorem 3 Under the Bayesian setting (5) and (11),
∥

∥ΓpostΓ
−1
pr

∥

∥

2
< 1 if and only if ATA is

nonsingular. Moreover,

∥

∥ΓpostΓ
−1
pr

∥

∥

2
=

(

1 +
γpr

γnoise

λmin(ATA)
)−1

, (14)

where λmin(ATA) is the smallest eigenvalue of ATA.

Proof Note that Γpr = γprI and Γnoise = γnoiseI. From (8) we have

ΓpostΓ
−1
pr =

(

Γ−1
pr + ATΓ−1

noiseA
)−1

Γ−1
pr =

(

I +
γpr

γnoise

ATA
)−1

.

Denote by σmax(M) and σmin(M) the largest and smallest singular values of matrix M , respec-

tively. Then we have

∥

∥ΓpostΓ
−1
pr

∥

∥

2
= σmax

[(

I +
γpr

γnoise

ATA
)−1]

=
[

σmin

(

I +
γpr

γnoise

ATA
)]−1

=
(

1 +
γpr

γnoise

λmin(A
TA)

)−1

.

That is the expression (14), and hence, ‖ΓpostΓ
−1
pr ‖2 < 1 if and only if λmin(ATA) > 0, i.e.,

ATA is nonsingular. The theorem is proved. �

From Theorems 2 and 3, we know that the iterative scheme defined by (12) is convergent.

Moreover, from the expression (14) we can select an appropriate ratio γpr/γnoise to improve the

convergence rate of the iterative scheme. However, we must mention here, it is not easy to

directly find the posterior covariance matrix Γpost. In the following, based on the idea given by

Akçelik et al in [9] to calculate an approximation of Γpost, we further improve the scheme (12).

We first take the spectral decomposition of the prior-preconditioned Hessian of the data

misfit:

H̃misfit , Γ1/2
pr ATΓ−1

noiseAΓ1/2
pr = V ΛV T,

where Λ = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues of H̃misfit and V is the matrix

whose columns are the corresponding eigenvectors. When the eigenvalues of H̃misfit decay rapidly,

we select a small number δ > 0, and then we take the low-rank approximation:

Γ1/2
pr ATΓ−1

noiseAΓ1/2
pr ≈ VrΛrV

T
r ,
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under the cutoff criterion:

λi ≥ δ, i = 1, . . . , r and λr+j < δ, j = 1, . . . , n − r, (15)

where Λr = diag(λ1, . . . , λr) is the truncated eigenvalue matrix of r largest eigenvalues, and

Vr ∈ Rn×r is the corresponding eigenvector matrix. Then, we set

Dr = diag
( λ1

1 + λ1

, . . . ,
λr

1 + λr

)

,

and define

Γ̃post = Γpr − Γ1/2
pr VrDrV

T
r Γ1/2

pr , (16)

which is used as an approximation of the posterior covariance matrix Γpost under the Bayesian

setting (5). According to the error analysis given in [9], we have the following estimation for

such an approximation:
∥

∥Γpost − Γ̃post

∥

∥

F
=

∥

∥

∥
Γ1/2

pr

(

H̃misfit + I
)−1

Γ1/2
pr − Γ1/2

pr

(

I − VrDrV
T
r

)

Γ1/2
pr

∥

∥

∥

F

≤ γpr

∥

∥

∥

(

H̃misfit + I
)−1

−
(

I − VrDrV
T
r

)

∥

∥

∥

F

< γpr

√

√

√

√

n
∑

j=r+1

λ2
j ≤ γprδ

√

(n − r). (17)

Here ‖ · ‖F is the Frobenius norm of matrix.

Now, using the approximation (16) to modify the formula (12), we obtain a Bayesian itera-

tive scheme:

x̃k = Γ̃postA
TΓ−1

noiseb + Γ̃postΓ
−1
pr x̃k−1 (18)

with x̃0 = x0.

Theorem 4 Let {x̃k} be a sequence generated by the iterative formula (18). Then, under the

Bayesian setting (5) and (11), and the cutoff criterion (15),

∥

∥x̃k − x̃k−1

∥

∥

2
≤

( 1

1 + δ

)k−1
∥

∥x̃1 − x̃0

∥

∥

2
(19)

holds for every k > 1, i.e., the sequence {x̃k} is convergent.

Proof First, according to the formula (18), we have
∥

∥x̃k − x̃k−1

∥

∥

2
=

∥

∥Γ̃postΓ
−1
pr (x̃k−1 − x̃k−2)

∥

∥

2
≤

∥

∥Γ̃postΓ
−1
pr

∥

∥

2

∥

∥x̃k−1 − x̃k−2

∥

∥

2

≤ · · · ≤
∥

∥Γ̃postΓ
−1
pr

∥

∥

k−1

2

∥

∥x̃1 − x̃0

∥

∥

2
.

On the other hand, from (16) we have
∥

∥Γ̃postΓ
−1
pr

∥

∥

2
≤

∥

∥Γ̃post

∥

∥

2

∥

∥Γ−1
pr

∥

∥

2
= λmax

(

Γpr − Γ1/2
pr VrDrV

T
r Γ1/2

pr

)

γ−1
pr

= λmax

(

Γ1/2
pr

(

I − VrDrV
T
r

)

Γ1/2
pr

)

γ−1
pr ≤

(

1 − λmin(Dr)
)

=
1

1 + λr
,

where λr is the r-th largest eigenvalue of Γ
1/2
pr ATΓ−1

noiseAΓ
1/2
pr such that λr ≥ δ and λr+j < δ,

j = 1, . . . , n− r, under the cutoff criterion (15). Thus, we get the estimation (19). The theorem

is proved. �
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From the estimation (19), we see that the increase of the cutoff criterion δ can improve the

convergence rate of the iterative scheme (18). However, from the approximation (17), we also

see that the increase of δ influences the accuracy of the scheme. Hence, appropriately to select

the ratio γpr/γnoise and the cutoff criterion δ can make the scheme more accurate and efficient.

In the next section, we will illustrate how these parameters influence the scheme.

4. Numerical experiments

In this section, we employ the Bayesian iterative scheme (18) to do numerical tests for some

practical examples of system (1). In all experiments, we use the random matrix generator in

Matlab to select a matrix A such that its condition number κ(A) is greater than a given bound,

and randomly select a vector b. Then, we compute x̃k by (18) with the initial value x̃0 = 0 until

the error is less than 0.1 or the the iteration number k reaches 1000. In this section, the error of

a numerical solution x̃ is given by

Error =
∥

∥Ax̃ − b
∥

∥

∞
, (20)

where ‖v‖∞ = max1≤i≤m |vi| for all v = (v1, . . . , vm) ∈ Rm. On the other hand, the com-

puter used for all numerical experiments has an Intel(R) Core(TM)2 Duo CPU E8400@3.00GHz

2.99GHz, 3.21GB RAM, and all codes in these numerical experiments are written in Matlab 7.11.

γpr = 10 γpr = 100

γpr/γnoise Iter. Num. Error Iter. Num. Error

1.00E+1 1000 7.657379 1000 7.657385

1.00E+2 1000 2.338975 1000 2.338899

1.00E+3 341 0.099650 342 0.099253

1.00E+4 37 0.094159 37 0.094051

5.00E+4 11 0.096541 10 0.091853

1.00E+5 1000 0.174353 1000 0.139130

Table 1 Errors for matrix A1 with δ = 0.1

We first test the different values of γpr and different ratios of γpr/γnoise. We use a 200× 200

matrix A1 whose condition number κ(A1) = 219017.1. Tables 1–2 give the iteration numbers and

errors against different ratios of γpr/γnoise for different value of γpr and different cutoff criterions

δ, respectively.

From these two tables, we can see that the effect of the ratio of γpr/γnoise to the iteration

numbers and the accuracy of the scheme is very evident and significant, while the values of γpr

and δ have no evident effect on them. From these tables, we also see that γpr/γnoise = 50000 is

optimal in this case.
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δ = 0.01 δ = 1

γpr/γnoise Iter. Num. Error Iter. Num. Error

1.00E+1 1000 7.657381 1000 7.657381

1.00E+2 1000 2.338859 1000 2.338859

1.00E+3 341 0.099828 341 0.099828

1.00E+4 37 0.093121 37 0.093121

5.00E+4 10 0.085442 10 0.085442

1.00E+5 1000 0.181236 1000 0.181236

Table 2 Errors for matrix A1 with γpr = 1000

A2 A3

γpr/γnoise Iter. Num. Error Iter. Num. Error

1.00E+1 1000 10.85551 1000 2.337134

1.00E+2 561 0.099649 206 0.098344

1.00E+3 59 0.095485 24 0.089019

1.00E+4 9 0.071523 1000 0.371761

1.00E+5 1000 0.399251 1000 3.206323

Table 3 Errors for matrices A2 and A3 with γpr = 100 and δ = 0.1

We then use a 1000 × 1000 matrix A2 whose condition number κ(A2) = 18118.85, and a

2000 × 2000 matrix A3 whose condition number κ(A3) = 13091.33. Table 3 gives the iterative

numbers and errors against different ratios of γpr/γnoise for γpr = 100 and δ = 0.1.

From this table, we see that if the ratio γpr/γnoise is appropriately selected (in these two

cases, we may take γpr/γnoise = 10000 for A2 and take γpr/γnoise = 1000 for A3), then the scheme

can still reach the satisfied accuracy though the sizes of matrices are quite large.

Summarizing from Tables 1–3, we see that the iteration number decreases evidently and

significantly as the ratio γpr/γnoise increases, which coincides with the estimates (13) and (14).

However, from (17) we know that the approximation of Γpost is effected by the numbers γpr and δ.

Meanwhile, if we fix γpr, then γnoise will tend to zero as the ratio γpr/γnoise tends to infinite, which

leads to the invalidation of our Bayesian framework. That explains why the iteration number

becomes quickly worse when the ratio γpr/γnoise is too large in our numerical experiments. Also,

we find that the appropriate value of γpr/γnoise has a light increase with the condition number

becoming large, and it does not depend on the matrix size.

Finally, we compare the Bayesian iterative scheme (18) to the classical Bayesian method:

the Monte Carlo method for CM estimate, which is given in (10), via the Metropolis-Hastings

(MH) algorithm. The detail algorithm for this classical Bayesian method can be found in the

book [6].

Table 4 respectively gives errors and CPU times (in second) of the Bayesian iterative scheme

and the classical Bayesian method for solving the system (1) with matrix A1. Here we set

γpr = 100 and δ = 0.1. From this table we see that the Bayesian iterative scheme is evidently
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and significantly much more efficient and accurate than the classical one. In fact, from our

experiments it seems that the classical Bayesian method would be invalid when the condition

number κ(A) is quite large. Contrarily, we conclude that the Bayesian iterative scheme is very

efficient even the matrix A is dense with large condition number, and has not any construction.

The Bayesian iterative scheme

γpr/γnoise Iteration Num. Error CPU time(s)

50000 10 0.091853 0.093601

The Monte Carlo method via the MH algorithm

γpr/γnoise Simulation Num. Error CPU time(s)

1000 10000 6660.822 3.619223

10000 10000 6574.869 5.525623

50000 50000 13266.50 18.43932

Table 4 Errors and CPU times for matrix A1 via using different methods
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