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Abstract Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point
methods, has become the backbones of most optimization packages. Salahi et al. proposed a
cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and
maintained its efficiency in practice. We extend their algorithm to Py (k) linear complementar-

ity problems. The way of choosing corrector direction for our algorithm is different from theirs.
(.’EO)T SO

The new algorithm has been proved to have an O((1 + 4x)(17 4+ 19x)V/1 + Irn2 log =)
worst case iteration complexity bound. An numerical experiment verifies the feasibility of the
new algorithm.

Keywords P, (r) linear complementarity problems; Mehrotra-type predictor-corrector algo-

rithm; polynomial iteration complexity; interior point method.
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1. Introduction

Variants of Mehrotra’s predictor-corrector algorithm [1,2] are among the most practical
interior-point methods (IPMs) for linear optimization (LO), quadratic optimization(QO) and
linear complementarity problems(LCPs) and have become the backbones of most optimization
softwares. However, not much about their complexity was known until [3] was presented by Salahi
et al. In [3], a numerical example showed that a feasible version of Mehrotra-type predictor-
corrector algorithm may be forced to make very small steps to keep the iterates in a certain
neighborhood of the central path, which motivated them to combine this algorithm with a simple
large-update safeguard that guaranteed polynomial iteration complexity. The authors of [4]
analyzed the same algorithm from a different perspective and proposed a cut strategy based
algorithm. Their algorithm cuts the maximum step size in the predictor step if it is above a
certain threshold, if this cut does not give a desirable step size, then cuts it for the second
time which gives a lower bound for the step size in the corrector step. This algorithm enjoys

polynomial iteration while its practical efficiency is preserved. The algorithms of [4], having a

Received September 18, 2010; Accepted August 31, 2011

Supported by the Natural Science Foundation of Hubei Province (Grant No.2008CDZ047).

* Corresponding author

E-mail address: liwh158@126.com (Weihua LI); zmwang@ctgu.edu.cn (Mingwang ZHANG); zyy323@Q126.com
(Yiyuan ZHOU)



298 Weihua LI, Mingwang ZHANG and Yiyuan ZHOU

stop criteria in the predictor step, are more efficient in solving large scale programs than the
safeguard algorithms in [3].

In this paper, the cut strategy based algorithm of [4] is extended to solve the P, (k) lin-
ear complementarity programs. The way of choosing corrector direction is different from the
corresponding algorithm for linear optimization. The new algorithm is proved to have an
O((1 4 4k)(17 + 19x)v/T1 + 2rn? log W) worst case iteration complexity bound. A Matlab
numerical experiment indicates that the algorithm is efficient.

Throughout the paper, || - || denotes the 2-norm of vectors and e is the all one vector; For
x,s € R™, xs denotes the componentwise product (Hadamard product) of vectors z and s, and

so is true for other operations. For simplicity we also use the following notations:

zts
z(a) =z + oAz, s(a) =s+ als, pg=—,
: n

IT={1l,.,n}, Iy ={i e T | AzfAs} >0}, I_ ={i € T | Az} As{ < 0},
F={(z,s) e R" xR"|s=Mz+q,(z,s) >0},

FO={(z,s) € F|(z,8) >0},

X = diag(z), S = diag(s).

2. Preliminaries

In this paper we consider the following P (k) linear complementarity problem (LCP):
s=Mx+ q,
zTs =0, (1)
x>0, s>0,

where M € R™*" is a P, (k) matrix and ¢ € R".

P, (k) matrix was introduced in [5] and we give the definition as follows.

Definition 2.1. Let k > 0 be a nonnegative number. A matrix M € R™*" is called a Py(k)
matrix if
(1+48) Y w(Ma)i+ Y xi(Ma); >0,
i€T4 (z) ieT_(x)
or
e Mz > —4r Z x;(Mx);,
€T (x)

for all x € R™, where
ITi(zx)={ieZ:x;(Mx); >0}, T_(z)={i €T :2;(Mz); <O0}.

Note that for kK = 0, P,(0) is the class of positive semidefinite matrices. This implies that
the class of P, (k)-matrices includes both the class PSD of positive matrices and the class of
P-matrices with all the principal minors positive. Indeed, it is known that by exploiting the

first order optimality condition of the optimization problem, any differentiable convex quadratic



A Mehrotra-type predictor-corrector algorithm for Py(k) LCPs 299

program can be formulated into a monotone linear complementarity program (MLCP), i.e., P,(0)
LCP, and vice versa [6].

Without loss of generality [7] we may assume that (1) satisfies the interior point condition
(IPC), i.e., there exists an (z°,s°) such that

s =Mz +q, 2°>0, s°>0.

The basic idea of primal-dual IPMs is to replace the second equation of (1) by the parameterized
equation s = pe. This leads to the following system:
s= Mux+ q,
75 = e, (2)
x>0, s>0.
If the IPC holds, the system (2) has a unique solution for each x> 0. This solution, denoted by
(x(w), s(p)), is called the p-center of (1). The set of u-centers gives the central path of (1). As
o — 0, the central path forms a path to the optimal solution of (1) (see [7]).
Before proceeding, let us briefly recall a feasible version of Mehrotra’s original algorithm for
LCPs. In the predictor step one solves the so-called affine scaling system:
MAz® = As®,
. " 3)
SAz® + xAs? = —uxs.
Then the maximum feasible step size in this direction is computed, i.e., the largest a, < 1

satisfies

(x + ag Az, s + a,As*) > 0.

However, the algorithm does not make this step right away, it uses the information from the

predictor step to compute the corrector direction by solving the following system:

MAxz = As,
(4)

sAxT + xAs = pe — x5 — a2 Az As?,

where p is defined adaptively as

Ja\29a
(e, (5)

M =
where g, = (z + a,Az?) T (s + @, As?) and g = 27s.

Remark 2.1 An important ingredient of this paper is that the second equation of (4) is different
from the corresponding equation in [4], where it is sAxz + zAs = pe — s — Az®As®, thus the
new corrector direction is also different, which is the key to proving the polynomial complexity
of the new algorithm.

Finally, the maximum step size a. is computed so that the next iterate given by
( + acAz, s + a As)

belongs to a certain neighborhood of the central path.



300 Weihua LI, Mingwang ZHANG and Yiyuan ZHOU

3. Algorithm and complexity analysis

In this paper, we consider the negative infinity norm neighborhood defined by
No(y) i={(z,5) € F*: misi > vy, Vi € I},

where v € (0 is a constant independent of n.

;)
) 4k+3
We can outline our algorithm as follows:

Algorithm 1

Input:
A proximity v € (0, ﬁ); a safeguard parameter 3 € [v, TlJr?,)?
an accuracy parameter € > 0; a starting point (2°,s°) € N (7).
begin

while zTs > ¢ do

begin
(Predictor Step)
Solve (3) and compute the maximum step size «, such that
(2(aa), s(a)) € F;
If 2(cg) T s(ag) < &, then
let © = z(ay), s = s(a,) and stop.
end

end

begin
(Corrector Step)
If g > a1, where oy is given by (13), then let o, = 1.
end
Solve (4) with p defined by (5) and compute the
maximum step size a, such that (z(a.), s(a.)) € Ng(7);
If ac < 1, where p; = %m, then
solve (4) with u = %ug and compute the
maximum step size a, such that (z(a.), s(a.)) € Ng(7);
end
Set (z,5) = (z(ae), s(ac)) .

end

end

The following technical lemma is used frequently during the analysis.

Lemma 3.1 Suppose that (Az®, As®) is the solution of (3). Then
1) Azx§Asy < T G e Ty —AxfAsf < al(o% — Vs, i € Z-;

2) Yoz, AufAsg < E2 0 o [AxfAsy| < ALy Ty,
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3) —kx's < (Ax®)tAst < 2.
Proof 1) The proof is analogous to those in Lemma A.1 and Lemma 4.1 in [3].

2) The first conclusion follows from 1). In the following we prove the second one. By (3)

and using the fact that M is a P, (k) matrix, we have

(1+4k) Y Axf(MAz"); + > Azt (MAz®); >0,

i€Ty i€Z_
or
(1+48) Y AzfAs! + ) AzfAst > 0. (6)
i€I+ €7 _

Using the first conclusion in 2) completes the proof.
3) Following from 2), one has
(Az)TAs* < 3 A N
x s TP Asy < —.
= 7 =9
€T
Moreover, by (6) we have
(Az")TAs™ > —4r Z Az?As? > —kaTs.
€T
This completes the proof. O
Following from 3) of Lemma 3.1, and using the definition of p given by (5), we have

(1= aq)2Ts +a2(Ax*)TAs?)3

a?(Ax®)TAs®
= — 1 _ a 3
H n(a:Ts)2 ( + ITS ) ,Ug
a2 1gTs 1 3
< (1 =aa+ =g = (1 = aa + 707)* g < (1= J0a)pig.

Besides, by (Az%)TAs® > —ka™'s, there holds

O[2 —KZZZ?TS
p2 (ot 22 (1o, ka2, 2 (1 (14 R,

Therefore, we get the bound of u:
3

Zaa)gﬂg' (7)

The following theorem shows that there exists always a guaranteed positive step size in the

(1-(01+ “)aa)gﬂg <p<(l-

predictor step of the algorithm.

Theorem 3.2 Suppose that the current iterate (z,s) € N (), and (Ax®, As) is the solution
of (3). Then the maximum feasible step size, a, € (0, 1], so that (x(ag), s(ay)) > 0, satisfies
gl
>
Ga = (4 + 1)n

Proof Since (z,s) € N (v), by 2) of Lemma 3.1, we have

Ts 4r+1
zi(a)si(a) = (1 — @)z;s; + > ArfAs? > (1 — OA)Q - %oﬁsz.
n
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Our aim is to ensure that z;(a)s;(«) > 0. For this it suffices to require that

T 4 1 4 1 T
A1 - a) =2 = 02T = (1 - a)y - e 2l >,
n n

that is equivalent to

(4k + 1)na® + 4ya — 4y < 0.
—2 2y s lny Z27 2y 72+(4K+1)m] So the feasible pre-

This inequality holds when « € |

(4k+1)n ’ (4k+1)n
dictor step satisfies
=274+ 27?4+ (46 + )n
Qg 2>
4k + 1)n
Since m < %, we have

=27+ 2724+ (4 + 1)n
Qg >
(4:‘$+1) /1 4li—l—1 4I€+1

This completes the proof.

Lemma 3.3 Let (Ax, As) be the solution of (4) with > 0. Then
1azas| < /(L +Ku)(1 Lolrl? S A, —||7~|\2
— 4 3 = )
i€l
where ||7]|2 = ||u(zs) "2 — (x5)% — o2 (2zs) "2 Azx*As®|2.
Proof The proof is similar to that of Lemma 8 in [8].

The following technical lemma and its corollary will be used in the step size estimation for

the corrector step of the new algorithm.

Lemma 3.4 Suppose that the current iterate (z,s) € N (), and let (Ax, As) be the solution
of (4) with p > 0. Then we have

1 1 nu? a2np(dk + 1)

AzAs|| <4/ (= + k) (= + k) (— = 2nu+ 2+———+
IAaas] </ (G + )G + (2L -

at +8a2 +402(4k+1)(1 — ay) + 16

16 nitg);
2 2np(dk + 1 4024k +1)(1 —ag) + 1

ArTAs <L (L—Z ozan,u(/@—i- )+oz +8a2 +4a2(4r + 1)(1 — o) + 6n,ug).

4 ypg 2y 16

Proof Expanding HT||2 denoted in Lemma, 33, we have
AJJ As? ) Az?As?
2 2 4 2 i % 2 a a
= E + E i8i — 2np+ E —_— =2 E — 42 E AzxlAs?.
HT” H Z T;S; np-r+ o, o, Qg x; AS;

iS5 T;Sg TiS4 ieT
Since (z,s) € N (7), there holds

i€Z i€l

1 nu?
WY <o
iez V1% THg
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Furthermore, by 1) and 2) of Lemma 3.1, we have

S S 5.
o i (Ax Asi) < Z 12ii)" +y —a"(a“x_s_l)xZSl(—A:v?As?)

i€l % i€l €L
1 T I—aq a a
:E,T S+a—gz |A$1Asl|
€L _
1 (4r+ 11— ag)
(E + T)nﬂ.«r

IN

Besides, there hold

—QMZ AajsAs <o Z |A:;SAZS |

i€T Lo i€T_

2 4 n
el 3 Az AsY| < (@r+ Dnp
T Vg 2y

i€l
and
a a a a TL,U,q
2 Ax?As? <2 Ax?As? < —2,
Z P As] < Z T As] < 5
1€L €T
Therefore, we have

2 2 4 1 8 4o (4 (1 — 16
HTHQS%_Qnu_'_O‘an“( K+ )+oz +8aj +4ag (4k + 1)( Q) + nisg.
Vig 2y 16 I

We get the conclusion following from Lemma 3.3.
The following corollary gives an explicit upper bound for ||AzAs| and AzTAs when p is
chosen adaptively as given by (5).

Corollary 3.5 Let u be defined by (5), where v € (0 Then

? 4I€+3)

| AzAs| < pinptg, AaTAs < panp,

where p; = 17;19"“ (1+4K)(2 + 4kK), p2 = %.

Proof By (7), and using the fact that v < < 1 and 0 < aq < 1, then

4+3—

n® o+ aZnu(4k + 1) N at +8a2 + 4024k + 1)(1 — ) + 16n,uq
Vitg 2y 16 ‘
1 3 (4k + 1)a? 3 al +8a2 +4a2(4k +1)(1 — a,) + 16
< (1= Saa)’ + =22 (1= Say,
< (0= Foa) + g (1 ) a g
1 4r+1 1+8+4(4k+1)+16
< (=
= (7 + 2 + 16 g
16 + 32k + 8 4 (29 + 16K)y 17+ 19x
= npg < Nfg.
16y 8

By Lemma 3.4 we complete the proof of the corollary.
For simplicity the following notation is used in the rest of our development:
Azx?As?
t= o 8
s )
Remark 3.1 Since M is a P,(k) matrix, there is 7, # (). Besides, by 1) of Lemma 3.1, we have

telo,1].
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The next theorem provides an upper bound for ¢, that ensures a positive step size in the
corrector step, which also indicates that a larger step size in the predictor step might result in a

very small or zero step size in the corrector step.

Theorem 3.6 Suppose that the current iterate (x,s) € N (v), and let (Az, As) be the solution

of (4) with p as defined by (5). Then for o, € (0, 1] satisfying
1 ﬁ’Y(t +K) 1

a 1- : 9

<R T )?) 9)

the maximum step size in the corrector step is strictly positive.

(0%

Proof Our goal is to find a lower bound for the maximal a € (0, 1] such that

ri(a)si(a) > yug(a), VieZ, (10)
where
z(a)Ts(a acd(AzM)TAs®  o?AzTAs
pyfe) = L) _ (1 gap - 0BTV AT gy

By (4), we conclude that (10) is equivalent to

ac?y(Az*)TAs® n a?yArTAs
n n

(1—a)zisi+ap—aa Azt As +a?Ax;As; > y(1—a)puy+ayu—

or
ac?y(Az?)TAs®  a?yAzTAs

n n

(1—a)zisi+(1—y)ap—aa? Art Asé +a’Ax;As; + > y(1—a)pug.

Note that (z,s) € NZ (). It follows from 3) of Lemma 3.1 that the above inequality holds if
po a2yAziAs? 9 alz;As;  ayAzTAs S

(1—ry)— - 2—1—L —aivk + — > 0. (12)
Hg Hg Hg Ny

In the following, we consider (12) for two cases.
i) For i € Z,, by using (8), (7) and (z,s) € N (), it follows from Corollary 3.5 that (12)
holds when

—2y(t+ k) + (1 =71 — aq(1 4 &))? — a(pin + p2y) > 0.

Obviously, for «, satisfying (9), the above inequality holds if « satisfies

7(t+n)(1_(1%ﬂ(t+ﬂ) 1o Y+ k)

pr e DR s S — a(pin + p27)
= - A ain ot p) 20
or
o< 1 1 W(t—l—ﬁ))%7
(mn+py)(1—v)s 1tk
that is
> 1 7(t+f<é))g>0

T (it pey)(1—7)s 0 L4k
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ii) For ¢ € Z_ and «, satisfying (9), by Corollary 3.5, (12) holds for « satisfying

— a2y + (1= 7)1 — ag(1 +K)* — a(pin + p2y)
(TR )

> — 3 _
14+ k& 1—7v 1+k a(pin+p27)
1
vt YK 1+K7(t+’<5) 1
1+H+1+H( T ) —a(pin +p2y) >
or
1
1 t —(t+ kK
o< AT (HH( )1
pin+py 1+k 14k 1—7v
ie.,
1
Y+ kK
o> 1 ( vyt n VK (H,/ﬂ( ) 1 0.
pin+py 1+k 14k 1—7v

This completes the proof. O
Following from the proof of Theorem 3.6, to have an explicit strictly positive lower bound
for the maximum step size . in the corrector step, instead of (9), we use the following inequality:
% = 1in(1_ (Wgtj:)
Lemma 3.7 For sufficiently small 4 there holds t < O(uyg).

)3) = ay. (13)

Proof Analogously to the proof of Theorem 3.6 of [9], we have ||Az®|| = O(uy) and ||As?|| =
O(pg) (see Appendix for the proof). Therefore, there is

|[Az®As?| < O(ug).
This implies the statement of the lemma by the definition of ¢.
Corollary 3.8 For sufficiently small j1, one has ag > 1 — O(pug).
Proof The proof is analogous to the interpretation of the section 5 in [3].

Remark 3.2 By Theorem 3.6 we see that for sufficiently small pg, we can guarantee a positive

1
step size in the corrector step for a, < 1%{(1 — O(pd)). However, following the Corollary 3.8

1
aq > 1 — O(pg), which is greater than or equal to 1%{(1 — O(ud)) for sufficiently small py. In

other words, in asymptotic case we might need to cut oy, but still have a reasonably big a,.

Remark 3.3 From (13) it is obvious that when x = 0 and ¢ approaches to zero, a; approaches
to one. In other words, our cut does not block the convergence of the affine scaling step size to
one, it just reduces the speed of convergence in order to guarantee a positive step size for the
corrector step.

In the following corollary, we discuss the specific case that ¢ = 0.

Corollary 3.9 Ift =0 at a certain iteration, then the algorithm can make a full Newton step

in the predictor step and stop with an optimal solution.
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Proof From (8) it is obvious that when ¢ = 0, there is Az?As? =0, Vi € Z. Thus, by the first

equation of (3) and using the fact that M is a P,(x) matrix, we have

0< (1+4r) Y Azf(MAz"); + > Axf(MAz®);

i€Ty i€Z_
=(1+4r) > AzfAsi+ Y AxfAs? = > AzfAst.
i€T4 i€T_ i€T_

Subsequently Ax{As? = 0, Vi € Z, i.e, for all ¢ € Z, there is Az{ = 0 or As{ = 0. In the
following, the proof of (z + Az, s+ As®) € F is given.

a) It is obvious that (z + Az, s + As®) satisfies M (z + Az®) + ¢ = s + As®.

b) There are both = + Az* > 0 and s + As* > 0. By contradiction, we assume that
x; + Azxd <0 or s; + As? < 0 for some i € Z. Let us suppose x; + Az§ < 0 here. Then one has
As? = 0 since Az? < 0. Moreover, using the second equation of (3), we have (x; + Ax?)(s; +
As?) = 0, that is, s; + As? = s; = 0, which would contradict (z,s) € F°.
Therefore, a full Newton step in the predictor step leads to an optimal solution since (z +
Az*)T(s 4+ As*) = 0 by (3). This completes the proof. [J

Therefore, if o, violates (13), we let a, = ay and proceed with the corrector step. If the

maximum step size in the corrector step is still below a certain threshold depending only on

fﬁ)%), where v < 8 < ﬁ. By (7) one can see

that this choice implies p > %ug. By u = %,ug with o, = 1_%@(1 — (166)%) one further can
guarantee a lower bound for the maximum step size in the corrector step which is independent

the dimension, then we let oq = 1Jlr—’i(l —(

of t. Subsequently the polynomial iteration complexity of the algorithm can be proved. In the

next corollary and the subsequent theorem, we discuss this particular case.

_1

Corollary 3.10 Let u = %ug, where v < (3 < py

and v € (0, Wlﬁ) Then
|AzAs|| < pinpg, AzTAs < panpyg.

Proof Using 0 <~ < f < —= <L one has £ € (0, 1). Moreover, by aq, € (0,1], there is

443 = 3 1-38
n_uz ot aZnu(4k + 1) n al +8a2 +4a2(4k + 1)(1 — ag) + 16n,ug
Vg 2y 16
1. B (4 +1)a2 3 at +8a2 +4a2(4k +1)(1 — a,) + 16
< (S + : + )iy
v 1-p 2 1-p 16
1 4k +1 1+8+4(4k+1)+16 4+4(4x+1)4+v(29 + 16k
< (A4 n ( ) Vgt = ( ) +( )nug
4y 4y 16 16~
11k +9 19 + 17
< 5 npg < Tnug.

By Lemma 3.4, we complete the proof. [

Theorem 3.11 Suppose that the current iterate (z,s) € NZ(v) and (Az,As) is the solution

1-— (ﬁﬁ)%). Then

of (4) with u = %Mq and g = 7

Y
dpin’

Qe 2>
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Proof Following the proof of Theorem 3.6, in the worst case, as given by (12), it suffices to have

Ax;As; AzTA Zy(Ar)TAs®
GAziAs; YAz S—ozi”yt—i—(l—”y) I6; +aa’y( )" As
Hg Ny 1-p Ny

By Lemma 3.1 and Corollary 3.10, and using the fact that % > 1= v’ the above inequality

holds as long as

—(np1 4+ yp2)e — aZyt + v — alyk = —(npy + yp2)a +y(1 — Z(t + k) > 0.

Note that a, = ﬁ(l - (%)%) < H%W then the previous inequality holds for a satisfying
t+k
- 1-—" >0
(np1 4 yp2)a +( s K)Q) >
or
- ais)
np1 + yp2

Since 0 <t < % and vps < npq, there is

— 1

(1 (1+n) ) > 37

np1+vp2  2pn 4Apin’
which completes the proof. [
For the worst case, i.e., when i € Z,, (Az%)TAs? = —kxTs, AzTAs > 0, by Lemma 3.1
and Corollary 3.5 or 3.10, there is

fg(e) < (1—a+ auﬂ +aalk + p2a®) .
g

B

1+n(1 - (17;1

that pg(a) < pg, that is to say, the dual gap is decreased after the iteration; When a, > aq

and py = (%‘1)29—“

When p = %ug and o, = )3), if a < 6p2 (1- (1 ﬁ) ), then we can prove

e if o < %, there is pg(a) < pg, too; Similarly, when a, < oy and
1

p= (% )2 9o if o < — 2 we can keep piy(a) < py. Hence, in order to guarantee the
160p2 (4k+1)2n2
dual gap decreased after each iteration, we assume

1
a<m1n{E(1—(1fﬁ

Obviously, when n > 2, there is

13 x 0.37 1372

3 : 14
") T60pa(t 1w 160p2(4m+1)%n%} s

3 13 x 0.37 1372
1-p 160pa(1+ k)™ 160py (4K + 1)2n2
which implies that the conclusion of Theorem 3.1 still holds. On the other hand, there is

p
1-5

gl
4pin

)%), 13

< min {—(1—(

1 13 x 0. 1373
max{ (1~ (-2 o)h), XD v
160p2(1 + k)" 160ps(4k + 1)2n2

1.
6p2 F<

Therefore, (14) is well defined.
The following theorem gives the maximum number of iterations for Algorithm 1 to find an

e-approximate solution.
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Theorem 3.12 After at most
s (:L'O)TSO
O((1 4+ 4k)(17 4+ 19k)V1 + 2kn2 log

)

number of iterations Algorithm 1 stops with a solution for which s < e.

Proof By (11) and Lemma 3.1, and following from Corollary 3.5 or 3.10, we have

a?AzTAs
,ug(oz)g(l—a—kozﬂ—kozain—l—i),u (1—oz—|—ozﬂ—|—o¢a K+ paa®) g
Hg nftg Hg
1) If g > a1, and o, > 4p —, the algorithm uses the cut strategy, i.e., it cuts a, to
a) = 1_%@(1 - (7(1%?)%) Using v < 4—+3 and t € [0, 1], there is
1 t 0.37
on = —— (1 — (LER)y gy 5 05T
1+k 1—7 1+k
So as to prove the polynomial complexity of the algorithm, we discuss pq(c) for two cases, i.e.,
k> 2% and kK <2 . When £ > 2, there holds 22T 37 <ag < T < 2. By (7) and (14), and noting
that a1k < 75— < 1, we have
3
(@) < (L=t (1= Jar)fa + aods + p2a?)uy
3 2 2
<(l-a+(1- Zal) a+ oo+ paa)pg
<(1- L + = )3 + p2a?)
— — «@
S 5 1 16 5 1 D2 Hg
13 x 0.37
<(1-———= 2
— ( 80(1 ¥ K:)Oé +p20{ )/’Lq
13x0.37 13 x0.37 vy
<(1—( )ig

80(1+r) 160(1+r)’ 4pin
v

<(l-—7T
= 160p1 (1 + k)n

)ig-
When & < %, we have

2
—a%a + p2a2)ug

3
pgla) < (1—a+(1- Zal)Qa + 3

<(1- gala + (196 z)ala + p2c®) g
<a- 13%037 o y
- 48(1 + k) g
13x0.37 13 x0.37 v
S5~ ) Tt
[l
(1- 480p1 (1 + ﬁ)n)ug'

2) If ap > a1, and a. < then our algorithm cuts «, for the second time, i.e.,

g = H%N (1- (%)%) and p = 12 B“g’ which guarantees a lower bound for a, by Theorem 3.11,

that is, a. > 4 . Thus, there is

4p n’

g

o’k < (1—(

[y
|
@
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Moreover, by (14) and 5 < ﬁ < %, we have

po(@) < (1= at 1a+ aadn + paa ),

<U-a+ gt (- (2 ha+ paiy
< (- (= b+ paain
S(l—%(lfﬁ)%awﬂ?)ug

1 1 1
<= G- P

Yi5)%
=(1- 2§lpfn g

3) If ay < a1, and a, > @%, the algorithm uses the Mehrotra’s strategy, i.e., u = (%‘1)2 a
When x > %, there is ay < a1 < % By Theorem 3.2, using (7) and (14) and a,x < a1k < 1
have

po(0) < (1= 0+ (1 = SauYa + aga + p2o”)p
< (1= (5~ 36 Daaa+ p2a)y
13 B
<0-% :1)%n%a+pza )iy
\
<= 160(45121)5715 4p71n)”g
< 1372 Jig-

© 640py (4K + 1)3n3

When s < %, we have

3 2
pg(a) < (1 —a+ (1 - Zaq)a+ zaea + p2a®)u,

4 3

13
<(1- Eaawpgaz)ug

13 13 ”y%a
<(1l—-—(——- —)y. . — L —
< (1= (5 ~ 160/ (4ﬁ+1)%n%)“g

9173 Y
<(1- :
< 480(4k + 1)2n= 4p1n)“g
QIV%

= (1 g

1920y (4 + 1)31000n%
We complete the proof by Theorem 5.4 in [4].

4. Numerical result

In this section, we verify our algorithm using Matlab 7.6. For Py (k) linear complementarity
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problems, there has not been a polynomial algorithm for which we can calculate the value of the

parameter k for a given P, (k) matrix. So in this paper we consider the P,(x) LCPs with x = 0,

where
2 =20
M = 2 4 0 _ (4 4 3\
- - y 4= 115 ) 11 .
0 0 2
Let v =0.02, 3= 0.03 and £ = 10~%. Starting from the feasible point
1 19
0 T 0 T
= (2.5, 2.5, 1 = (— —
T ( ? ’ ) ? B (117 9 11) 9

the algorithm stops after 17 iterations with a solution meeting accuracy. The solution is
x = (1.909090912570709, 1.954545457571089, 0.136365040653625)",
s =107 x (0.000090833143495, 0.000514293719393, 0.280857997644044)T.

The dual gap is "s = 3.947783144852814e — 007, which shows that our algorithm is feasible.

5. Conclusion

In this paper, we have extended the Mehrotra-type predictor-corrector algorithm for linear
optimization to Py (k) LCPs. Since the search directions Az and As are not orthogonal for Py (k)
LCPs, the new technical lemmas are needed and the analysis is different from the corresponding
algorithm for linear optimization in [4]. There is an O((1 + 4k)(17 4+ 19x)v/1 + 2kn2 log W)
worst case iteration complexity bound for our algorithm. Unfortunately, up to now, the parame-
ter k of the matrix M is not known appropriately and there is no polynomial algorithm to decide
whether a matrix is P.(x) matrix or not [8], so our algorithm is not suitable to solve practical

problems directly.

6. Appendix

Proof of Lemma 3.7 For a P,(xk) LCP possessing a strictly complementary solution, a unique
partition B and N, where BUN = {1,2,...,n} and B(| N = (, exists such that 2% = 0 and
s = 0 in every complementarity solution and at least one complementarity solution has 3 > 0
and x > 0. Since the sequence generated by Algorithm 1 is contained in a wide neighborhood,

we have

Ying < xisi < npig. (15)

The Lemma 2 of Giiler and Ye [10] has shown that for all (z,s) € N (v), relation (15) implies
that
€<a;<1/¢ forjeB, £<s;<1/¢ forjeN, (16)

where 0 < ¢ < 1 is a positive constant.
Let z = zs and Z = diag(z). Note from (15) that we must have

Vg < 25 <npg for j=1,2,...,n.
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Define D = (XS~1)z. We now introduce several lemmas to estimate ||[Az®| and ||As®||. We

start by characterizing the solution to (3).

Lemma 6.1 If |Az®|| and ||As®|| are obtained from the system (3) and p, = ITTS, then

1D~ A < /(1 4+ 26)np1g, 1DAS| < /(1 + 26)m.

Proof Multiply the second equation by (X S)’% and square both sides of it, then by 3) of

Lemma 3.1, we have
D7 Az + ||[DAsY|]? = ||(XS)2e||> — 2(Az*)TAs®* < 2Ts + 2kaTs = (1 + 2K)njig.

Thus, we have the conclusion ||D71Az%|| < /(1 + 2k)npg, | DAsY|| < /(1 + 26)np,.

Lemma 6.2 If ||Az®|| and ||As®|| are obtained from (3), and pg = z’s then

1Az N || = Oug), [[(As")Bl = Olug)-

Proof From Lemma 6.1 and (16), we have

[(Az)n[| = Dy DN (Az)n || < [ D[P (Az®) v < [[DN]|O(V/ig)
~ 112455 10(yig) < I Z30(1/€)0( /i)
= O(Vg)O(Vig) = O(pug)-
This proves ||[(Az®)n]|| = O(ug). The proof that |(As®*)g| = O(ug) is similar.

Following from the second equation of (3), we have

Az® = =S (xs) — D?As®, As® = —X (zs) — D2As. (17)

Theorem 6.3 If ||Az®|| and ||As®| are obtained from (3), and g = s then

[Az|| = O(ng), [|As®]| = O(ug).
Proof Due to Lemma 6.2, we only need to prove

1(Az%) B[l = Olng), [(As*) || = Olpg)-

Using Lemma 6.1 and (17), we have
1(Az*)5l = S5 (25)5 + Dp(DpAsy)||
<185 X 8)sll + 1Dl DpAsE |
= 0(1/£)0(pg) + O(\/119)O(\/1ig) = Opsg)-

Similarly, one has ||[(As®)n|| = O(ug). The proof is completed. [
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