Some Endpoint Estimates for the Multiplier Operator

Xiaoli CHEN^{1,2}

- 1. Department of Mathematics, Jiangxi Normal University, Jiangxi 330022, P. R. China;
- 2. Department of Mathematics, Zhejiang University, Zhejiang 310027, P. R. China

Abstract In this paper, the author proves that Multiplier operator is bounded on $BMO(\mathbb{R}^n)$, $LMO(\mathbb{R}^n)$ and $CBMO^{p,\lambda}(\mathbb{R}^n)$ respectively if some concellation conditions are satisfied.

Keywords multiplier operator; BMO space; LMO space; λ -central BMO space.

MR(2010) Subject Classification 42B25; 42B30

1. Introduction

We first recall some basic concepts and results on multiplier. Let m(x) be a bounded function on R^n and consider the multiplier operator T defined initially for a function f in the Schwartz space \mathcal{S} by $\widehat{Tf}(x) = m(x)\widehat{f}(x)$, where \widehat{f} is the Fourier transform of f. For $s \geq 1$ and ℓ a positive real number, we say $m \in M(s, \ell)$ if

$$\sup_{R>0} \left(R^{s|\alpha|-n} \int_{R<|x|<2R} |D^{\alpha} m(x)|^s dx \right)^{1/s} < \infty, \text{ for all } |\alpha| \le \ell.$$
 (1.1)

The condition (1.1) has been known to be related to multiplier theorems of Hörmander-Mikhlin [1]. Using interpolation methods, Calderón and Torchinsky [2] considered the condition $m \in M(s,\ell)$ for $s \geq 2$ and $\ell > n/s$. Kurtz and Wheeden [3] obtained the following weighted norm inequality for multiplier operator when $m \in M(s,\ell)$ with $1 < s \leq 2$ and $n/s < \ell \leq n$. Now, we consider the multipliers. Following [3], we select an approximation to the identity

$$\sum_{j=-\infty}^{+\infty} \phi(2^{-j}x) = 1, \quad x \neq 0,$$

where ϕ is an infinitely differentiable, nonnegative function supported on $\frac{1}{2} < |x| < 2$. For $m \in M(s, l)$, let $m_j(x) = m(x)\phi(2^{-j}x)$, so that

$$m(x) = \sum_{j=-\infty}^{+\infty} m_j(x), \quad x \neq 0.$$

We have that $m_j \in L^1 \cap L^{\infty}$. Define $k_j(x) = (m_j)^{\vee}(x)$, where g^{\vee} denotes the inverse Fourier

Received September 1, 2010; Accepted October 5, 2010

Supported by the National Natural Science Foundation of China (Grant Nos. 10961015; 10871173; 10931001). E-mail address: littleli_chen@163.com

transform of g, and let

$$m^{N}(x) = \sum_{j=-N}^{N} m_{j}(x), \quad K_{N}(x) = (m^{N})^{\vee}(x) = \sum_{j=-N}^{N} k_{j}(x).$$

It follows that $||m^N||_{\infty} \leq C$ uniformly in N and that $m^N(x) \to m(x)$, $x \neq 0$, as $N \to \infty$. Now define $T_N f(x) = (m^N \hat{f})^{\vee}(x)$, so that $T_N f = f * K_N$ for $f \in \mathcal{S}$. The following lemma shows how conditions on m can be interpreted as the conditions on K_N .

Lemma 1.1 ([3]) Let $1 < s \le 2$, $m \in M(s, \ell)$ for a positive integer ℓ , and let K_N be defined as above. If d is an integer such that $0 < d \le \ell$, $1 < t \le s$, n/t < d < n/t + 1, and $1 \le p \le t'$, then for all $|y| \le \frac{R}{2}$,

$$\left(\int_{R<|x|<2R} |K_N(x-y) - K_N(x)|^p dx\right)^{1/p} \le CR^{-d+n/p-n/t'} |y|^{d-n/t},$$
$$\left(\int_{R<|x|} |K_N(x-y) - K_N(x)|^p dx\right)^{1/p} \le CR^{-d+n/p-n/t'} |y|^{d-n/t},$$

and if $\ell > \max\{n/p', n/s\}$, then

$$\left(\int_{R<|x|<2R} |K_N(x)|^p dx\right)^{1/p} \le CR^{n/p-n},$$

with C above independent of N, R and y.

Using this lemma, Kurtz and Wheeden [3] showed that the kernels K_N satisfy, uniformly in N, the Hörmander condition, so that T_N is bounded on L^p , uniformly in N, for $1 . For <math>f \in \mathcal{S}$, we have $Tf(x) = (m\hat{f})^{\vee}(x)$. It follows that $||Tf - T_N f||_{\infty} \leq ||(m - m^N)\hat{f}||_1 \to 0$, since m^N converges pointwise and boundedly to m. Then, applying Fatou's lemma, we get $||Tf||_p \leq C||f||_p$ for $1 and <math>f \in \mathcal{S}$.

We use p' to denote the index conjugate to p, that is, 1/p + 1/p' = 1, $p \ge 1$.

Lemma 1.2 ([3]) If $1 < s \le 2$, $n/s < l \le n$, $m \in M(s, l)$, and $\omega^{n/l} \in A_p$, then

- (1) For $1 , <math>||Tf||_{p,\omega} \le C||f||_{p,\omega}$ for a constant C independent of f.
- (2) $\omega(\lbrace x \in \mathbb{R}^n : |Tf(x)| > \lambda \rbrace) \leq C\lambda^{-1} ||f||_{1,\omega}$ for a constant C independent of f and $\lambda > 0$.

Lemma 1.3 ([3]) If $1 < s \le 2$, $m \in M(s, n)$, and $\omega \in A_p$, then we have

$$||Tf||_{p,\omega} \le C||f||_{p,\omega}, \quad 1$$

In 2010, Lin [7] obtained the boundedness of the Calderón-Zygmund type operator on BMO spaces, LMO spaces and λ -central BMO spaces. The conclusion essentially depends on the cancellation condition of the kernel. A natural question is: if we add a cancellation condition to the multiplier operator Tf, whether the multiplier operator Tf has the same results? Actually, the answer is affirmative. From [5], we know that if a multiplier is homogeneous of degree zero, the associated multiplier operator is a Calderón-Zygmund operator. But in this note, the homogeneous is not needed. So our theorems cannot be contained by the results in [7]. Before stating our results, we are going to give definitions of BMO, LMO and the center BMO spaces

 $CBMO^{p,\lambda}(\mathbb{R}^n).$

Definition 1.1 ([6]) LMO is a subspace of BMO, equipped with the semi-norm

$$[f]_{\text{LMO}} = \sup_{0 < r < 1} \frac{1 + |\ln r|}{|B_r|} \int_{B_r} |f(x) - f_{B_r}| dx + \sup_{r > 1} \frac{1}{|B_r|} \int_{B_r} |f(x) - f_{B_r}| dx,$$

where B_r denotes the ball in \mathbb{R}^n with radius r.

For $1 \le p < \infty$, define

$$[f]_{\mathrm{LMO}^p} = \sup_{0 < r < \frac{1}{2}} (1 + |\ln r|) \left(\frac{1}{|B_r|} \int_{B_r} |f(x) - f_{B_r}|^p \mathrm{d}x \right)^{1/p}.$$

Definition 1.2 ([9]) Let $\lambda < 1/n$ and $1 . A function <math>f \in L^p_{loc}(\mathbb{R}^n)$ is said to belong to the λ -central bounded mean oscillation space CBMO^{p,λ}(\mathbb{R}^n) if

$$||f||_{CBMO^{p,\lambda}} = \sup_{r>0} \left(\frac{1}{|B(0,r)|^{1+\lambda p}} \int_{B(0,r)} |f(x) - f_{B(0,r)}|^p dx \right)^{1/p} < \infty.$$
 (1.2)

We can formulate our results as follows:

Theorem 1.1 Let $1 < s \le 2$, $n/s < l \le n$, $m \in M(s,l)$, and T be defined as above, and $T_N 1 = 0$ for any real positive integer number N. Suppose $f \in BMO$ such that $T_N f(x)$ exists a.e. in R^n . Then $Tf \in BMO$ and

$$||Tf||_{\text{BMO}} \le C||f||_{\text{BMO}},$$

where C > 0 is independent of f.

Theorem 1.2 Let $1 < s \le 2$, $n/s < l \le n$, $m \in M(s,l)$, and T be defined as above, and $T_N 1 = 0$ for any real positive integer number N. Suppose $f \in \text{LMO}$ such that $T_N f(x)$ exists a.e. in R^n . Then $T f \in \text{LMO}$ and

$$[Tf]_{LMO} \leq C[f]_{LMO}$$

where C > 0 is independent of f.

Theorem 1.3 Let $1 < s \le 2$, $n/s < l \le n$, $m \in M(s,l)$, and T be defined as above, and $T_N 1 = 0$ for any real positive integer number N. Suppose $f \in \mathrm{CBMO}^{p,\lambda}$ such that $T_N f(x)$ exists a.e. in R^n , where $q' \le p < \infty$ and $-1/n < \lambda \le 0$. Then $Tf \in \mathrm{CBMO}^{p,\lambda}$ and

$$||Tf||_{CBMO^{p,\lambda}} \le C||f||_{CBMO^{p,\lambda}},$$

where C > 0 is independent of f.

2. Proofs of theorems

Proof of Theorem 1.1 If we prove the following inequality:

$$||T_N f||_{\text{BMO}} \le C||f||_{\text{BMO}}.$$

Then, by applying Fatou's lemma, we will get

$$||Tf||_{\text{BMO}} \leq C||f||_{\text{BMO}}.$$

Therefore, in order to prove Theorem 1.1, we only need to establish the (BMO,BMO)-boundedness of T_N .

For any ball $B = B(x_0, r) \subset \mathbb{R}^n$, r > 0, write

$$f(x) = f_{2B} + (f(x) - f_{2B})\chi_{8B}(x) + (f(x) - f_{2B})\chi_{(8B)^c}(x)$$

= $f_1(x) + f_2(x) + f_3(x)$.

The assumption $T_N 1 = 0$ tells that $T_N f_1 = 0$.

Thanks to Hölder's inequality and the $L^2(\mathbb{R}^n)$ -boundedness of T_N , we have

$$\frac{1}{|B|} \int_{B} |T_{N} f_{2}(x)| dx \leq \left(\frac{1}{|B|} \int_{B} |T_{N} f_{2}(x)|^{2} dx\right)^{1/2}
\leq C \left(\frac{1}{|B|} \int_{R^{n}} |f_{2}(x)|^{2} dx\right)^{1/2}
\leq C \left(\frac{1}{|8B|} \int_{8B} |f(x) - f_{2B}|^{2} dx\right)^{1/2}
\leq C ||f||_{\text{BMO}}.$$

Since $T_N f(x)$ and $T_N f_2(x)$ exist a.e. in R^n , there is a point $z \in B$ such that $T_N f_3(z) < \infty$. For $x \in B$, $z \in B$ and $y \in (8B)^c$, we have $|y - z| \ge 2|x - z|$. Choosing t, r such that $n/d < t < \min(s, p)$, n/t < d < n/t + 1, t < r < p and by using Lemma 1.1 and Hölder's inequality, we obtain

$$\begin{split} &\frac{1}{|B|} \int_{B} |T_{N} f_{3}(x) - T_{N} f_{3}(z)| \mathrm{d}x \\ &\leq \frac{1}{|B|} \int_{B} \int_{(8B)^{c}} |K_{N}(x-y) - K_{N}(z-y)| |f(y) - f_{2B}| \mathrm{d}y \mathrm{d}x \\ &\leq \frac{1}{|B|} \int_{B} \sum_{j=1}^{\infty} \int_{2^{j}|x-z| \leq |y-z| < 2^{j+1}|x-z|} |K_{N}(x-y) - K_{N}(z-y)| |f(y) - f_{2B}| \mathrm{d}y \mathrm{d}x \\ &\leq \frac{1}{|B|} \int_{B} \sum_{j=1}^{\infty} \left(\int_{2^{j}|x-z| \leq |y-z| < 2^{j+1}|x-z|} |K_{N}(x-y) - K_{N}(z-y)|^{r'} \mathrm{d}y \right)^{\frac{1}{r'}} \times \\ & \left(\int_{2^{j}|x-z| \leq |y-z| < 2^{j+1}|x-z|} |f(y) - f_{2B}|^{r} \mathrm{d}y \right)^{\frac{1}{r}} \mathrm{d}x \\ &\leq C \sum_{j=1}^{\infty} (2^{j}|x-z|)^{-d+n/r'-n/t'} |x-z|^{d-n/t} \left(\int_{2^{j+1}B} |f(y) - f_{2B}|^{r} \mathrm{d}y \right)^{\frac{1}{r}} \\ &\leq C \|f\|_{\mathrm{BMO}} \sum_{j=1}^{\infty} j 2^{j(-d+n/t)} \leq C \|f\|_{\mathrm{BMO}}. \end{split}$$

Thus

$$\frac{1}{|B|} \int_{B} |T_{N}f(x) - (T_{N}f)_{B}| dx \leq \frac{2}{|B|} \int_{B} |T_{N}f(x) - T_{N}f_{3}(z)| dx
\leq \frac{2}{|B|} \int_{B} |T_{N}f_{2}(x)| dx + \frac{2}{|B|} \int_{B} |T_{N}f_{3}(x) - T_{N}f_{3}(z)| dx
\leq C ||f||_{\text{BMO}},$$

which concludes the proof of Theorem 1.1. \square

Lemma 2.2 ([8]) If $f \in \text{LMO}$, then for any $1 \le p < \infty$, there exists a constant C > 0 depending only on p and p such that $[f]_{\text{LMO}^p} \le C[f]_{\text{LMO}}$.

Next we present the proof of Theorem 1.2.

Proof of Theorem 1.2 For any ball $B = B(x_0, r) \subset \mathbb{R}^n$ with $r \geq 1$, by BMO-boundedness of T in Theorem 1.1, we have

$$\frac{1}{|B|} \int_{B} |Tf(x) - (Tf)_{B}| dx \le ||Tf||_{\text{BMO}} \le C||f||_{\text{BMO}} \le C[f]_{\text{LMO}}.$$

Therefore it suffices to prove that, for any ball $B = B(x_0, r) \subset \mathbb{R}^n$ with 0 < r < 1, the following inequality holds:

$$\frac{1 + |\ln r|}{|B|} \int_{B} |Tf(x) - (Tf)_{B}| dx \le C[f]_{LMO}.$$
 (2.1)

Similarly, if the following inequality

$$\frac{1+|\ln r|}{|B|} \int_{B} |T_N f(x) - (T_N f)_B| \mathrm{d}x \le C[f]_{\mathrm{LMO}}$$

is proved, we will establish the (LMO, LMO)-boundedness of T. We consider two cases respectively.

(i) $1/16 \le r < 1$. The BMO-boundedness of T_N also implies that

$$\frac{1 + |\ln r|}{|B|} \int_{B} |T_{N}f(x) - (T_{N}f)_{B}| dx = \frac{1 + |\ln \frac{1}{r}|}{|B|} \int_{B} |T_{N}f(x) - (T_{N}f)_{B}| dx
\leq C \frac{1}{|B|} \int_{B} |T_{N}f(x) - (T_{N}f)_{B}| dx \leq C ||T_{N}f||_{\text{BMO}}
\leq C ||f||_{\text{BMO}} \leq C ||f||_{\text{LMO}}.$$

(ii) 0 < r < 1/16. Write

$$f(x) = f_{8B} + (f(x) - f_{8B})\chi_{8B}(x) + (f(x) - f_{8B})\chi_{(8B)c}(x) = f_1(x) + f_2(x) + f_3(x).$$

The hypothesis $T_N 1 = 0$ says that $T_N f_1 = 0$. Noting that $0 \le 8r < 1/2$ and employing Hölder's inequality, the (L^2, L^2) -boundedness of T_N , Lemma 2.2 and the following inequality

$$(1+|a+b|)^{-1} \le (1+|a|)^{-1}(1+|b|), \text{ for any } a,b \in R,$$
 (2.2)

we obtain

$$\begin{split} \frac{1}{|B|} \int_{B} |T_{N} f_{2}(x)| \mathrm{d}x &\leq \left(\frac{1}{|B|} \int_{B} |T_{N} f_{2}(x)|^{2} \mathrm{d}x\right)^{1/2} \\ &\leq C \left(\frac{1}{|8B|} \int_{8B} |f(x) - f_{8B}|^{2} \mathrm{d}x\right)^{1/2} \\ &= C \frac{1 + |\ln 8r|}{1 + |\ln 8r|} \left(\frac{1}{|8B|} \int_{8B} |f(x) - f_{8B}|^{2} \mathrm{d}x\right)^{1/2} \\ &\leq C [f]_{\mathrm{LMO}^{2}} (1 + |\ln 8r|)^{-1} \\ &\leq C [f]_{\mathrm{LMO}} (1 + \ln 8) (1 + |\ln r|)^{-1} \leq C ||f||_{\mathrm{LMO}} (1 + |\ln r|)^{-1}. \end{split}$$

Since $T_N f(x)$ and $T_N f_2(x)$ exist a.e. in R^n , there is a point $z \in B$ such that $T_N f_3(z) < \infty$. Since $r^{-1} > 16$, there exists a $k \in N$ with $k \ge 4$ such that $2^k < r^{-1} \le 2^{k+1}$, namely $k \sim |\ln r|$. For $x \in B$, $z \in B$ and $y \in (8B)^c$, we have $|y - z| \ge 2|x - z|$. Choosing t, r such that $n/d < t < \min(s, p)$, n/t < d < n/t + 1, t < r < p and by using Lemma 1.1 and Hölder's inequality, we obtain

$$\begin{split} &\frac{1}{|B|} \int_{B} |T_{N} f_{3}(x) - T_{N} f_{3}(z)| \mathrm{d}x \\ &\leq \frac{1}{|B|} \int_{B} \int_{(8B)^{c}} |K_{N}(x-y) - K_{N}(z-y)| |f(y) - f_{8B}| \mathrm{d}y \mathrm{d}x \\ &\leq \frac{1}{|B|} \int_{B} \sum_{j=1}^{\infty} \int_{2^{j}|x-z| \leq |y-z| < 2^{j+1}|x-z|} |K_{N}(x-y) - K_{N}(z-y)| |f(y) - f_{8B}| \mathrm{d}y \mathrm{d}x \\ &\leq \frac{1}{|B|} \int_{B} \sum_{j=1}^{\infty} \left(\int_{2^{j}|x-z| \leq |y-z| < 2^{j+1}|x-z|} |K_{N}(x-y) - K_{N}(z-y)|^{r'} \mathrm{d}y \right)^{\frac{1}{r'}} \times \\ & \left(\int_{2^{j}|x-z| \leq |y-z| < 2^{j+1}|x-z|} |f(y) - f_{8B}|^{r} \mathrm{d}y \right)^{\frac{1}{r}} \mathrm{d}x \\ &\leq C \sum_{j=1}^{\infty} (2^{j}|x-z|)^{-d+n/r'-n/r'} |x-z|^{d-n/t} \left(\int_{2^{j+3}B} |f(y) - f_{8B}|^{r} \mathrm{d}y \right)^{\frac{1}{r}} \\ &\leq C \sum_{j=1}^{\infty} 2^{j(-d+n/t)} \left[\left(\frac{1}{|2^{j}B|} \int_{2^{j+3}B} |f(y) - f_{2^{j+3}B}|^{r} \mathrm{d}y \right)^{\frac{1}{r}} + |f_{2^{j+3}B} - f_{8B}| \right] \\ &\leq C \sum_{j=1}^{\infty} 2^{j(-d+n/t)} \left[\left(\frac{1}{|2^{j}B|} \int_{2^{j+3}B} |f(y) - f_{2^{j+3}B}|^{r} \mathrm{d}y \right)^{\frac{1}{r}} + \sum_{i=3}^{j+2} |f_{2^{i+1}B} - f_{2^{i}B}| \right] + \\ &\sum_{j=k-3}^{\infty} 2^{j(-d+n/t)} \left[\left(\frac{1}{|2^{j}B|} \int_{2^{j+3}B} |f(y) - f_{2^{j+3}B}|^{r} \mathrm{d}y \right)^{\frac{1}{r}} + \sum_{i=3}^{j+2} |f_{2^{i+1}B} - f_{2^{i}B}| \right] \\ &= \mathrm{I} + \mathrm{II}. \end{split}$$

We first estimate I. When $1 \le j \le k-4$ and $3 \le i \le j+2$, there are $0 < 2^{j+3}r < 1/2$ and $0 < 2^{j+1}r < 1/2$. It follows from Lemma 2.1 and inequality (2.2) that

$$\begin{split} & \mathbf{I} \leq C \sum_{j=1}^{k-4} 2^{j(-d+n/t)} \Big[\frac{1+|\ln 2^{j+3}r|}{1+|\ln 2^{j+3}r|} \Big(\frac{1}{|2^{j+3}B|} \int_{2^{j+3}B} |f(y) - f_{2^{j+1}B}|^r \mathrm{d}y \Big)^{\frac{1}{r}} + \\ & \sum_{i=3}^{j+2} \frac{1+|\ln 2^{i+1}r|}{1+|\ln 2^{i+1}r|} \Big(\frac{1}{|2^{i+1}B|} \int_{2^{i+1}B} |f(y) - f_{2^{i+1}B}| \mathrm{d}y \Big) \Big] \\ \leq & C \sum_{j=1}^{k-4} 2^{j(-d+n/t)} \Big(\frac{[f]_{\mathrm{LMO}^r}}{1+|\ln 2^{j+3}r|} + \sum_{i=3}^{j+2} \frac{[f]_{\mathrm{LMO}}}{1+|\ln 2^{i+1}r|} \Big) \\ \leq & C[f]_{\mathrm{LMO}} \sum_{i=1}^{k-4} 2^{j(-d+n/t)} \sum_{i=3}^{j+2} \frac{1}{1+|\ln 2^{i+1}r|} \end{split}$$

$$\leq C[f]_{\text{LMO}} \sum_{j=1}^{k-4} 2^{j(-d+n/t)} \sum_{i=3}^{j+2} \frac{i}{1+|\ln r|}$$

$$\leq C[f]_{\text{LMO}} (1+|\ln r|)^{-1} \sum_{j=1}^{\infty} j^2 2^{j(-d+n/t)}$$

$$\leq C[f]_{\text{LMO}} (1+|\ln r|)^{-1}.$$

Now we estimate II.

$$\begin{split} & \text{II} \leq C \sum_{j=k-3}^{\infty} 2^{j(-d+n/t)} \Big[\Big(\frac{1}{|2^{j+3}B|} \int_{2^{j+3}B} |f(y) - f_{2^{j+3}B}|^r \mathrm{d}y \Big)^{\frac{1}{r}} + \\ & \sum_{i=3}^{j+2} \frac{1}{|2^i B|} \int_{2^i B} |f(y) - f_{2^{i+1}B}| \mathrm{d}y \Big] \\ & \leq C \|f\|_{\text{BMO}} \sum_{j=k-3}^{\infty} j 2^{j(-d+n/t)} \leq C[f]_{\text{LMO}} \sum_{j=k-3}^{\infty} \frac{j^2}{k+1} 2^{j(-d+n/t)} \\ & \leq C[f]_{\text{LMO}} \sum_{j=1}^{\infty} \frac{j^2}{1+|\ln r|} 2^{j(-d+n/t)} \leq C[f]_{\text{LMO}} (1+|\ln r|)^{-1}. \end{split}$$

Combining the above two estimates, we have

$$\frac{1}{|B|} \int_{B} |T_N f_3(x) - T_N f_3(z)| dx \le C[f]_{LMO} (1 + |\ln r|)^{-1}.$$

Therefore

$$\begin{split} & \frac{1 + |\ln r|}{|B|} \int_{B} |T_{N}f(x) - (T_{N}f)_{B}| \mathrm{d}x \\ & \leq 2 \frac{1 + |\ln r|}{|B|} \int_{B} |T_{N}f(x) - T_{N}f_{3}(z)| \mathrm{d}x \\ & \leq 2 \frac{1 + |\ln r|}{|B|} \int_{B} |T_{N}f_{2}(x)| \mathrm{d}x + 2 \frac{1 + |\ln r|}{|B|} \int_{B} |T_{N}f_{3}(x) - T_{N}f_{3}(z)| \mathrm{d}x \\ & \leq C[f]_{\text{LMO}}. \end{split}$$

Then we complete the proof of Theorem 1.2. \Box

Proof of Theorem 1.3 If we prove the following inequality: $||T_N f||_{CBMO^{p,\lambda}} \le C||f||_{CBMO^{p,\lambda}}$. Then, by applying Fatou's lemma, we get

$$||Tf||_{CBMO^{p,\lambda}} \le C||f||_{CBMO^{p,\lambda}}.$$

Therefore, in order to prove Theorem 1.3, we only need to establish the $(CBMO^{p,\lambda}, CBMO^{p,\lambda})$ -boundedness of T_N .

For any ball $B = B(0, r) \subset \mathbb{R}^n$, with r > 0, write

$$f(x) = f_{16B} + (f(x) - f_{16B})\chi_{16B}(x) + (f(x) - f_{16B})\chi_{(16B)^c}(x)$$

= $f_1(x) + f_2(x) + f_3(x)$.

It follows from the hypothesis $T_N 1 = 0$ that $T_N f_1 = 0$.

Thanks to Hölder's inequality and the $L^p(\mathbb{R}^n)$ -boundedness of T_N , we have

$$\left(\frac{1}{|B|} \int_{B} |T_N f_2(x)|^p dx\right)^{1/p} \le C \left(\frac{1}{|B|} \int_{16B} |f(x) - f_{16B}|^p dx\right)^{1/p}$$

$$\le C ||f||_{CBMO^{p,\lambda}} |B|^{\lambda}.$$

Since $T_N f(x)$ and $T_N f_2(x)$ exist a.e. in \mathbb{R}^n , there is a point $z \in 3B \setminus 2B$ such that $T_N f_3(z) < \infty$. For $x \in B$, $z \in 3B \setminus 2B$ and $y \in (16B)^c$, there is $|y - z| \ge 2|x - z|$. Choosing t, q such that $n/d < t < \min(s, p), n/t < d < n/t + 1, t < q' < p$ and by using Lemma 1.1 and Hölder's inequality, we obtain

$$\begin{split} &\left(\frac{1}{|B|}\int_{B}|T_{N}f_{3}(x)-T_{N}f_{3}(z)|^{p}\mathrm{d}x\right)^{1/p} \\ &\leq \left\{\frac{1}{|B|}\int_{B}\left(\int_{(16B)^{c}}|K_{N}(x-y)-K_{N}(z-y)||f(y)-f_{16B}|\mathrm{d}y\right)^{p}\mathrm{d}x\right\}^{1/p} \\ &\leq \left\{\frac{1}{|B|}\int_{B}\left(\sum_{j=1}^{\infty}\int_{2^{j}|x-z|\leq|y-z|<2^{j+1}|x-z|}|K_{N}(x-y)-K_{N}(z-y)||f(y)-f_{16B}|\mathrm{d}y\right)^{p}\mathrm{d}x\right\}^{1/p} \\ &\leq \left\{\frac{1}{|B|}\int_{B}\left[\sum_{j=1}^{\infty}\left(\int_{2^{j}|x-z|\leq|y-z|<2^{j+1}|x-z|}|K_{N}(x-y)-K_{N}(z-y)||^{q}\mathrm{d}y\right)^{\frac{1}{q}}\times\right. \\ &\left(\int_{2^{j+4}B}|f(y)-f_{2B}|^{q'}\mathrm{d}y\right)^{\frac{1}{q'}}\right]^{p}\mathrm{d}x\right\}^{1/p} \\ &\leq \left\{\frac{1}{|B|}\int_{B}\left[\sum_{j=1}^{\infty}(2^{j+4}|x-z|)^{-d+n/q-n/t'}|x-z|^{d-n/t}\left(\int_{2^{j+4}B}|f(y)-f_{16B}|^{q'}\mathrm{d}y\right)^{\frac{1}{q'}}\right]^{p}\mathrm{d}x\right\}^{1/p} \\ &\leq C\sum_{j=1}^{\infty}2^{j(-d+n/t)}\left(\frac{1}{|2^{j+4}r_{B}|}\int_{2^{j+4}B}|f(y)-f_{16B}|^{q'}\mathrm{d}y\right)^{\frac{1}{q'}} \\ &\leq C\sum_{j=1}^{\infty}2^{j(-d+n/t)}\left[\left(\frac{1}{|2^{j+4}B|}\int_{2^{j+4}B}|f(y)-f_{16B}|^{p}\mathrm{d}y\right)^{\frac{1}{p}} +\sum_{i=4}^{j+3}|f_{2^{i+1}B}-f_{2^{i}B}|\right] \\ &\leq C\sum_{j=1}^{\infty}2^{j(-d+n/t)}\left[\left\|f\right\|_{\mathrm{CBMO}^{p,\lambda}}|2^{j+4}B|^{\lambda} +\sum_{i=4}^{j+3}\left(\frac{1}{|2^{i+1}B|}\int_{2^{j+1}B}|f(y)-f_{2^{i+1}B}|^{p}\mathrm{d}y\right)^{\frac{1}{p}}\right] \\ &\leq C\|f\|_{\mathrm{CBMO}^{p,\lambda}}|B|^{\lambda}\sum_{j=1}^{\infty}2^{j(-d+n/t)}\left[2^{jn\lambda} +\sum_{i=4}^{j+3}2^{in\lambda}\right] \\ &\leq C\|f\|_{\mathrm{CBMO}^{p,\lambda}}|B|^{\lambda}\sum_{j=1}^{\infty}2^{j(-d+n/t)}2^{jn\lambda} \leq C\|f\|_{\mathrm{CBMO}^{p,\lambda}}|B|^{\lambda}. \end{split}$$

Thus,

$$\left(\frac{1}{|B|^{1+\lambda_p}} \int_B |T_N f(x) - (T_N f)_B|^p dx\right)^{1/p}
\leq C \left(\frac{1}{|B|^{1+\lambda_p}} \int_B |T_N f(x) - T_N f_3(z)|^p dx\right)^{1/p}$$

$$\leq C \left(\frac{1}{|B|^{1+\lambda p}} \int_{B} |T_N f_2(x)|^p dx \right)^{1/p} + C \left(\frac{1}{|B|^{1+\lambda p}} \int_{B} |T_N f_3(x) - T_N f_3(z)|^p dx \right)^{1/p} \\
\leq C \|f\|_{CBMO^{p,\lambda}},$$

which completes the proof of Theorem 1.3. \square

We also remark that Theorem 1.3 remains true for the inhomogeneous version of λ -central BMO spaces by taking the supremum over r > 1 in Definition 1.2 instead of r > 0 there.

References

- L. HÓRMANDER. Estimates for translation invariant operators in L^p spaces. Acta Math., 1960, 104: 93–140
- [2] A. P. CALDERÓN, A. TORCHINSKY. Parabolic maximal functions associated with a distribution (II). Advances in Math., 1977, 24(2): 101–171.
- [3] D. S. KURTZ, R. L. WHEEDEN. Results on weighted norm inequalities for multipliers. Trans. Amer. Math. Soc., 1979, 255: 343–362.
- [4] B. MUCKENHOUPT, R. WHEEDEN. Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc., 1974, 192: 261–274.
- [5] E. M. STEIN. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princetion Univ Press, Princetion, NJ, 1993.
- [6] S. SPANNE. Some function spaces defined using the mean oscillation over cubes. Ann. Scuola Norm. Sup. Pisa, 1965, 19(3): 593-608.
- [7] Yan LIN. Endpoint estimates for Calderón-Zygmund type operators. Acta Math. Sin. (Engl. Ser.), 2010, 26(3): 523-532.
- [8] Yongzhong SUN, Weiyi SU. An endpoint estimate for the commutator of singular integrals. Acta Math. Sin. (Engl. Ser.), 2005, 21(6): 1249–1258.
- [9] J. ALVAREZ, J. LAKEY, M. GUZMÁN-PARTIDA. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect. Math., 2000, 51(1): 1–47.