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Abstract In this paper, the author proves that Multiplier operator is bounded on BMO(R"™), LMO(R™)
and CBMOP*(R"™) respectively if some concellation conditions are satisfied.
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1. Introduction

We first recall some basic concepts and results on multiplier. Let m(z) be a bounded function
on R™ and consider the multiplier operator 7" defined initially for a function f in the Schwartz
space S by T}(m) = m(x)f(x), where f is the Fourier transform of f. For s > 1 and £ a positive

real number, we say m € M (s, {) if

sup (Rsla\*n/ |D0‘m(gc)|5d:v) v < oo, forall |o| <£. (1.1)
R>0 R<|z|<2R

The condition (1.1) has been known to be related to multiplier theorems of Hérmander-Mikhlin
[1]. Using interpolation methods, Calderén and Torchinsky [2] considered the condition m €
M(s,?) for s > 2 and ¢ > n/s. Kurtz and Wheeden [3] obtained the following weighted norm
inequality for multiplier operator when m € M (s,¢) with 1 < s < 2 and n/s < £ < n. Now, we

consider the multipliers. Following [3], we select an approximation to the identity

+oo
Y g2z) =1, z#£0,

j=—c0

where ¢ is an infinitely differentiable, nonnegative function supported on 1 < |z| < 2. For

2
m € M(s,1), let mj(z) = m(x)$(277z), so that

—+oo

m(z) = Z m;(z), = #0.

j=—o00

We have that m; € L' (| L. Define k;(z) = (m;)V (z), where gV denotes the inverse Fourier
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transform of g, and let

N N

mV(z) = Y my(x), Kn(z)=m") (@)= Y k).

j=—N j=—N

It follows that ||[m® ||« < C uniformly in N and that m”" (z) — m(x), * # 0, as N — oo.
Now define Ty f () = (mN f)¥(z), so that T f = f * Ky for f € S. The following lemma shows

how conditions on m can be interpreted as the conditions on K.

Lemma 1.1 ([3]) Let 1 < s <2, m € M(s,{) for a positive integer ¢, and let K be defined as
above. If d is an integer such that 0 < d < (¢, 1<t <s,nf/t<d<n/t+1,and 1 <p <t then
for all ly| < &,

1/ ,
( / [Kn(z—y) — Kn(z)dz) P < QR-dtnlr-n/t |y d-n/t,
R<|z|<2R

1/p ,
(/ |KN(CC — y) — KN($)|pde') < CRfdJrn/pfn/t |y|dfn/t,
R<|x|
and if £ > max{n/p’,n/s}, then

1/
( / Kn(@lrdz) " < crYn,
R<|z|<2R

with C' above independent of N, R and y.
Using this lemma, Kurtz and Wheeden [3] showed that the kernels K satisfy, uniformly in

N, the Hormander condition, so that T is bounded on LP, uniformly in N, for 1 < p < oo.

For f € S, we have T'f(z) = (mf)¥(z). It follows that | Tf — T flleo < [|(m —m™N)f|1 — 0,
since m” converges pointwise and boundedly to m. Then, applying Fatou’s lemma, we get

ITfll, <C|fllpfor 1l <p<ooand feS.
We use p’ to denote the index conjugate to p, that is, 1/p+1/p'=1,p > 1.

Lemma 1.2 ([3]) If1<s<2,n/s<l<n,mé& M(s,l), and w™/' € A,, then
(1) Forl <p < oo, |[Tf|lpw < C|fllpw for a constant C' independent of f.
(2) w({z e R":|Tf(z)] >\}) < CA Y| f|l1.w for a constant C independent of f and A > 0.

Lemma 1.3 ([3]) If1<s<2,me M(s,n), andw € A,, then we have

1T fllpw < CIIf]

In 2010, Lin [7] obtained the boundedness of the Calderén-Zygmund type operator on BMO

spaces, LMO spaces and A-central BMO spaces. The conclusion essentially depends on the

pws 1 <p<oo.

cancellation condition of the kernel. A natural question is: if we add a cancellation condition to
the multiplier operator T'f, whether the multiplier operator T'f has the same results? Actually,
the answer is affirmative. From [5], we know that if a multiplier is homogeneous of degree
zero, the associated multiplier operator is a Calderén-Zygmund operator. But in this note, the
homogeneous is not needed. So our theorems cannot be contained by the results in [7]. Before

stating our results, we are going to give definitions of BMO, LMO and the center BMO spaces
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CBMOP*(R™).
Definition 1.1 ([6]) LMO is a subspace of BMO, equipped with the semi-norm

1+ |Inr 1
Flinto = sup L[y o 4+ sup o [ 1@ = fn Jaz,
o<r<l1 |BT| B, TZILBT| B,

where B,. denotes the ball in R™ with radius r.

For 1 < p < oo, define

/
fuwor = sw (1+rl) (7 [ 1£(@) = fi, Pe)

O<r<%

Definition 1.2 ([9]) Let A < 1/n and 1 < p < co. A function f € L} (R") is said to belong
to the A-central bounded mean oscillation space CBMOP* (R") if

1 1/p
p A = ——— - ~|Pd . 1.2
Ifllor = sup (s [, 196~ JoonPae) <o ()

We can formulate our results as follows:

Theorem 1.1 Let 1 < s < 2, n/s <l <n, m € M(s,l), and T be defined as above, and
Tn1 = 0 for any real positive integer number N. Suppose f € BMO such that T f(x) exists
a.e. in R™. Then T'f € BMO and

T fllsBmo < C| fllBmo,

where C' > 0 is independent of f.

Theorem 1.2 Let 1 < s < 2, n/s <l <n, m € M(s,l), and T be defined as above, and
Tn1 = 0 for any real positive integer number N. Suppose f € LMO such that T f(z) exists a.e.
in R". Then T f € LMO and

[T fltmo < Clf]imos

where C' > 0 is independent of f.

Theorem 1.3 Let 1 < s <2, n/s <l <n, mée M(s,l), and T be defined as above, and
Tn1 = 0 for any real positive integer number N. Suppose f € CBMOP* such that Tn f(x) exists
a.e. in R", where ¢ < p < oo and —1/n < A < 0. Then Tf € CBMOP** and

1T fllcevors < Clifllermors

where C' > 0 is independent of f.

2. Proofs of theorems

Proof of Theorem 1.1 If we prove the following inequality:

ITn fllBmo < CllflBmo-
Then, by applying Fatou’s lemma, we will get

1T fllBmo < C|| f[lBmo-
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Therefore, in order to prove Theorem 1.1, we only need to establish the (BMO,BMO)-boundedness
of TN.
For any ball B = B(xg,r) C R™, r > 0, write
f(x) = fap + (f(x) = faB)xsB(x) + (f(x) — faB)X(sB)-(T)
= fi(x) + fa(z) + f3(z).
The assumption Tx1 = 0 tells that T f1 = 0.
Thanks to Hélder’s inequality and the L?(R™)-boundedness of T, we have

1 1 1/2
51 [ el < (g [ ) Pac)

1 1/2
<C(ig1 | pPar)

1 ) 1/2
< (g [, 11@) = oslaz)
< C||fllBmo-

Since T f(x) and Ty fo(z) exist a.e. in R™, there is a point z € B such that T f3(z) < cc.
For x € B, z € B and y € (8B)¢, we have |y — z| > 2|z — z|. Choosing ¢,r such that n/d <t <
min(s,p), n/t < d < n/t+1,t < r < p and by using Lemma 1.1 and Holder’s inequality, we

obtain
|—;| /B (T o) — T fo(2)|da

1
= _// [Kn(z—y) = Kn(z =)/ (y) - fapldydz
|B| /B JsB)-
1 o0
= F/ Z/ _ [Kn(z—y) = Kn(z —9)llf(y) — fopldydz
|B] B i1 /2 z—2|<|y—z|<2I T z—2|
1 / > / , 2
ST |Kn(z—y) — Kn(z—y)["dy)" x
|B| Bj_zl( 2|z —z|<|y—z| <29t |z —2| )

1
([ i)~ aldy) de
27 |z —z|<|y—z|<2it1l|z—2z|

<OY (Da—l)y /Y o — zld‘"”(/
i=1 2

-

Sl

1 (v) ~ fa5]"dy)

i+1B

< C| fllBmo Zj2j(_d+n/t) < | fllmo-

Jj=1

Thus
! 2
18] /B |Tn f(x) = (Tn f)Blde < B /B T f(z) — Ty f3(2)|dz

< % /B T ()| de + ;q /B (T o) — T fo(2)|de

< C| fllsmo,
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which concludes the proof of Theorem 1.1. O

Lemma 2.2 ([8]) If f € LMO, then for any 1 < p < oo, there exists a constant C > 0 depending
only on n and p such that [flLmor < C[f]Lmo-
Next we present the proof of Theorem 1.2.

Proof of Theorem 1.2 For any ball B = B(x,r) C R™ with r > 1, by BMO-boundedness of

T in Theorem 1.1, we have

I%I /B ITf(z) — (Tf)p|dz < |Tf|lBmo < C| fllemo < Clflumo.

Therefore it suffices to prove that, for any ball B = B(xp,r) C R™ with 0 < r < 1, the following
inequality holds:

St [ i) - (T slas < o, (2.)

Similarly, if the following inequaliity

! +|j|91|m| / |Tn f(z) = (Inf)pldr < C[flLmo

is proved, we will establish the (LMO, LMO)-boundedness of 7. We consider two cases respec-
tively.
(i) 1/16 <r < 1. The BMO-boundedness of T also implies that

1 1
1—|—|l|31|nr|/ TN f(z) — (Tn f)Blde = +|]|9| |/ TN f(z) = (Tn f)B|da

<Oz [ 11n7(0) = (T )slde < CITw o
< || fllsmo < C[flLmo-
(i) 0<r<1/16. Write
f(x) = fsp + (f(x) — fsB)xsp(x) + (f(x) = fsB)X(sB)-(x) = fi(z) + fo(x) + f3(x).

The hypothesis Ty1 = 0 says that T f1 = 0. Noting that 0 < 87 < 1/2 and employing Hélder’s
inequality, the (L2, L?)-boundedness of T, Lemma 2.2 and the following inequality

(I+]a+b)™ <1 +]a) (A +b]), forany a,b€ R, (2.2)
we obtain
—i/Wf@m«—i/Wf@m@W
Bl Jp N |B| A
1/2
2
d
< C(f5g [, o) = ”“’)
1+ |1n8r| / 1/2
d
1+|1n8r| I8B] ~ fanl” I)

IN

=(C—
Clflimoz (1 + [In8r|)~
Clfltmo(1 + I 8)(1+ [Inr|) ™" < C||fllumo(1 + [Inr|)~!

IN
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Since T f(x) and Ty fa(x) exist a.e. in R™, there is a point z € B such that T f3(z) < oo.
Since 7~ > 16, there exists a k € N with k > 4 such that 2* < r=! < 25! namely k ~ |Inr|.
For x € B, z € B and y € (8B)¢, we have |y — z| > 2|z — z|. Choosing ¢,r such that n/d <t <
min(s,p), n/t < d < n/t+1,t < r < p and by using Lemma 1.1 and Holder’s inequality, we

obtain

ﬁ /B (T o) — T fo(2)|de

1
< —/ / |[Kn(z —y) — Kn(z = y)llf(y) — fspldyda
|B| Ji JsB)e
1 o0
< —/ Z/, | |Kn(z—y) — Kn(z—y)||f(y) — fspldyda
|B| B 27 |z —z|<|y—z|<27 1|z —z|
a2 )
< — Kny(z—y)— Kny(z—y)|"dy) X
|B| B;( 2j\w—z\§\y—z\<2j+1|m—z|| ( ) ( ) )

1
(/ , |f(y) — fSB|Tdy) dz
20 |z —z|<|y—z|<29 |z —2|

Jj=1 2

U=

3=

[F(y) — fsnl"dy)

i+3 B
<N 9il=dtn/t) [( : P ) - }
o J; |2B| Joirspg |f(y) = fosrspl"dy )+ |foitsp — fsB]
-— 1 1 g2
< ; |2_]B| i+8 B |f(y) f21+33| Y —|—; |f2 i — fo B| +
= 1 1 Jt2
2j(—d+n/t)[( : ~ forsnltd ) I }
j:kz—s 127 B| Joirsg |f(y) = fosrsp|'dy) + ; |foi+18 — foiB]
=I1+1IL

We first estimate I. When 1 < j < k—4 and 3 < i < j+ 2, there are 0 < 203 < 1/2 and
0 < 27y < 1/2. Tt follows from Lemma 2.1 and inequality (2.2) that

k—4

o 1+ 23, 1 1
j(—d+n/t) e
ISCJZ? T w2757 (G080~ forminl ) "+
42 ,
1+ 2+, 1
T )
; 1+ 2y (|21+1B| g |f(y) = foirrpldy
k—4 2
J(—d4n/t) [flLmor [flLmo )
SO;Q (1+|ln2j+3r|+§1+|ln2i+1r|

k—4 42 1
<C gi(—dtn/yN~__ L
< [f]LMOj; ;1+|1H2”1T|
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k—4 J+2 ;
<C 9i(=d+n/t) - -
- mLMO; Zl+|lnr|

<C[flumo(1 + | In7|)~ 23223 —d+n/t)

<C[fltmo(1 +|Inr|)~"

Now we estimate II.

n<cC Z 27 d*”/t>[(|2]+33| /MB y) — forrapl” dy)

1
T

j=k—3
Jj+2
Z |2,LB| f2’+lB|dy:|
< C”f”BMO Z j2j( d+n/t) < C Z —d+n/t)
Jj=k—3 j=k— 3

< Clflno 3 Ty ? Y < Clflao(L+ [lr) ™
j=1

Combining the above two estimates, we have

ﬁ /B 1T f3(z) — T f3(2)|dz < C[flumo (1 + | In7|)~!

Therefore
1+ |Inr
Bl

1+ Inr

< |]|3| |/|TNf — Ty f3(2)|de
1+ |Inr 1+ |lnr

<2 | |/ TN fo(x)|dz + 2 | |/ TN f3(x) — T f3(z)|dx

|B| |B| B
< C[flmo.

Then we complete the proof of Theorem 1.2. O

Proof of Theorem 1.3 If we prove the following inequality: [|Tn f|lcemorr < CIIf lceMmor-
Then, by applying Fatou’s lemma, we get
1T fllcemors < Cll fllcamor-

Therefore, in order to prove Theorem 1.3, we only need to establish the (CBMO””\7 CBMO””\)-
boundedness of Ty .

For any ball B = B(0,r) C R™, with r > 0, write

f(x) = fiep + (f(x) — fieB)x168(x) + (f(7) — fieB)X(16B)(T)
= fi(z) + fo(z) + f3().
It follows from the hypothesis Ty1 = 0 that T f1 = 0.
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Thanks to Holder’s inequality and the LP(R™)-boundedness of T, we have

1 1/ 1 y
(®/3|wa2($)|de) s C(E /163|f(x)_f163|pdx) »
< C||fllcemor B

Since T f(x) and T f2(x) exist a.e. in R™, there is a point z € 3B\2B such that T f3(z) < co.
For z € B, z € 3B\2B and y € (16B)°, there is |y — z| > 2|z — z|. Choosing t, ¢ such that
n/d < t < min(s,p), n/t < d < nft+1,t < ¢ < p and by using Lemma 1.1 and Holder’s

inequality, we obtain

(ﬁ /B |Tn f5(z) — TNf3(z)|de>1/p

1/p

-

(/ |KN($—9)—KN(Z—y)quy)q><
1 2 e—z|<|y—z|<27t 2 —z]

{

ol (; /22 [Kn(w = 9) = Kn(z = )ll£0) = frosldy) do }
{

(/2”43 |fy) — sz|q,dy)$rdx}1/p

1 > / , 7P 1/p
< {7 [ [ = s temsa g st ([ 5~ ol ay) ] )
Bl )5 1 vt
o) ) 1 , a
<C 23(7d+n/t)( ‘ _ 44 )q
< ; g Josasn |f(y) = fien|? dy
o) ) 1 1
<C 2J<—d+n/f>(,7 — fieplPd )
< ; g Jysasn |f(y) = fres|"dy
o) 1 1 J+3
<C 2j(—d+"/t){ i — fo Pq )p i — foi }
= J; |2+4B] 2j+4B|f(y) fairaplPdy +;|f2 +15 — faiB|
00 J+3 1 1
S n - P
< PO W lomsions 2B + 3 (g [, /) = fovnl'd) ]
j=1 i=
< Ol f lemaiorn BN 3 20 4en/0 i 1 5™ gim]
=1 i=4

< Clfllopmora IBI* Y 527 CHND23mY < O fll opmonn | BI

j=1
Thus,

(|B|1;+/\P /B T f() = (TNf)Blpdx)l/p

1/
= C(|B|1%>\p /B |Tn f(x) — TNf3(z)|pdx> g
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SC(|B|1#+,\p/B|Tz\rfz(ﬂc)|pd:z;)1/p4—0(|B|1#+/\p/B|TNf3(gr:)_T]\,fg(zﬂzkm)l/p

< Ol fllcemor»s

which completes the proof of Theorem 1.3. O
We also remark that Theorem 1.3 remains true for the inhomogeneous version of A-central

BMO spaces by taking the supremum over r > 1 in Definition 1.2 instead of > 0 there.
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