Minimal Surfaces in a Unit Sphere

Zhonghua HOU^{*}, Dan YANG

School of Mathematical Science, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Let M be a closed surface with positive Gauss curvature minimally immersed in a standard Euclidean unit sphere S^n . In this paper, we choose a local orthonormal frame field on M, under which the shape operators have very convenient form. We also give some applications of this kind of frame field.

Keywords minimal surface; Gauss curvature; normal scalar curvature.

MR(2010) Subject Classification 53C42; 53A10

1. Introduction

Let M be a minimal immersion of surface into a standard Euclidean unit sphere S^n . We denote by K and K_N the Gauss curvature and the normal scalar curvature, respectively.

In [1], Calabi showed that if M is a sphere with constant Gauss curvature K and the immersion is full, then the set of possible values of K is discrete, namely K = K(s) = 2/(s(s+1)) and the immersion is congruent to the s-th standard minimal immersion. It is well known that the choosing of the frame field plays an important role in studying the surface. In [2], Chern chose a local orthonormal frame field on the two-sphere which is minimally immersed in S^n . Using the frame field, Chern obtained an equality concerning the local invariants and showed that if the Gauss curvature K is constant, then K = K(s). Later, Kenmotsu [3,4] also obtained an equality for the compact minimal surface immersed in S^n by choosing the frame field, which generalized Chern's result. In [5], Itoh chose a local orthonormal frame field on the compact surface M which is minimally immersed in S^n and proved that if the normal scalar curvature K_N is non-zero constant and the square of the second curvature k_2 is less than $K_N/4$, then M is a generalized Veronese surface, where k_2 is the square of the second curvature. Later, there are some important results concerning minimal surfaces such as [6–14].

In this paper, we choose a local orthonormal frame field on the closed surface with positive Gauss curvature which is minimally immersed in a unit sphere, which is simple and convenient to solve some problems of surfaces. We also give some applications of this kind of frame field.

2. Preliminaries

Received April 14, 2010; Accepted October 3, 2010

Supported by the Fundamental Research Funds for the Central Universities.

* Corresponding author

E-mail address: zhhou@dlut.edu.cn (Zhonghua HOU); danyang82@yahoo.cn (Dan YANG)

Let M be a closed minimal surface immersed in the unit sphere S^n . From now on, we identify M with its immersed image, agree on the following index ranges:

$$1 \le i, j, k, \dots \le 2; \quad 3 \le \alpha, \beta, \gamma, \dots \le n; \quad 1 \le A, B, C, \dots \le n;$$

and use the Einstein convention.

Take a local orthonormal frame field $\{e_A\}_{A=1}^n$ in TS^n along M such that $\{e_i\}_{i=1}^2$ lies in the tangent bundle T(M) and $\{e_\alpha\}_{\alpha=3}^n$ in the normal bundle N(M). Let $\{\omega_A\}_{A=1}^n$ be the dual coframe field of $\{e_A\}_{A=1}^n$. Denote by $(\omega_{AB})_{A,B=1}^n$ the Riemannian connection form matrix associated with $\{\omega_A\}_{A=1}^n$. Then $(\omega_{ij})_{i,j=1}^2$ defines a Riemannian connection in T(M) and $(\omega_{\alpha\beta})_{\alpha,\beta=3}^n$ defines a normal connection in N(M). It follows that the second fundamental form of M can be expressed as

$$\sigma = \sum_{i,\alpha} \omega_i \otimes \omega_{i\alpha} \otimes e_\alpha = \sum_{i,j,\alpha} h^{\alpha}_{ij} \omega_i \otimes \omega_j \otimes e_\alpha,$$

where

$$\omega_{i\alpha} = \sum_{j} h_{ij}^{\alpha} \omega_{j}; \quad h_{ij}^{\alpha} = h_{ji}^{\alpha}, \quad i, j = 1, 2; \quad \alpha = 3, \dots, n.$$

And the mean curvature vector field of M is expressed as

$$\xi = \frac{1}{2} \sum_{\alpha=3}^{n} (h_{11}^{\alpha} + h_{22}^{\alpha}) e_{\alpha}.$$

Then M is minimal if and only if $\xi = 0$.

Let $L^{\alpha} = (h_{ij}^{\alpha})_{2 \times 2}$. We denote the square of the norm of the second fundamental form S and the normal scalar curvature K_N by

$$S = \sum_{\alpha} \sum_{i,j} (h_{ij}^{\alpha})^2, \quad K_N = \sum_{\alpha,\beta} \sum_{i,j} (R_{\alpha\beta ij})^2.$$

The Riemannian curvature tensor $\{R_{ijkl}\}$ and the normal curvature tensor $\{R_{\alpha\beta kl}\}$ are expressed as

$$R_{ijkl} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk} + \sum_{\alpha} (h_{ik}^{\alpha}h_{jl}^{\alpha} - h_{il}^{\alpha}h_{jk}^{\alpha}), \quad R_{\alpha\beta kl} = \sum_{m} (h_{km}^{\alpha}h_{ml}^{\beta} - h_{lm}^{\alpha}h_{mk}^{\beta}).$$

The first and the second order covariant derivatives of $\{h_{ij}^{\alpha}\}$, say $\{h_{ijk}^{\alpha}\}$ and $\{h_{ijkl}^{\alpha}\}$ are defined respectively as follows.

$$\nabla h_{ij}^{\alpha} = \sum_{k} h_{ijk}^{\alpha} \omega_{k} = dh_{ij}^{\alpha} + \sum_{m} (h_{mj}^{\alpha} \omega_{mi} + h_{im}^{\alpha} \omega_{mj}) + \sum_{\beta} h_{ij}^{\beta} \omega_{\beta\alpha},$$
$$\nabla h_{ijk}^{\alpha} = \sum_{l} h_{ijkl}^{\alpha} \omega_{l} = dh_{ijk}^{\alpha} + \sum_{m} (h_{mjk}^{\alpha} \omega_{mi} + h_{imk}^{\alpha} \omega_{mj} + h_{ijm}^{\alpha} \omega_{mk}) + \sum_{\beta} h_{ijk}^{\beta} \omega_{\beta\alpha}.$$

Then we have the following Codazzi equation

$$h_{ijk}^{\alpha} - h_{ikj}^{\alpha} = 0, \tag{1}$$

and the Ricci's formula

$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{p} (h_{pj}^{\alpha} R_{pikl} + h_{ip}^{\alpha} R_{pjkl}) + \sum_{\beta} h_{ij}^{\beta} R_{\beta\alpha kl}.$$
 (2)

The Laplacian of the second fundamental form $\{h_{ij}^{\alpha}\}$ is defined by $\Delta h_{ij}^{\alpha} = \sum_{m} h_{ijmm}^{\alpha}$. Then it follows from (1) and (2) that

$$\Delta h_{ij}^{\alpha} = \sum_{m} h_{mmij}^{\alpha} + \sum_{p,m} (h_{pi}^{\alpha} R_{pmjm} + h_{mp}^{\alpha} R_{pijm}) + \sum_{m,\delta} h_{mi}^{\delta} R_{\delta\alpha jm}.$$
 (3)

3. The choosing of the frame field

It is well known that the choice of the frame field plays a very important role in the study of submanifolds. In this section, we would like to choose an orthonormal frame field on the closed surfaces minimally immersed in a unit sphere. Firstly, we give the following Proposition.

Proposition 1 Suppose that M is a surface immersed in the unit sphere S^n . Then there exits a local orthonormal frame filed $\{e_{\alpha}\}_{\alpha=3}^n$ normal to M such that the shape operator L^{α} with respect to e_{α} has the following forms.

$$L^{3} = \begin{pmatrix} \lambda^{3} & b \\ b & \nu^{3} \end{pmatrix}; \quad L^{\beta} = \begin{pmatrix} \lambda^{\beta} & 0 \\ 0 & \nu^{\beta} \end{pmatrix}, \quad 4 \le \beta \le n.$$
(4)

Proof Let $\{e_1, \ldots, e_n\}$ be an orthonormal frame field on M so that e_1, e_2 are tangent to Mand e_3, \ldots, e_n are normal to M. If the normal bundle of M is flat, then the shape operator L^{α} with respect to e_{α} can be diagonalized simultaneously. Otherwise, at least one of h_{12}^{β} ($\beta \geq 3$) is not zero identically. We choose a unit normal vector field $\tilde{e}_3 = e/|e|$ where $e = \sum_{\beta=3}^n h_{12}^{\beta} e_{\beta}$, and take an orthogonal transformation in the normal space $N_x(M)$:

$$\begin{pmatrix} \widetilde{e}_3\\ \widetilde{e}_4\\ \vdots\\ \widetilde{e}_n \end{pmatrix} = \begin{pmatrix} h_{12}^3 |e|^{-1} & h_{12}^4 |e|^{-1} & \cdots & h_{12}^n |e|^{-1}\\ a_{43} & a_{44} & \cdots & a_{4n}\\ \vdots & \vdots & & \vdots\\ a_{n3} & a_{n4} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} e_3\\ e_4\\ \vdots\\ e_n \end{pmatrix}.$$

Let $\widetilde{L}^{\alpha} = (\widetilde{h}_{ij}^{\alpha})$ be the shape operator with respect to \widetilde{e}_{α} , $3 \leq \alpha \leq n$. It follows that

$$\begin{cases} h_{ij}^{3} = h_{12}^{3} |e|^{-1} \tilde{h}_{ij}^{3} + a_{43} \tilde{h}_{ij}^{4} + \dots + a_{n3} \tilde{h}_{ij}^{n}, \\ h_{ij}^{4} = h_{12}^{4} |e|^{-1} \tilde{h}_{ij}^{3} + a_{44} \tilde{h}_{ij}^{4} + \dots + a_{n4} \tilde{h}_{ij}^{n}, \\ \dots \dots \dots \\ h_{ij}^{n} = h_{12}^{n} |e|^{-1} \tilde{h}_{ij}^{3} + a_{n4} \tilde{h}_{ij}^{4} + \dots + a_{nn} \tilde{h}_{ij}^{n}. \end{cases}$$

$$(*)$$

Put i = 1 and j = 2 in (*). Then it is easy to check that (*) has unique solution

$$b:=\widetilde{h}_{12}^3=|e|\neq 0,\quad \widetilde{h}_{12}^\beta=0,\quad 4\leq\beta\leq n.$$

Therefore $\{e_1, e_2; \tilde{e}_\beta\}_{\beta=3}^n$ is the desired local orthonormal frame field. \Box

When M is a surface which is minimally immersed in the unit sphere S^n , we take the ortonormal frame field on the surface M according to Proposition 1 such that the shape operators have the form (4) with

$$\lambda^{\alpha} + \nu^{\alpha} = 0, \quad 3 \le \alpha \le n.$$
(5)

Denote

$$\overline{S} := \sum_{(i,j,\beta>3)} (h_{ij}^{\beta})^2 = 2 \sum_{(\beta>3)} (\lambda^{\beta})^2, \quad S_3 := \sum_{(i,j)} (h_{ij}^3)^2 = 2(\lambda^3)^2 + 2b^2.$$

Then

$$S = \overline{S} + S_3 = 2 \sum_{(\beta > 3)} (\lambda^{\beta})^2 + 2(\lambda^3)^2 + 2b^2.$$

According to (5) we denote

$$\lambda_i^{\alpha} := h_{11i}^{\alpha} = -h_{22i}^{\alpha}, \quad \lambda_{ij}^{\alpha} := h_{11ij}^{\alpha} = -h_{22ij}^{\alpha}$$

for all i, j = 1, 2 and $\alpha = 3, \ldots, n$.

The Riemannian curvature tensor, the normal curvature tensor and the first covariant differentials of the normal curvature tensor become

$$R_{ijkl} = (1 - S/2) \left(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right), \quad R_{3\beta 12} = -2b\lambda^{\beta}, \quad R_{\gamma\beta 12} = 0, \tag{6}$$

$$R_{3\beta12,k} = 2(\lambda^3 h_{12k}^{\beta} - \lambda^{\beta} h_{12k}^{3} - b\lambda_k^{\beta}), \quad R_{\beta\gamma12,k} = 2(\lambda^{\beta} h_{12k}^{\gamma} - \lambda^{\gamma} h_{12k}^{\beta}), \tag{7}$$

where $4 \leq \beta, \gamma \leq n$. Next we will study the covariant differentials of S. It is not difficult to check that

$$S_k = 2\sum h_{ij}^{\alpha} h_{ijk}^{\alpha} = 4\sum_{\beta=4}^n \lambda^\beta \lambda_k^\beta + 4(\lambda^3 \lambda_k^3 + bh_{12k}^3),$$

for all k = 1, 2. It follows that

$$\frac{1}{4}S_1 = \sum_{\beta=4}^n \lambda^\beta \lambda_1^\beta + \lambda^3 \lambda_1^3 + b\lambda_2^3, \quad \frac{1}{4}S_2 = \sum_{\beta=4}^n \lambda^\beta \lambda_2^\beta + \lambda^3 \lambda_2^3 - b\lambda_1^3.$$
(8)

It follows from Ricci formula (2) that

$$\lambda_{12}^{3} - \lambda_{21}^{3} = -(2 - S - \overline{S})b, \quad \lambda_{11}^{3} + \lambda_{22}^{3} = (2 - S)\lambda^{3}, \\ \lambda_{11}^{\beta} + \lambda_{22}^{\beta} = (2 - S - 2b^{2})\lambda^{\beta}, \quad \lambda_{12}^{\beta} - \lambda_{21}^{\beta} = -2b\lambda^{3}\lambda^{\beta},$$
(9)

where $\beta \geq 4$. Using the frame field introduced by Proposition 1 and the moving frame method, we obtain the following Lemma.

Lemma 1 Let M be a minimal surface immersed in a unit sphere S^n . Then

$$\frac{1}{2}\Delta S = \sum_{\alpha,i,j,k} (h_{ijk}^{\alpha})^2 + (2-S)S - 4b^2\overline{S}.$$
(10)

Proof It follows from (3) that

$$\sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = \sum_{i,j,p,m,\alpha} (h_{ij}^{\alpha} h_{pi}^{\alpha} R_{pmjm} + h_{ij}^{\alpha} h_{mp}^{\alpha} R_{pijm}) + \sum_{i,j,m,\alpha,\delta} h_{ij}^{\alpha} h_{mi}^{\delta} R_{\delta\alpha jm}.$$

According to (6) we have

$$\sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = (2-S) \sum_{i,j,\alpha} (h_{ij}^{\alpha})^2 + \sum_{\beta=4}^n 4b\lambda^{\beta} R_{3\beta12} = (2-S)S - 4b^2 \overline{S}.$$
 (11)

It follows that

$$\frac{1}{2}\Delta S = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + (2-S)S - 4b^2\overline{S}.$$

We complete the proof of Lemma 1. \Box

We assume that the normal bundle of M immersed in S^n is nonflat. In this case we have that $b \neq 0$. We can establish the following theorem.

Theorem 1 Let M be a closed surface minimally immersed in $S^n(1)$ with nonflat normal bundle. If the Gauss curvature of M is positive, then we can choose a local orthonormal frame filed $\{e_{\alpha}\}_{\alpha=3}^{n}$ normal to M such that the shape operator L^{α} with respect to e_{α} has the following forms:

$$L^{3} = \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}, \quad L^{4} = \begin{pmatrix} b & 0 \\ 0 & -b \end{pmatrix}, \quad L^{\beta} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad 5 \le \beta \le n.$$

Furthermore

$$b = \frac{\sqrt{S}}{2}, \quad \lambda_1^3 = -\lambda_2^4 = -\frac{1}{4\sqrt{S}}S_2, \quad \lambda_2^3 = \lambda_1^4 = \frac{1}{4\sqrt{S}}S_1.$$

Proof Let M be a surface minimally immersed in S^n . We take the orthonormal frame field $\{e_1, e_2, e_3, \ldots, e_n\}$ on M according to Proposition 1 such that the shape operators L^{α} with respect to e_{α} have the form

$$L^{3} = \begin{pmatrix} \lambda^{3} & b \\ b & -\lambda^{3} \end{pmatrix}; \quad L^{\beta} = \begin{pmatrix} \lambda^{\beta} & 0 \\ 0 & -\lambda^{\beta} \end{pmatrix}, \quad 4 \le \beta \le n.$$
(12)

It follows from (3) and the simple computation that

$$\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha} \Delta h_{ij}^{\alpha})_{k} = \sum_{i,j,\alpha} (\Delta h_{ij}^{\alpha})^{2} + \sum_{i,j,k,l,p,\alpha} (h_{ijk}^{\alpha} h_{pik}^{\alpha} R_{pljl} + h_{ijk}^{\alpha} h_{lpk}^{\alpha} R_{pijl}) + \sum_{i,j,k,l,p,\alpha} (h_{ijk}^{\alpha} h_{pi}^{\alpha} R_{pljl,k} + h_{ijk}^{\alpha} h_{lp}^{\alpha} R_{pijl,k}) + \sum_{i,j,k,l,\alpha,\delta} h_{ijk}^{\alpha} h_{lik}^{\delta} R_{\delta\alpha jl} + \sum_{i,j,k,l,\alpha,\delta} h_{ijk}^{\alpha} h_{li}^{\delta} R_{\delta\alpha jl,k}.$$

$$(13)$$

Next we calculate the right hand side of equation (13) one by one. Using (3) and (6), we get

$$\begin{split} \Delta h_{11}^{\beta} &= (2-S-2b^2)\lambda^{\beta}, \quad \Delta h_{12}^{\beta} = 2b\lambda^3\lambda^{\beta}, \\ \Delta h_{12}^3 &= (2-S-\overline{S})b, \quad \Delta h_{11}^3 = (2-S)\lambda^3, \end{split}$$

where $\beta \geq 4$. It follows that

$$\sum_{i,j,\alpha} (\Delta h_{ij}^{\alpha})^2 = 2(\Delta h_{11}^3)^2 + 2\sum_{\beta=4}^n (\Delta h_{11}^{\beta})^2 + (\Delta h_{12}^3)^2 + 2\sum_{\beta=4}^n (\Delta h_{12}^{\beta})^2$$
$$= (2-S)^2 S + 2(5S-8)b^2 \overline{S}.$$
(14)

Making use of (6), we get

$$\sum_{i,j,k,l,p,\alpha} (h_{ijk}^{\alpha} h_{pik}^{\alpha} R_{pljl} + h_{ijk}^{\alpha} h_{lpk}^{\alpha} R_{pijl}) + \sum_{i,j,k,l,\alpha,\delta} h_{ijk}^{\alpha} h_{lik}^{\delta} R_{\delta\alpha jl}$$

$$= (2-S) \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + \sum_{\beta=4}^n 8(\lambda_1^3 \lambda_2^{\beta} - \lambda_2^3 \lambda_1^{\beta}) R_{\beta312}$$

$$= (2-S) \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + 16b \sum_{\beta=4}^n (\lambda_1^3 \lambda^{\beta} \lambda_2^{\beta} - \lambda_2^3 \lambda^{\beta} \lambda_1^{\beta}).$$
(15)

By (8), we immediately have

$$\sum_{\beta=4}^{n} \lambda^{\beta} \lambda_{1}^{\beta} = \frac{1}{4} S_{1} - \lambda^{3} \lambda_{1}^{3} - b \lambda_{2}^{3}, \quad \sum_{\beta=4}^{n} \lambda^{\beta} \lambda_{2}^{\beta} = \frac{1}{4} S_{2} - \lambda^{3} \lambda_{2}^{3} + b \lambda_{1}^{3}. \tag{16}$$

Substituting (16) into (15), we get

$$\sum_{i,j,k,l,p,\alpha} (h_{ijk}^{\alpha} h_{pik}^{\alpha} R_{pljl} + h_{ijk}^{\alpha} h_{lpk}^{\alpha} R_{pijl}) + \sum_{i,j,k,l,\alpha,\delta} h_{ijk}^{\alpha} h_{lik}^{\delta} R_{\delta\alpha jl}$$

= $(2-S) \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + 4b^2 \sum_{i,j,k} (h_{ijk}^3)^2 + 4b(\lambda_1^3 S_2 - \lambda_2^3 S_1).$ (17)

It follows from the first formula of (7) that

$$\sum_{i,j,k,l,p,\alpha} (h_{ijk}^{\alpha} h_{pi}^{\alpha} R_{pljl,k} + h_{ijk}^{\alpha} h_{lp}^{\alpha} R_{pijl,k}) = -\sum_{i,j,k,\alpha} h_{ij}^{\alpha} h_{ijk}^{\alpha} S_k = -\frac{1}{2} |\nabla S|^2.$$
(18)

We calculate in detail the last term of equation (13), it is not hard to see that

$$\sum_{i,j,k,l,\alpha,\delta} h_{ijk}^{\alpha} h_{li}^{\delta} R_{\delta\alpha jl,k} = \sum_{\gamma=4}^{n} 2(\lambda^{\gamma} \lambda_2^3 + b\lambda_1^{\gamma} - \lambda^3 \lambda_2^{\gamma}) R_{3\gamma 12,1} + \sum_{\gamma=4}^{n} 2(-\lambda^{\gamma} \lambda_1^3 + b\lambda_2^{\gamma} + \lambda^3 \lambda_1^{\gamma}) R_{3\gamma 12,2} + \sum_{\beta,\gamma=4}^{n} (-2\lambda^{\gamma} \lambda_2^{\beta} R_{\gamma\beta 12,1} + 2\lambda^{\gamma} \lambda_1^{\beta} R_{\gamma\beta 12,2}).$$
(19)

By (7), we have

$$R_{3\gamma12,1} = 2(-b\lambda_1^{\gamma} + \lambda^3\lambda_2^{\gamma} - \lambda^{\gamma}\lambda_2^3), \quad R_{\gamma\beta12,1} = 2(\lambda^{\gamma}\lambda_2^{\beta} - \lambda^{\beta}\lambda_2^{\gamma}), R_{3\gamma12,2} = 2(-b\lambda_2^{\gamma} - \lambda^3\lambda_1^{\gamma} + \lambda^{\gamma}\lambda_1^3), \quad R_{\gamma\beta12,2} = 2(\lambda^{\beta}\lambda_1^{\gamma} - \lambda^{\gamma}\lambda_1^{\beta}).$$
(20)

Substituting (20) into (19) and using (16), we have

$$\sum_{i,j,k,l,\alpha,\delta} h_{ijk}^{\alpha} h_{li}^{\delta} R_{\delta\alpha jl,k} = -\frac{1}{2} S \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + 4b^2 \sum_{i,j,k} (h_{ijk}^3)^2 + 4b(\lambda_1^3 S_2 - \lambda_2^3 S_1) + \frac{1}{4} |\nabla S|^2.$$
(21)

Substituting (14), (17),(18) and (21) into (13) we get

$$\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha} \Delta h_{ij}^{\alpha})_k = (2 - \frac{3}{2}S) \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + (2 - S)^2 S + 2(5S - 8)b^2 \overline{S} + \\ 8b^2 \sum_{i,j,k} (h_{ijk}^3)^2 + 8b(\lambda_1^3 S_2 - \lambda_2^3 S_1) - \frac{1}{4} |\nabla S|^2.$$
(22)

It follows from (10) that

$$\sum_{\alpha,i,j,k} (h_{ijk}^{\alpha})^2 = \frac{1}{2} \Delta S - (2-S)S + 4b^2 \overline{S}.$$
 (23)

Substituting (23) into (22) and from $S\Delta S = \frac{1}{2}\Delta S^2 - |\nabla S|^2$, we have

$$\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha} \Delta h_{ij}^{\alpha})_k = \frac{1}{2} (2-S)S^2 + 4(S-2)b^2\overline{S} + \Delta S - \frac{3}{8}\Delta S^2 + \frac{1}{2} (2-S)S^2 + \frac{1}{2}$$

$$8b^2 \sum_{i,j,k} (h_{ijk}^3)^2 + 8b(\lambda_1^3 S_2 - \lambda_2^3 S_1) + \frac{1}{2} |\nabla S|^2.$$
(24)

Since

$$8b^{2} \sum_{i,j,k} (h_{ijk}^{3})^{2} + 8b(\lambda_{1}^{3}S_{2} - \lambda_{2}^{3}S_{1}) + \frac{1}{2} |\nabla S|^{2}$$

= $32(b\lambda_{1}^{3})^{2} + 32(b\lambda_{2}^{3})^{2} + 8b(\lambda_{1}^{3}S_{2} - \lambda_{2}^{3}S_{1}) + \frac{1}{2}(S_{1}^{2} + S_{2}^{2})$
= $2(4b\lambda_{1}^{3} + \frac{1}{2}S_{2})^{2} + 2(4b\lambda_{2}^{3} - \frac{1}{2}S_{1})^{2},$ (25)

substituting (25) into (24) gives

$$\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha} \Delta h_{ij}^{\alpha})_k = \frac{1}{2} (2 - S) S^2 + 4(S - 2) b^2 \overline{S} + \Delta S - \frac{3}{8} \Delta S^2 + 2(4b\lambda_1^3 + \frac{1}{2}S_2)^2 + 2(4b\lambda_2^3 - \frac{1}{2}S_1)^2.$$
(26)

Since M is compact, taking integration over M on both sides of (26), we have

$$0 = \int_M \left\{ \frac{1}{2} S^2 (2-S) + 4(S-2) b^2 \overline{S} + 2(4b\lambda_1^3 + \frac{1}{2}S_2)^2 + 2(4b\lambda_2^3 - \frac{1}{2}S_1)^2 \right\},\$$

that is

$$\int_{M} (2-S)b^{2}\overline{S} = \int_{M} \left\{ \frac{1}{8}S^{2}(2-S) + \frac{1}{2}(4b\lambda_{1}^{3} + \frac{1}{2}S_{2})^{2} + \frac{1}{2}(4b\lambda_{2}^{3} - \frac{1}{2}S_{1})^{2} \right\}$$
$$\geq \int_{M} \frac{1}{8}S^{2}(2-S), \tag{27}$$

where the equality holds if and only if $b\lambda_1^3 = -\frac{1}{8}S_2$, $b\lambda_2^3 = \frac{1}{8}S_1$.

On the other hand, we have

$$b^2 \overline{S} \le \frac{1}{2} S_3 \overline{S} \le \frac{1}{8} (S_3 + \overline{S})^2 = \frac{1}{8} S^2,$$
 (28)

where the equality holds if and only if

 $\lambda^3 = 0, \quad \overline{S} = S_3 = 2b^2.$

Since the Gauss curvature of M is positive, we have 2 - S > 0. Taking integration over M on both sides of (28), we obtain

$$\int_{M} (2-S)b^2 \overline{S} \le \int_{M} \frac{1}{8} S^2 (2-S).$$
⁽²⁹⁾

It follows from (27) and (29) that

$$\int_M (2-S)b^2\overline{S} = \int_M \frac{1}{8}S^2(2-S),$$

which implies that the equalities in (27) and (28) hold. Therefore

$$\lambda^3 = 0, \quad b\lambda_1^3 = -\frac{1}{8}S_2, \quad b\lambda_2^3 = \frac{1}{8}S_1, \quad \overline{S} = 2b^2.$$

This together with the fact that $S = \overline{S} + 2b^2$ yields

$$b^2 = \frac{1}{4}S, \quad \overline{S} = \frac{1}{2}S, \quad \lambda_1^3 = -\frac{1}{4\sqrt{S}}S_2, \quad \lambda_2^3 = \frac{1}{4\sqrt{S}}S_1.$$

352

Therefore we deduce that there must exist a β such that $\lambda^{\beta} \neq 0$ for $\beta \geq 4$. We choose a unit normal vector field $\overline{e}_4 = e/|e|$ where $e = \sum_{\gamma=4}^n h_{11}^{\gamma} e_{\gamma}$. Similarly to the proof of Proposition 1, we can choose a local orthonormal frame filed under which the shape operators have the following forms:

$$L^{3} = \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}, \quad L^{4} = \begin{pmatrix} \lambda^{4} & 0 \\ 0 & -\lambda^{4} \end{pmatrix}, \quad L^{\beta} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad 5 \le \beta \le n.$$

Furthermore

$$b^2 = (\lambda^4)^2 = S/4, \quad \lambda_1^3 = -\frac{1}{4\sqrt{S}}S_2, \quad \lambda_2^3 = \frac{1}{4\sqrt{S}}S_1.$$
 (30)

We take covariant differential of h_{11}^4 which is defined globally on M and have

$$h_{11k}^4\omega_k = dh_{11}^4 + 2h_{12}^4\omega_{21} + \sum_{\alpha=3}^n h_{11}^\alpha\omega_{\alpha4} = dh_{11}^4 = \frac{1}{4\sqrt{S}}S_k\omega_k,$$

which imply

$$\lambda_1^4 = \lambda_2^3 = \frac{1}{4\sqrt{S}}S_1, \quad \lambda_2^4 = -\lambda_1^3 = \frac{1}{4\sqrt{S}}S_2. \tag{31}$$

This completes the proof of Theorem 1. \Box

Let M be a surface immersed in the unit sphere S^n with parallel mean curvature vector ξ . Then the mean curvature $H = |\xi|$. We choose $e_3 = \xi/H$, and the choice of e_4, e_5 are similar to the proof of Theorem 1. Then we can establish the following theorem.

Theorem 2 Let M be a closed surface immersed in the unit sphere S^n with parallel mean curvature vector and nonflat normal bundle. If the Gauss curvature of M is positive, then we can choose a local orthonormal frame filed $\{e_{\alpha}\}_{\alpha=3}^{n}$ normal to M such that the shape operator L^{α} with respect to e_{α} has the following forms:

$$L^{3} = \begin{pmatrix} H & 0 \\ 0 & H \end{pmatrix}, \quad L^{4} = \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}, \quad L^{5} = \begin{pmatrix} b & 0 \\ 0 & -b \end{pmatrix}, \quad L^{\beta} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

where $6 \leq \beta \leq n$. Furthermore

$$b = \frac{\sqrt{S - 2H^2}}{2}, \ \lambda_1^4 = -\lambda_2^5 = -\frac{1}{4\sqrt{S - 2H^2}}S_2, \ \lambda_2^4 = \lambda_1^5 = \frac{1}{4\sqrt{S - 2H^2}}S_1.$$

4. The application of the frame field

The orthonormal frame field introduced by Theorem 1 is very simple and convenient to solve some problems on surfaces. As an application, we give the following Proposition.

Proposition 2 Let M be a closed surface which is minimally immersed in S^n with positive Gauss curvature. If the normal scalar curvature K_N is non-zero constant, then M is a generalized Veronese surface.

Proof It follows from (6) and Theorem 1 that

$$R_{3412} = -\frac{1}{2}S, \quad R_{3\beta12} = R_{4\beta12} = R_{\beta\gamma12} = 0.$$
 (32)

Hence we have $K_N = \sum_{\alpha,\beta} \sum_{i,j} R^2_{\alpha\beta ij} = S^2$. Similarly to the proof of [5], we conclude that M is a generalized Veronese surface. \Box

On the other hand, using the orthonormal frame field introduced by Theorem 1, we can simply give the complete classification of the minimal surface with parallel second fundamental form and non-negative Gauss curvature.

Proposition 3 Let M be a closed minimal surface immersed in S^n with non-negative Gauss curvature. If M has parallel second fundamental form, then M is totally geodesic, or Veronese surface, or a Clifford minimal surface.

Proof If the normal bundle of M is flat, since Gauss curvature of M is nonnegative, we have that

$$\frac{1}{2}\Delta S = \sum_{\alpha,i,j,k} (h_{ijk}^{\alpha})^2 + S(2-S) \ge 0.$$
(33)

Taking integration over M on both sides of (33), we have that S = 0 and M is totally geodesic, or S = 2 and M is a Clifford minimal surface. Otherwise, we choose the frame fields introduced by Theorem 1. Then (10) becomes

$$\frac{1}{2}\Delta S = \sum_{\alpha,i,j,k} (h_{ijk}^{\alpha})^2 + \frac{1}{2}S(3S-4).$$
(34)

Since the second fundamental form is parallel, we have that S is constant and $h_{ijk}^{\alpha} = 0, \forall i, j, k, \alpha$. Hence from (34) we have that S = 4/3 and M is a Veronese surface. \Box

References

- E. CALABI. Minimal immersions of surfaces in Euclidean spheres. J. Differential Geometry, 1967, 1: 111– 125.
- [2] S. S. CHERN. On the Minimal Immersions of the Two-Sphere in a Space of Constant Curvature. Princeton Univ. Press, Princeton, N.J., 1970.
- K. KENMOTSU. On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature (I). Tôhoku Math. J. (2), 1973, 25: 469–479.
- K. KENMOTSU. On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature (II). Tôhoku Math. J. (2), 1975, 27(3): 291–301.
- [5] T. ITOH. Minimal surfaces in a Riemannian manifold of constant curvature. Kodai Math. Sem. Rep., 1973, 25: 202–214.
- [6] Xingxiao LI, Anmin LI. Explicit representations of minimal immersions of 2-spheres into S^{2m}. Acta Math. Sinica (N.S.), 1997, 13(2): 175–186.
- [7] M. KOZLOWSKI, U. SIMON. Minimal immersions of 2-manifolds into spheres. Math. Z., 1984, 186(3): 377–382.
- [8] R. L. BRYANT. Minimal surfaces of constant curvature in Sⁿ. Trans. Amer. Math. Soc., 1985, 290(1): 259–271.
- [9] U. SIMON. Eigenvalues of the Laplacian and Minimal Immersions into Spheres. Pitman, Boston, MA, 1985.
- [10] F. DILLEN. Minimal immersions of surfaces into spheres. Arch. Math. (Basel), 1987, 49(1): 94-96.
- T. OKAYASU. Minimal immersions of curvature pinched 2-manifolds into spheres. Kodai Math. J., 1987, 10(1): 116–126.
- [12] J. BOLTON, L. M. WOODWARD. On the Simon conjecture for minimal immersions with S¹-symmetry. Math. Z., 1988, 200(1): 111–121.
- [13] K. SAKAMOTO. On the curvature of minimal 2-spheres in spheres. Math. Z., 1998, 228(4): 605-627.
- [14] W. H. MEEKS. Proofs of some classical theorems in minimal surface theory. Indiana Univ. Math. J., 2005, 54(4): 1031–1045.