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Minimal Surfaces in a Unit Sphere
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School of Mathematical Science, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Let M be a closed surface with positive Gauss curvature minimally immersed in
a standard Euclidean unit sphere S™. In this paper, we choose a local orthonormal frame
field on M, under which the shape operators have very convenient form. We also give some
applications of this kind of frame field.
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1. Introduction

Let M be a minimal immersion of surface into a standard Euclidean unit sphere S™. We
denote by K and K the Gauss curvature and the normal scalar curvature, respectively.

In [1], Calabi showed that if M is a sphere with constant Gauss curvature K and the
immersion is full, then the set of possible values of K is discrete, namely K = K (s) = 2/(s(s+1))
and the immersion is congruent to the s-th standard minimal immersion. It is well known that
the choosing of the frame field plays an important role in studying the surface. In [2], Chern
chose a local orthonormal frame field on the two-sphere which is minimally immersed in S™.
Using the frame field, Chern obtained an equality concerning the local invariants and showed
that if the Gauss curvature K is constant, then K = K(s). Later, Kenmotsu [3, 4] also obtained
an equality for the compact minimal surface immersed in S™ by choosing the frame field, which
generalized Chern’s result. In [5], Itoh chose a local orthonormal frame field on the compact
surface M which is minimally immersed in S™ and proved that if the normal scalar curvature
K is non-zero constant and the square of the second curvature ko is less than Ky /4, then M
is a generalized Veronese surface, where ks is the square of the second curvature. Later, there
are some important results concerning minimal surfaces such as [6-14].

In this paper, we choose a local orthonormal frame field on the closed surface with positive
Gauss curvature which is minimally immersed in a unit sphere, which is simple and convenient

to solve some problems of surfaces. We also give some applications of this kind of frame field.

2. Preliminaries
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Let M be a closed minimal surface immersed in the unit sphere S™. From now on, we

identify M with its immersed image, agree on the following index ranges:
1§17]7k7§27 3§a76777"'§n; 1§A,B,C,"'§TL,

and use the Einstein convention.

Take a local orthonormal frame field {e4}%_, in T'S™ along M such that {e;}?_; lies in the
tangent bundle T'(M) and {eqs }7—3 in the normal bundle N (M). Let{w4}";_; be the dual coframe
field of {ea}’i_,. Denote by (wap)’s p—, the Riemannian connection form matrix associated with
{wa}i—,. Then (wi;)7;—; defines a Riemannian connection in T'(M) and (wap) 3_5 defines a
normal connection in N(M). It follows that the second fundamental form of M can be expressed
as

o= Zwi®wm Req = Zh%m@u}j ® eq,
i ij,
where
Wiq = Zh%wj; hiy =h%, i,5=1,2; a=3,...,n.
j

And the mean curvature vector field of M is expressed as

n

1 « «
£= B Z(hll + h3s)eaq.

a=3

Then M is minimal if and only if £ = 0.

Let L% = (h%)gxz. We denote the square of the norm of the second fundamental form S
and the normal scalar curvature Ky by

S=>3(n%)? En=Y_ (Ragij)*.
o i, a,B

The Riemannian curvature tensor { R;jx; } and the normal curvature tensor { Rogr } are expressed
as

Rijr = Girdjs — 6udjn + > _(hSihS — hihSy),  Rapr = Y (hfy by, — Bt bl ).

m

The first and the second order covariant derivatives of {hg;}, say{h{;,} and {h{;,} are defined

respectively as follows.

Vhe = hwr = dh + > (h jwmi + hiwmi) + Y hiiwga,
k m I6]

Vhe =Y h&wr = dhS + > (h1wmi + ho@mg + hnwmk) + > i wpa.
l m B
Then we have the following Codazzi equation
h%k - ?kj =0, (1)
and the Ricci’s formula

WS = he = > (he; Rpirt + h$ Rpjr) + Y 1y Rgan. (2)
p B
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The Laplacian of the second fundamental form {hg;} is defined by Ahg; =3 A2 . Then it
follows from (1) and (2) that
ARG =i + > (0 Romim + Wi Roigm) + Y 1, Rsajm.- (3)
m p,m

m,d

3. The choosing of the frame field

It is well known that the choice of the frame field plays a very important role in the study of
submanifolds. In this section, we would like to choose an orthonormal frame field on the closed

surfaces minimally immersed in a unit sphere. Firstly, we give the following Proposition.

Proposition 1 Suppose that M is a surface immersed in the unit sphere S™. Then there exits
a local orthonormal frame filed {e,}?_5 normal to M such that the shape operator L® with

respect to e, has the following forms.

A2 b Moo
3 = . LP = <B<
) S
Proof Let {ej,...,e,} be an orthonormal frame field on M so that e, eq are tangent to M
and es, ..., e, are normal to M. If the normal bundle of M is flat, then the shape operator L®

with respect to e, can be diagonalized simultaneously. Otherwise, at least one of th (8>3)is
not zero identically. We choose a unit normal vector field €3 = e/|e| where e = 3754 hes, and

take an orthogonal transformation in the normal space N (M):

§3 hislel™  hisle|™h oo hiyle| ™! €3
€4 . 43 Q44 v G4n €4
gn an3 Gn4 T Gnn €n

Let L% = (ﬁ%) be the shape operator with respect to €, 3 < a < n. It follows that

s = Walel ™ Bl + asshly + -+ ansh,
hi; = hiolel™'hd; + asah; + -+ - + anahl}, (*)

h;lj = hly 6|_1E?j + an4ﬁ‘i1j 44 annhz

Put i =1 and j =2 in (). Then it is easy to check that (x) has unique solution
bi=h3, = |e| £0, E%:O, 4<pB<n.

Therefore {e1, e2;€5}75_5 is the desired local orthonormal frame field. [J
When M is a surface which is minimally immersed in the unit sphere S™, we take the
ortonormal frame field on the surface M according to Proposition 1 such that the shape operators
have the form (4) with
A+ v =0, 3<a<n. (5)

Denote

S = | > (h)r=2 (Z)(Aﬁ)Q, S =Y _(h)? =2(X%) + 2b%.

8>3 (4,9)
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Then
S=5+83=2 Y (\)?+2()%)+2v”.
(8>3)
According to (5) we denote
A= hiy; = —hgy, )\% = h(lllij = _hgm‘j

foralli,j=1,2and a=3,...,n
The Riemannian curvature tensor, the normal curvature tensor and the first covariant dif-

ferentials of the normal curvature tensor become

Riji = (1= 8/2) (6651 — 6udjn), Rapiz = —2bA\°, Ryp12 =0, (6)
Ragro ke = 2(\hiyy, — Mhiy, —bA)),  Rpyion = 200 hly, — NVhY,,), (7)

where 4 < 3,7 < n. Next we will study the covariant differentials of S. It is not difficult to
check that

Sk =2 hEhS, =4 NN+ 4NN + bhiy,),

' Yg

B=4
for all £k =1,2. It follows that
1 " 1 i
15 = D NI 4 XA+ bAS, 152 = DTN + A3 — bAS. (8)
B=4 B=4

It follows from Ricci formula (2) that

A?2_)\§1:_(2_S_§)ba )‘§1+)\22—( _S))‘Ba
B B 2\\B 3\8 (9)
NN, = 2-85—20)0°, N, — D = —2bX3\°,

where 3 > 4. Using the frame field introduced by Proposition 1 and the moving frame method,

we obtain the following Lemma.

Lemma 1 Let M be a minimal surface immersed in a unit sphere S™. Then

%Ag = 3 (W) + (2 - 9)S — 45, (10)

ijk
a,i,5,k

Proof It follows from (3) that
S OREARG = > (B hS Romim + hghG, Roim) + Y & Reagjm.
i,7,Q i,3,p,m, o i,7,m,a,8

According to (6) we have

Z WAL = (2—8) Y (h$)? + Y 4bA Rygip = (2 — §)S — 4b°S. (11)

ig.e ij,a B=4
It follows that
1 a « @ g
A8 = S (hgy) +Zh ALY =" (h$)? + (2 S)S — 4b°5.
0,5,k i,J,0 i,j,k,o

We complete the proof of Lemma 1. O
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We assume that the normal bundle of M immersed in S™ is nonflat. In this case we have
that b # 0. We can establish the following theorem.

Theorem 1 Let M be a closed surface minimally immersed in S™(1) with nonflat normal
bundle. If the Gauss curvature of M is positive, then we can choose a local orthonormal frame

filed {e }"_3 normal to M such that the shape operator L™ with respect to e, has the following

forms:
0 b b 0 0 0
3 — 4_ B — < B <n.
L <b o>’ L <o —b>’ L <o 0>’ 5=pzn
Furthermore
NE 1 1
b=~ M=—XN=——26 MN=X\=—"43,.
27 THT T s e s

Proof Let M be a surface minimally immersed in S™. We take the orthonormal frame field
{e1,ea,e3,...,en} on M according to Proposition 1 such that the shape operators L* with

respect to e, have the form

A3 b N 0
3 . B _
L_<b _/\3>, L _<O _)\ﬁ>, 4 < B <n. (12)

It follows from (3) and the simple computation that

Z (R AR )k = Z(Ah?j)2 + Z (hisk i Rt + hijihipe Rpiji)+

0,5,k 4,7, 4,3,k Lp,a

> (hihgi Rtk + Bhi, Roiji k) +

i,5,k,l,p,

> hGhiuRsa+ Y hSuhdi Roagi k- (13)

i,k ,8 AR
Next we calculate the right hand side of equation (13) one by one. Using (3) and (6), we get
AR = (2—8—22)A%, ALY, = 20A3N\°,
ARy = (2—S—=28)b, AR}, =(2-5)A\%,
where 3 > 4. It follows that
D (ARG =2(AR3)7 42 (AR)? + (ART,)? +2) (Ahgy)?

%, B=4 B=4
=(2 - 5)28 +2(5S — 8)b*S. (14)

Making use of (6), we get

Z (hiskPpin Bpujt + hijehipe Bpiji) + Z h?jkh?ithsaﬂ

i,7,k,l,p,« i,5,k,l,c,0
=(2-8) > (hg)?+ ) 8NN — XA Rz
i,j,k,0 B=4
=(2-9) D (hg)? +16b Y (ANA) — AINAT). (15)

.5,k B=4
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By (8), we immediately have
- 1 - 1
DN = 281 = NAT b, D NN = 28, = AAS oA
B=4 B=4
Substituting (16) into (15), we get
> (hhgaRogt + hSehi Ryist) + > b5 Roagt
1,5,k,0,p, i,5,k, 0,8
=(2-9) Y (hy)? + 46>y (h)? + 4b(A] Sz — A3S1).
i,5,k,a 0,5,k
It follows from the first formula of (7) that

1
Z (h”kh;mel]l kT hljkhlp pijl, k Z hz; 1gksk - _§|VS|2

i,5,k,l,p, 1,5,k

We calculate in detail the last term of equation (13), it is not hard to see that

> ki Rsajik =Y 2NN +bA] = AAT) Raqyio1+
i,j,k,l,a,zs y=4

D 2(=NA] + AT + NPA]) Rsprz0+

2

M=t

(—2\ NI Ryg19.1 + 2N Ry grasa).
B,y=4
By (7), we have
Ryyion = 2(=bA] + X307 = AA3),  Rypizg = 200005 — APA)),
Rayi20 = 2(=bA] = MXT + X7X3),  Ropian = 20090] = MA)).

Substituting (20) into (19) and using (16), we have

1
> hhfi Rsajik = ——s D (hg)? + 467 Y (h)? + 4b(A S, — )\381)+Z|VS|2.

i,7,k,la,8 1,7,k 7,k
Substituting (14), (17),(18) and (21) into (13) we get
> (hgp AR, =(2 — —S) D> (hg)? + (2 S)2S +2(55 — 8)b*S+

i,5,k,a i,5,k,a
1
867 " (h)? + 8b(ATSy — A3Sy) — Z'VS|2'
N
It follows from (10) that

1 _

ST (hgp)? = FAS (2 9)S +4b°S.
a,i, g,k

Substituting (23) into (22) and from SAS = 1AS? — |VS|?, we have

S (h3 AR ;( _5)S2 +4(5 — 2)b2T + AS — gA52+

0,5,k

351

(17)

(19)

(20)

(21)

(22)
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1
862 > " (hijy)? + 8b(\]S2 — A3Sy) + 5|VS|2.
1,5,k

Since

1
867> " (hi)? + 8b(ATSy — A3Sy) + 5|vs|2
N

1
= 32(bA3)% + 32(bA3)? 4 8b(AI Sy — A3Sy) + 5(Sf + 52)
= 2(4bX\3 + %SQ)Q + 2(4bA3 — %51)2,

substituting (25) into (24) gives

SO (he AR ;( S)S2+4(S—2)b2§+AS—gAS2+

0.k,
2(4bX7 + 352)2 +2(4bX3 — %sl)%
Since M is compact, taking integration over M on both sides of (26), we have
0= /M {332(2 — ) +4(S — 2)b%S + 2(4b)3 + 332)2 +2(4bA3 — %Sl)z},
that is

_ 1 1 1 1 1
_ 2G _ o209 2 3, a2 b 3 Loy
/ (2 — 5)b%S / {85 (2= 5) + 5 (40X + 552)° + 5 (463 — 5.50) }

z/ 1522 8),
M S

where the equality holds if and only if bAT = —%52, bA3 = %Sl.
On the other hand, we have

—_

— 1, |
25 = <2 2 _ 1eo2
V5 < 5855 < £(S3 +5)° = £5%,

where the equality holds if and only if
X =0, S=5;=2b

(24)

(28)

Since the Gauss curvature of M is positive, we have 2 — S > 0. Taking integration over M on

both sides of (28), we obtain

/ (2 - 9)%S < / l52(2 - 9).
M m 8
It follows from (27) and (29) that

/M(2 — S)b*S = /M %SQQ - 9),

which implies that the equalities in (27) and (28) hold. Therefore
1 1 —
N =0, b= —gsg, bAS = gSl, S = 2b°.
This together with the fact that S = S + 2b? yields

1 —~ 1
b2=15, S=25 XN=——"

(29)



Minimal surfaces in a unit sphere 353

Therefore we deduce that there must exist a 3 such that A # 0 for 8 > 4. We choose a unit
normal vector field €& = e/|e| where e = >"_, hi,e,. Similarly to the proof of Proposition 1, we

can choose a local orthonormal frame filed under which the shape operators have the following

forms: A
0 b A 0 0 0
) N GO R (R NP
Furthermore
1 1
V=02 =8/4, N =—-——=8, IN=—=5. (30)

13577 157"

We take covariant differential of h$; which is defined globally on M and have

- 1
hiwe = dhly + 2hhwe1 + > B waa = dh; = ms’“”’“

a=3
which imply

1 1
=85, M=-X=—"
457 2 VWS

This completes the proof of Theorem 1. [J

A= A3 Ss. (31)

Let M be a surface immersed in the unit sphere S™ with parallel mean curvature vector &.
Then the mean curvature H = |£|. We choose e3 = £/H, and the choice of ey, e5 are similar to

the proof of Theorem 1. Then we can establish the following theorem.

Theorem 2 Let M be a closed surface immersed in the unit sphere S™ with paralle] mean
curvature vector and nonflat normal bundle. If the Gauss curvature of M is positive, then we
can choose a local orthonormal frame filed {es}7_4 normal to M such that the shape operator

L® with respect to e, has the following forms:

H 0 0 b b0 00
3 _ 4 _ 5 _ B _
pe(v ) m=G0) #=G5) (o)

where 6 < 8 < n. Furthermore

VS —2H? 1
bzsi, M =A==, As =2 =
2 4y/S —2H?

1
WS "
4. The application of the frame field

The orthonormal frame field introduced by Theorem 1 is very simple and convenient to

solve some problems on surfaces. As an application, we give the following Proposition.

Proposition 2 Let M be a closed surface which is minimally immersed in S™ with positive
Gauss curvature. If the normal scalar curvature K y is non-zero constant, then M is a generalized

Veronese surface.

Proof It follows from (6) and Theorem 1 that

1
Rag12 = —55, R3p12 = Rapi2 = Rgy12 = 0. (32)
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Hence we have Kn =2, 53, R, = S*. Similarly to the proof of [5], we conclude that M

is a generalized Veronese surface. [
On the other hand, using the orthonormal frame field introduced by Theorem 1, we can
simply give the complete classification of the minimal surface with parallel second fundamental

form and non-negative Gauss curvature.

Proposition 3 Let M be a closed minimal surface immersed in S™ with non-negative Gauss
curvature. If M has parallel second fundamental form, then M is totally geodesic, or Veronese

surface, or a Clifford minimal surface.

Proof If the normal bundle of M is flat, since Gauss curvature of M is nonnegative, we have
that )
FAS = > (W) +S2-8) =0 (33)

a,i,j,k
Taking integration over M on both sides of (33), we have that S = 0 and M is totally geodesic,
or S =2 and M is a Clifford minimal surface. Otherwise, we choose the frame fields introduced
by Theorem 1. Then (10) becomes

%Ag =3 e+ %5(35—4). (34)

a,i,j,k
Since the second fundamental form is parallel, we have that S is constant and h%k =0, V4, j,k, a.
Hence from (34) we have that S =4/3 and M is a Veronese surface. [J
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