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Zhonghua HOU∗, Dan YANG

School of Mathematical Science, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Let M be a closed surface with positive Gauss curvature minimally immersed in

a standard Euclidean unit sphere S
n. In this paper, we choose a local orthonormal frame

field on M , under which the shape operators have very convenient form. We also give some

applications of this kind of frame field.
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1. Introduction

Let M be a minimal immersion of surface into a standard Euclidean unit sphere Sn. We

denote by K and KN the Gauss curvature and the normal scalar curvature, respectively.

In [1], Calabi showed that if M is a sphere with constant Gauss curvature K and the

immersion is full, then the set of possible values of K is discrete, namely K = K(s) = 2/(s(s+1))

and the immersion is congruent to the s-th standard minimal immersion. It is well known that

the choosing of the frame field plays an important role in studying the surface. In [2], Chern

chose a local orthonormal frame field on the two-sphere which is minimally immersed in Sn.

Using the frame field, Chern obtained an equality concerning the local invariants and showed

that if the Gauss curvature K is constant, then K = K(s). Later, Kenmotsu [3, 4] also obtained

an equality for the compact minimal surface immersed in Sn by choosing the frame field, which

generalized Chern’s result. In [5], Itoh chose a local orthonormal frame field on the compact

surface M which is minimally immersed in Sn and proved that if the normal scalar curvature

KN is non-zero constant and the square of the second curvature k2 is less than KN/4, then M

is a generalized Veronese surface, where k2 is the square of the second curvature. Later, there

are some important results concerning minimal surfaces such as [6–14].

In this paper, we choose a local orthonormal frame field on the closed surface with positive

Gauss curvature which is minimally immersed in a unit sphere, which is simple and convenient

to solve some problems of surfaces. We also give some applications of this kind of frame field.

2. Preliminaries
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Let M be a closed minimal surface immersed in the unit sphere Sn. From now on, we

identify M with its immersed image, agree on the following index ranges:

1 ≤ i, j, k, · · · ≤ 2; 3 ≤ α, β, γ, · · · ≤ n; 1 ≤ A, B, C, · · · ≤ n,

and use the Einstein convention.

Take a local orthonormal frame field {eA}n
A=1 in TSn along M such that {ei}2

i=1 lies in the

tangent bundle T (M) and {eα}n
α=3 in the normal bundle N(M). Let{ωA}n

A=1 be the dual coframe

field of {eA}n
A=1. Denote by (ωAB)n

A,B=1 the Riemannian connection form matrix associated with

{ωA}n
A=1. Then (ωij)

2
i,j=1 defines a Riemannian connection in T (M) and (ωαβ)n

α,β=3 defines a

normal connection in N(M). It follows that the second fundamental form of M can be expressed

as

σ =
∑

i,α

ωi ⊗ ωiα ⊗ eα =
∑

i,j,α

hα
ijωi ⊗ ωj ⊗ eα,

where

ωiα =
∑

j

hα
ijωj ; hα

ij = hα
ji, i, j = 1, 2; α = 3, . . . , n.

And the mean curvature vector field of M is expressed as

ξ =
1

2

n∑

α=3

(hα
11 + hα

22)eα.

Then M is minimal if and only if ξ = 0.

Let Lα = (hα
ij)2×2. We denote the square of the norm of the second fundamental form S

and the normal scalar curvature KN by

S =
∑

α

∑

i,j

(hα
ij)

2, KN =
∑

α,β

∑

i,j

(Rαβij)
2.

The Riemannian curvature tensor {Rijkl} and the normal curvature tensor {Rαβkl} are expressed

as

Rijkl = δikδjl − δilδjk +
∑

α

(hα
ikhα

jl − hα
ilh

α
jk), Rαβkl =

∑

m

(hα
kmhβ

ml − hα
lmhβ

mk).

The first and the second order covariant derivatives of {hα
ij}, say{hα

ijk} and {hα
ijkl} are defined

respectively as follows.

∇hα
ij =

∑

k

hα
ijkωk = dhα

ij +
∑

m

(hα
mjωmi + hα

imωmj) +
∑

β

hβ
ijωβα,

∇hα
ijk =

∑

l

hα
ijklωl = dhα

ijk +
∑

m

(hα
mjkωmi + hα

imkωmj + hα
ijmωmk) +

∑

β

hβ
ijkωβα.

Then we have the following Codazzi equation

hα
ijk − hα

ikj = 0, (1)

and the Ricci’s formula

hα
ijkl − hα

ijlk =
∑

p

(hα
pjRpikl + hα

ipRpjkl) +
∑

β

hβ
ijRβαkl. (2)
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The Laplacian of the second fundamental form {hα
ij} is defined by ∆hα

ij =
∑

m hα
ijmm. Then it

follows from (1) and (2) that

∆hα
ij =

∑

m

hα
mmij +

∑

p,m

(hα
piRpmjm + hα

mpRpijm) +
∑

m,δ

hδ
miRδαjm. (3)

3. The choosing of the frame field

It is well known that the choice of the frame field plays a very important role in the study of

submanifolds. In this section, we would like to choose an orthonormal frame field on the closed

surfaces minimally immersed in a unit sphere. Firstly, we give the following Proposition.

Proposition 1 Suppose that M is a surface immersed in the unit sphere Sn. Then there exits

a local orthonormal frame filed {eα}n
α=3 normal to M such that the shape operator Lα with

respect to eα has the following forms.

L3 =

(
λ3 b

b ν3

)
; Lβ =

(
λβ 0

0 νβ

)
, 4 ≤ β ≤ n. (4)

Proof Let {e1, . . . , en} be an orthonormal frame field on M so that e1, e2 are tangent to M

and e3, . . . , en are normal to M . If the normal bundle of M is flat, then the shape operator Lα

with respect to eα can be diagonalized simultaneously. Otherwise, at least one of hβ
12 (β ≥ 3) is

not zero identically. We choose a unit normal vector field ẽ3 = e/|e| where e =
∑n

β=3 hβ
12eβ , and

take an orthogonal transformation in the normal space Nx(M):



ẽ3

ẽ4
...

ẽn


 =




h3
12|e|−1 h4

12|e|−1 · · · hn
12|e|−1

a43 a44 · · · a4n

...
...

...

an3 an4 · · · ann







e3

e4
...

en


 .

Let L̃α = (h̃α
ij) be the shape operator with respect to ẽα, 3 ≤ α ≤ n. It follows that





h3
ij = h3

12|e|−1h̃3
ij + a43h̃

4
ij + · · · + an3h̃

n
ij ,

h4
ij = h4

12|e|−1h̃3
ij + a44h̃

4
ij + · · · + an4h̃

n
ij ,

· · · · · · · · ·
hn

ij = hn
12|e|−1h̃3

ij + an4h̃
4
ij + · · · + annh̃n

ij .

(*)

Put i = 1 and j = 2 in (∗). Then it is easy to check that (∗) has unique solution

b := h̃3
12 = |e| 6= 0, h̃β

12 = 0, 4 ≤ β ≤ n.

Therefore {e1, e2; ẽβ}n
β=3 is the desired local orthonormal frame field. �

When M is a surface which is minimally immersed in the unit sphere Sn, we take the

ortonormal frame field on the surface M according to Proposition 1 such that the shape operators

have the form (4) with

λα + να = 0, 3 ≤ α ≤ n. (5)

Denote

S :=
∑

(i,j,β>3)

(hβ
ij)

2 = 2
∑

(β>3)

(λβ)2, S3 :=
∑

(i,j)

(h3
ij)

2 = 2(λ3)2 + 2b2.
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Then

S = S + S3 = 2
∑

(β>3)

(λβ)2 + 2(λ3)2 + 2b2.

According to (5) we denote

λα
i := hα

11i = −hα
22i, λα

ij := hα
11ij = −hα

22ij

for all i, j = 1, 2 and α = 3, . . . , n.

The Riemannian curvature tensor, the normal curvature tensor and the first covariant dif-

ferentials of the normal curvature tensor become

Rijkl = (1 − S/2) (δikδjl − δilδjk), R3β12 = −2bλβ, Rγβ12 = 0, (6)

R3β12,k = 2(λ3hβ
12k − λβh3

12k − bλβ
k ), Rβγ12,k = 2(λβhγ

12k − λγhβ
12k), (7)

where 4 ≤ β, γ ≤ n. Next we will study the covariant differentials of S. It is not difficult to

check that

Sk = 2
∑

hα
ijh

α
ijk = 4

n∑

β=4

λβλβ
k + 4(λ3λ3

k + bh3
12k),

for all k = 1, 2. It follows that

1

4
S1 =

n∑

β=4

λβλβ
1 + λ3λ3

1 + bλ3
2,

1

4
S2 =

n∑

β=4

λβλβ
2 + λ3λ3

2 − bλ3
1. (8)

It follows from Ricci formula (2) that

λ3
12 − λ3

21 = −(2 − S − S)b, λ3
11 + λ3

22 = (2 − S)λ3,

λβ
11 + λβ

22 = (2 − S − 2b2)λβ , λβ
12 − λβ

21 = −2bλ3λβ ,
(9)

where β ≥ 4. Using the frame field introduced by Proposition 1 and the moving frame method,

we obtain the following Lemma.

Lemma 1 Let M be a minimal surface immersed in a unit sphere Sn. Then

1

2
∆S =

∑

α,i,j,k

(hα
ijk)2 + (2 − S)S − 4b2S. (10)

Proof It follows from (3) that
∑

i,j,α

hα
ij∆hα

ij =
∑

i,j,p,m,α

(hα
ijh

α
piRpmjm + hα

ijh
α
mpRpijm) +

∑

i,j,m,α,δ

hα
ijh

δ
miRδαjm.

According to (6) we have

∑

i,j,α

hα
ij∆hα

ij = (2 − S)
∑

i,j,α

(hα
ij)

2 +

n∑

β=4

4bλβR3β12 = (2 − S)S − 4b2S. (11)

It follows that

1

2
∆S =

∑

i,j,k,α

(hα
ijk)2 +

∑

i,j,α

hα
ij∆hα

ij =
∑

i,j,k,α

(hα
ijk)2 + (2 − S)S − 4b2S.

We complete the proof of Lemma 1. �
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We assume that the normal bundle of M immersed in Sn is nonflat. In this case we have

that b 6= 0. We can establish the following theorem.

Theorem 1 Let M be a closed surface minimally immersed in Sn(1) with nonflat normal

bundle. If the Gauss curvature of M is positive, then we can choose a local orthonormal frame

filed {eα}n
α=3 normal to M such that the shape operator Lα with respect to eα has the following

forms:

L3 =

(
0 b

b 0

)
, L4 =

(
b 0

0 −b

)
, Lβ =

(
0 0

0 0

)
, 5 ≤ β ≤ n.

Furthermore

b =

√
S

2
, λ3

1 = −λ4
2 = − 1

4
√

S
S2, λ3

2 = λ4
1 =

1

4
√

S
S1.

Proof Let M be a surface minimally immersed in Sn. We take the orthonormal frame field

{e1, e2, e3, . . . , en} on M according to Proposition 1 such that the shape operators Lα with

respect to eα have the form

L3 =

(
λ3 b

b −λ3

)
; Lβ =

(
λβ 0

0 −λβ

)
, 4 ≤ β ≤ n. (12)

It follows from (3) and the simple computation that
∑

i,j,k,α

(hα
ijk∆hα

ij)k =
∑

i,j,α

(∆hα
ij)

2 +
∑

i,j,k,l,p,α

(hα
ijkhα

pikRpljl + hα
ijkhα

lpkRpijl)+

∑

i,j,k,l,p,α

(hα
ijkhα

piRpljl,k + hα
ijkhα

lpRpijl,k)+

∑

i,j,k,l,α,δ

hα
ijkhδ

likRδαjl +
∑

i,j,k,l,α,δ

hα
ijkhδ

liRδαjl,k. (13)

Next we calculate the right hand side of equation (13) one by one. Using (3) and (6), we get

∆hβ
11 = (2 − S − 2b2)λβ , ∆hβ

12 = 2bλ3λβ ,

∆h3
12 = (2 − S − S)b, ∆h3

11 = (2 − S)λ3,

where β ≥ 4. It follows that

∑

i,j,α

(∆hα
ij)

2 =2(∆h3
11)

2 + 2

n∑

β=4

(∆hβ
11)

2 + (∆h3
12)

2 + 2

n∑

β=4

(∆hβ
12)

2

=(2 − S)2S + 2(5S − 8)b2S. (14)

Making use of (6), we get
∑

i,j,k,l,p,α

(hα
ijkhα

pikRpljl + hα
ijkhα

lpkRpijl) +
∑

i,j,k,l,α,δ

hα
ijkhδ

likRδαjl

= (2 − S)
∑

i,j,k,α

(hα
ijk)2 +

n∑

β=4

8(λ3
1λ

β
2 − λ3

2λ
β
1 )Rβ312

= (2 − S)
∑

i,j,k,α

(hα
ijk)2 + 16b

n∑

β=4

(λ3
1λ

βλβ
2 − λ3

2λ
βλβ

1 ). (15)
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By (8), we immediately have

n∑

β=4

λβλβ
1 =

1

4
S1 − λ3λ3

1 − bλ3
2,

n∑

β=4

λβλβ
2 =

1

4
S2 − λ3λ3

2 + bλ3
1. (16)

Substituting (16) into (15), we get
∑

i,j,k,l,p,α

(hα
ijkhα

pikRpljl + hα
ijkhα

lpkRpijl) +
∑

i,j,k,l,α,δ

hα
ijkhδ

likRδαjl

= (2 − S)
∑

i,j,k,α

(hα
ijk)2 + 4b2

∑

i,j,k

(h3
ijk)2 + 4b(λ3

1S2 − λ3
2S1). (17)

It follows from the first formula of (7) that

∑

i,j,k,l,p,α

(hα
ijkhα

piRpljl,k + hα
ijkhα

lpRpijl,k) = −
∑

i,j,k,α

hα
ijh

α
ijkSk = −1

2
|∇S|2. (18)

We calculate in detail the last term of equation (13), it is not hard to see that

∑

i,j,k,l,α,δ

hα
ijkhδ

liRδαjl,k =

n∑

γ=4

2(λγλ3
2 + bλγ

1 − λ3λγ
2 )R3γ12,1+

n∑

γ=4

2(−λγλ3
1 + bλγ

2 + λ3λγ
1 )R3γ12,2+

n∑

β,γ=4

(−2λγλβ
2Rγβ12,1 + 2λγλβ

1Rγβ12,2). (19)

By (7), we have

R3γ12,1 = 2(−bλγ
1 + λ3λγ

2 − λγλ3
2), Rγβ12,1 = 2(λγλβ

2 − λβλγ
2 ),

R3γ12,2 = 2(−bλγ
2 − λ3λγ

1 + λγλ3
1), Rγβ12,2 = 2(λβλγ

1 − λγλβ
1 ).

(20)

Substituting (20) into (19) and using (16), we have

∑

i,j,k,l,α,δ

hα
ijkhδ

liRδαjl,k = −1

2
S

∑

i,j,k,α

(hα
ijk)2 + 4b2

∑

i,j,k

(h3
ijk)2 + 4b(λ3

1S2 − λ3
2S1) +

1

4
|∇S|2. (21)

Substituting (14), (17),(18) and (21) into (13) we get

∑

i,j,k,α

(hα
ijk∆hα

ij)k =(2 − 3

2
S)

∑

i,j,k,α

(hα
ijk)2 + (2 − S)2S + 2(5S − 8)b2S+

8b2
∑

i,j,k

(h3
ijk)2 + 8b(λ3

1S2 − λ3
2S1) −

1

4
|∇S|2. (22)

It follows from (10) that

∑

α,i,j,k

(hα
ijk)2 =

1

2
∆S − (2 − S)S + 4b2S. (23)

Substituting (23) into (22) and from S∆S = 1
2∆S2 − |∇S|2, we have

∑

i,j,k,α

(hα
ijk∆hα

ij)k =
1

2
(2 − S)S2 + 4(S − 2)b2S + ∆S − 3

8
∆S2+
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8b2
∑

i,j,k

(h3
ijk)2 + 8b(λ3

1S2 − λ3
2S1) +

1

2
|∇S|2. (24)

Since

8b2
∑

i,j,k

(h3
ijk)2 + 8b(λ3

1S2 − λ3
2S1) +

1

2
|∇S|2

= 32(bλ3
1)

2 + 32(bλ3
2)

2 + 8b(λ3
1S2 − λ3

2S1) +
1

2
(S2

1 + S2
2)

= 2(4bλ3
1 +

1

2
S2)

2 + 2(4bλ3
2 −

1

2
S1)

2, (25)

substituting (25) into (24) gives

∑

i,j,k,α

(hα
ijk∆hα

ij)k =
1

2
(2 − S)S2 + 4(S − 2)b2S + ∆S − 3

8
∆S2+

2(4bλ3
1 +

1

2
S2)

2 + 2(4bλ3
2 −

1

2
S1)

2. (26)

Since M is compact, taking integration over M on both sides of (26), we have

0 =

∫

M

{1

2
S2(2 − S) + 4(S − 2)b2S + 2(4bλ3

1 +
1

2
S2)

2 + 2(4bλ3
2 −

1

2
S1)

2
}
,

that is ∫

M

(2 − S)b2S =

∫

M

{1

8
S2(2 − S) +

1

2
(4bλ3

1 +
1

2
S2)

2 +
1

2
(4bλ3

2 −
1

2
S1)

2
}

≥
∫

M

1

8
S2(2 − S), (27)

where the equality holds if and only if bλ3
1 = − 1

8S2, bλ3
2 = 1

8S1.

On the other hand, we have

b2S ≤ 1

2
S3S ≤ 1

8
(S3 + S)2 =

1

8
S2, (28)

where the equality holds if and only if

λ3 = 0, S = S3 = 2b2.

Since the Gauss curvature of M is positive, we have 2 − S > 0. Taking integration over M on

both sides of (28), we obtain
∫

M

(2 − S)b2S ≤
∫

M

1

8
S2(2 − S). (29)

It follows from (27) and (29) that
∫

M

(2 − S)b2S =

∫

M

1

8
S2(2 − S),

which implies that the equalities in (27) and (28) hold. Therefore

λ3 = 0, bλ3
1 = −1

8
S2, bλ3

2 =
1

8
S1, S = 2b2.

This together with the fact that S = S + 2b2 yields

b2 =
1

4
S, S =

1

2
S, λ3

1 = − 1

4
√

S
S2, λ3

2 =
1

4
√

S
S1.
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Therefore we deduce that there must exist a β such that λβ 6= 0 for β ≥ 4. We choose a unit

normal vector field e4 = e/|e| where e =
∑n

γ=4 hγ
11eγ . Similarly to the proof of Proposition 1, we

can choose a local orthonormal frame filed under which the shape operators have the following

forms:

L3 =

(
0 b

b 0

)
, L4 =

(
λ4 0

0 −λ4

)
, Lβ =

(
0 0

0 0

)
, 5 ≤ β ≤ n.

Furthermore

b2 = (λ4)2 = S/4, λ3
1 = − 1

4
√

S
S2, λ3

2 =
1

4
√

S
S1. (30)

We take covariant differential of h4
11 which is defined globally on M and have

h4
11kωk = dh4

11 + 2h4
12ω21 +

n∑

α=3

hα
11ωα4 = dh4

11 =
1

4
√

S
Skωk,

which imply

λ4
1 = λ3

2 =
1

4
√

S
S1, λ4

2 = −λ3
1 =

1

4
√

S
S2. (31)

This completes the proof of Theorem 1. �

Let M be a surface immersed in the unit sphere Sn with parallel mean curvature vector ξ.

Then the mean curvature H = |ξ|. We choose e3 = ξ/H , and the choice of e4, e5 are similar to

the proof of Theorem 1. Then we can establish the following theorem.

Theorem 2 Let M be a closed surface immersed in the unit sphere Sn with parallel mean

curvature vector and nonflat normal bundle. If the Gauss curvature of M is positive, then we

can choose a local orthonormal frame filed {eα}n
α=3 normal to M such that the shape operator

Lα with respect to eα has the following forms:

L3 =

(
H 0

0 H

)
, L4 =

(
0 b

b 0

)
, L5 =

(
b 0

0 −b

)
, Lβ =

(
0 0

0 0

)
,

where 6 ≤ β ≤ n. Furthermore

b =

√
S − 2H2

2
, λ4

1 = −λ5
2 = − 1

4
√

S − 2H2
S2, λ4

2 = λ5
1 =

1

4
√

S − 2H2
S1.

4. The application of the frame field

The orthonormal frame field introduced by Theorem 1 is very simple and convenient to

solve some problems on surfaces. As an application, we give the following Proposition.

Proposition 2 Let M be a closed surface which is minimally immersed in Sn with positive

Gauss curvature. If the normal scalar curvature KN is non-zero constant, then M is a generalized

Veronese surface.

Proof It follows from (6) and Theorem 1 that

R3412 = −1

2
S, R3β12 = R4β12 = Rβγ12 = 0. (32)
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Hence we have KN =
∑

α,β

∑
i,j R2

αβij = S2. Similarly to the proof of [5], we conclude that M

is a generalized Veronese surface. �

On the other hand, using the orthonormal frame field introduced by Theorem 1, we can

simply give the complete classification of the minimal surface with parallel second fundamental

form and non-negative Gauss curvature.

Proposition 3 Let M be a closed minimal surface immersed in Sn with non-negative Gauss

curvature. If M has parallel second fundamental form, then M is totally geodesic, or Veronese

surface, or a Clifford minimal surface.

Proof If the normal bundle of M is flat, since Gauss curvature of M is nonnegative, we have

that
1

2
∆S =

∑

α,i,j,k

(hα
ijk)2 + S(2 − S) ≥ 0. (33)

Taking integration over M on both sides of (33), we have that S = 0 and M is totally geodesic,

or S = 2 and M is a Clifford minimal surface. Otherwise, we choose the frame fields introduced

by Theorem 1. Then (10) becomes

1

2
∆S =

∑

α,i,j,k

(hα
ijk)2 +

1

2
S(3S − 4). (34)

Since the second fundamental form is parallel, we have that S is constant and hα
ijk = 0, ∀i, j, k, α.

Hence from (34) we have that S = 4/3 and M is a Veronese surface. �
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