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Abstract In this paper, the expressions of tail value of risk (TVaR) and exponential tail

value of risk (EVaR) for the total risk portfolio are given, which are splitted into two cases:

the bivariate case and the multivariate case according to the number of the insurances. Then

the risk contributions of the insurances portfolio and the credit portfolio are also obtained.

Further more, for clarifying the above results, a numerical example is given.
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1. Introduction

Recently, there are more awareness and relevant research on risk measurement and the

capital allocation. Specially insurance company should consider the loss of claim and default

loss of credit portfolio. So it is important to consolidate financial reserves and investments.

Measure of risk is a useful tool to evaluate the capital amount that has to be allocated to the risk

portfolio. Thus the choice of risk measure principle is the key point. Artzner et al. [1, 2] proposed

the definition of coherent risk measure, however the well-known VaR introduced by Morgan is

not coherent, and then the tail value of risk (TVaR), which is coherent, was introduced. When

applied to continuous random variables, the TVaR is the same as the conditional tail expectation.

While they are different when applied to the discrete random variables. Acerbi et al. [3], Acerbi

and Tasche [4] highlighted the difference between their definitions and properties.

In most literature on capital allocation, continuous situations are widely studied. Tasche [5]

firstly introduced the top down capital allocation principle. The capital which is allocated to each

risk is expressed in terms of the CTE of the aggregate risk to the portfolio. It has been used to

provide several closed formula and approximations of the CTE and the CTE-based allocations for

different multivariate continuous distributions. Panjer [6] solved the case of multivariate normal

distribution. Furman and Landsman [7] extended the distribution to a multivariate elliptical
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distribution and the case of multivariate Pareto distribution was considered by Chiragiev and

Landsman [8].

In most paper mentioned above, the dependence between different random variables is

constructed by the multivariate distribution. There is a copula that equals the joint distribution

function by Sklar’s theorem [9], and this tool is more effective and flexible to represent the

dependence between the random variables. Based on this method, more marginal distributions

situation can be introduced. Bargés [10] solved the case of the element distribution of portfolio,

which is exponential distribution and the dependence structure is described by Farlie-Gumbel-

Morgenstern copula. By using the TVaR as defined in Acerbi et al. [3] for its coherence property

and top down approach of the capital allocation in Acerbi and Tasche [4], he got closed form of

expressions for the TVaR and then the TVaR-based contribution of one risk over the aggregation

of all risks.

In the above mentioned papers, the risk portfolio is only constituted by insurances. While

in the present paper the total risk portfolio is constituted by the claim risk portfolio and the

default risk portfolio. Since the discrete default risk variable leads to that the distribution of

aggregate loss is discrete as well, we propose using the TVaR to obtain the aggregate risk for the

total risk portfolio and then the TVaR-based capital allocation to get the contribution of claim

risk portfolio and the default risk portfolio. In terms of loss distribution of credit portfolio, Fray

and McNeil [11] introduced the popular models that are used to deal with the dependent case

from the conceptual aspect. In this paper, we assume the elements of the credit portfolio are

independent and also independent of insurances claim loss.

The rest of the paper is organized as follows. In Section 2, we give the introduction of the

claim amount distribution and portfolio credit loss distribution. Risk of measure and TVaR-based

allocation will be introduced in Section 3. The expression of TVaR, EVaR for the aggregate risk

portfolio and TVaR-based allocation to the insurances portfolio and credit portfolio are given in

Section 4. For clarifying the results, a numerical example with the form of tables is given in the

last section.

2. The distributions of claim amount and credit portfolio default loss

In this section, we mainly present the related results based on two aspects: claim amount

distribution and credit portfolio default loss distribution. For the clarity, firstly we introduce the

assumptions in this paper.

2.1. The loss distribution for insurances portfolio

In this subsection, we introduce the cumulative density function (cdf) of total claim amount

S1 for the insurances portfolio. We consider the portfolio including N insurances.

S1 = X1 + X2 + · · · + XN ,

where the claim amount of the i-th insurance is denoted by Xi. If Xi (i = 1, 2, . . . , N) are
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independent, the distribution of S1 can be obtained by convolution operation. Actually we

usually suppose Xi obey normal distribution or gamma distribution in order to simplify the

convolution operation. That is because the distribution function of the sums of the sequence of

n independent random variables which obey N (µ, δ2) is N (nµ, nδ2). The gamma distribution

has the similar property. In this paper, we introduce an effective tool-copula to present the

dependent structure of Xi (i = 1, 2, . . . , N). The following contexts present the assumptions and

the result on the claim amount distribution.

(i) Suppose Xi (i = 1, 2, . . . , N) are exponentially random variables. The cdfs and proba-

bility density functions (pdf) of Xi (i = 1, 2, . . . , N) are respectively given by

FXi
(xi) = 1 − e−λixi , fXi

(xi) = λie
−λixi , i = 1, 2, . . . , N,

where we suppose the expectation satisfies 1 ≤ 1
λi

≤ M0 (i = 1, 2, . . . , N), i.e., δ = 1
M0

≤ λi ≤ 1.

(ii) A dependence structure for (X1, X2, . . . , XN ) based on the FGM copula was introduced

in Yeo and Valdez [12] and Gatfaoui [13, 14]. The multivariate FGM copula is defined by

C(u1, u2, . . . , uN) = u1u2 · · ·uN ×
(

1 +
N

∑

k=2

∑

1≤j1≤j2≤···jk≤N

θj1j2···jk
ūj1ūj2 · · · ūjk

)

,

where ū(·) = 1 − u(·) (For the details see Nelsen [9], p. 108). For ui ∈ [0, 1], i = 1, 2, . . . , N , and

the dependence parameter θj1j2···jk
∈ [−1, 1], at the same time we have here 2N − N − 1 copula

parameters.

(iii) Based on above assumptions, the pdf of S1 can be obtained (for the dails see Bargès

[10]) and it is

fS1
(s1) =h(s1; λ1, . . . , λN ) +

N
∑

k=2

∑

1≤j1≤j2≤···jk≤N

θj1j2···jk
×

(

k
∑

l=0

∑

(a1···ak)∈Al,k

(−1)lh(s1; 2
a1λj1 , 2

a2λj2 , . . . , 2
akλjk

, λik+1
, . . . , λiN

)
)

, (1)

where

h(s1; λ1, . . . , λN ) =
N

∑

i=1

(

N
∏

j=1,j 6=i

λj

λj − λi

)

λie
−λis1 ,

A0,k = {(1, 1, . . . , 1)1×k}, A1,k = {(1, 1, . . . , 0)1×k, . . . , (0, 1, . . . , 1)1×k},

A2,k = {(1, 1, . . . , 0, 0)1×k, . . . , (0, 0, 1, . . . , 1)1×k}, . . . , Ak,k = {(0, 0, . . . , 0)1×k}.

2.2. The loss distribution for insurances portfolio

When the company receives the premiums, it has to consider how to increase the value

of the asset by investing, such as buying the default corporate bond. Consider a portfolio of

M counterparties and fix some time period [T ,T + △T ] where △T is typically one year. For

1 < i < M , let the random variable Yi be the default indicator for obligor i at time T + 1,
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taking values {0, 1}. 1 represents default and 0 represents non-default. We introduce a sequence

of iid exposures Ei (i = 1, 2, . . . , M) and entire debt amount Di (i = 1, 2, . . . , M) such as the

face value of the discount bone. Under the condition that defaults of different obligator are

dependent, the bernoulli mixture models in R. Fray and A. McNeil [11] are widely used in the

practice, such as CreditRisk+, CreditMetrics and CreditPortfolioView. In our paper, assume that

the entire exposure is lost in the event of default, that is, Ei = 1 (i = 1, 2, . . . , M). Moreover, the

default probability and debt amount are identical for all obligators, equal to p and D, that is,

P (Yi = 1) = p (i = 1, 2, . . . , M). And the default probability of different obligator is independent.

Over the time period [T, T +1], the default loss is denoted by S2 with S2 =
∑M

i=1 DiEiYi. Based

on the above assumption, we have

S2 =

M
∑

i=1

DYi.

And the distribution of S2 is binomial distribution, i.e.,

P (S2 = Dt) = Ct
Mpt(1 − p)M−t.

If M is large and p is small, we can use Poisson distribution to estimate the distribution of S2,

that is

P (S2 = Dt) =
e−µµt

t!
,

where µ = Mp.

And now we turn to the total loss. We consider the aggregate loss S which is the sum of

total claim amount S1 and total default loss S2, that is, S = S1 + S2.

3. Risk of measure and TVaR-based allocation

Let (Ω, A, p) be probability space such that Ω is the sample space, A the σ-field of events,

and P the probability measure. S, which is measurable real-valued, represents a loss random

variable such that ω ∈ Ω. S(ω) > 0 represent a loss. In this part, we show the definitions of

some risk of measure.

Definition 3.1 Given the confidence level k ∈ (0, 1) and S, we define the following:

(i) The k-value-at-Risk (k-VaR)

VaRk(S) = inf(s ∈ R, FS(s) ≥ k).

Actually the VaR is the smallest number s such that the probability that the loss S exceeds s is

no larger than 1 − k. Moreover, it is not coherent since it does not satisfy the subadditivity. In

other words, let S1 and S2 be two loss random variables. VaR(S1 + S2) ≤ VaR(S1) + VaR(S2)

is not necessary. The example could be found in R. Fray and A. McNeil [11].

(ii) The k-Tail-at-Value (k-TVaR)

TVaRk(S) =
1

1 − k

∫ 1

k

VaRu(S)du (2)
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=
E[SI{S>VaRk(s)}] + VaRk(S)(Pr(S ≤ VaRk(S)) − k)

1 − κ
. (3)

Similarly to the exponential premium, we introduce another measure of risk.

(iii) The k-Exponentially-Value-at-Risk (k-EVaR)

EVaRk(S) = logeδ

(

∫ 1

k
eδVaRu(S)du

1 − k

)

(4)

= logeδ

(E[eδSI{S>VaRk(s)}] + eδVaRk(S)[Pr(S ≤ VaRk(S)) − k]

1 − k

)

. (5)

Among the TVaR of S which represents the capital amount at risk, the capital amount allocated

to S1 and S2 are attractive. They are also called the TVaR contribution of the S1 and S2 to the

S and denoted TVaRk(Si; S) (i = 1, 2). We give the expressions of TVaRk(Si; S) (i = 1, 2) as

follows.

Definition 3.2 TVaR-based allocation is defined by

TVaRk(Si; S) =
E[Si × I{S>VaRk(s)}] + βSE[Si × I{S=VaRk(S)}]

1 − k
, i = 1, 2 (6)

where

βS =







Pr(S ≤ VaRk(S)) − k

Pr(S = VaRk(S))
, P r(S = VaRk(S)) 6= 0;

0, P r(S = VaRk(S)) = 0.

Using the additivity of expectation, we can get

TVaRk(S) =

2
∑

i=1

TVaRk(Si; S).

4. The main results on TVaR, EVaR and TVaR-based capital allocation

For obtaining the distribution function of S to get the risk of measure introduced in the

Section 3, we suppose S1 and S2 are independent, therefore,

FS(s) = P (S1 + S2 ≤ s) =
M
∑

t=0

P (S1 ≤ s − tD)P (S2 = tD),

fS(s) =

M
∑

t=0

fS1
(s − tD)πt, (7)

where we denote πt := P (S2 = tD) = Ct
Mpt(1 − p)(M − t).

4.1. TVaR and EVaR

In the subsection, we will present the expressions of TVaR and EVaR and they are splitted

into two cases according to the number of the insurance portfolio N : the bivariate case and the

multivariate case.

4.1.1. The bivariate case
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Under the situation of two insurances and the assumption mentioned in the Section 2, we

have

fS1
(s1) = (1 + θ)h(s1; λ1; λ2) − θh(s1; λ1; 2λ2) − θh(s1; 2λ1; λ2) + θh(s1; 2λ1; 2λ2),

where

h(s1; λ1; λ2) =
λ1λ2

λ2 − λ1
e−λ1s1 +

λ1λ2

λ1 − λ2
e−λ2s1 .

The TVaR and EVaR of the total aggregate risk S = S1 + S2 are given in the following

propositions.

Proposition 1 Let X1, X2 be two exponentially distributed random variables with joint cdf

defined by a bivariate FGM copula as follows

FX1,X2
(x1, x2) = CFGM

θ (FX1
(x1), FX2

(x2)),

where Θ ∈ [−1, 1]. At the level of k, at the term of S = S1 + S2, we have,

TVaRk(S) =
1

1 − k

M
∑

t=0

[(1 + θ)ϕ1(t; VaRk(S); λ1; λ2) − θϕ1(t; VaRk(S); 2λ1; λ2)−

θϕ1(t; VaRk(S); λ1; 2λ2) + θϕ1(t; VaRk(S); 2λ1; 2λ2)],

ϕ1(t; x; λ1; λ2) =
λ2

λ2 − λ1
eλ1(tD−x)

−((x ∨ tD) +
1

λ1
) +

λ1

λ1 − λ2
eλ2(tD−x)

−((x ∨ tD) +
1

λ2
).

Proof Suppose the distribution of S is continuous. We get Pr(S ≤ VaRk(S) − k) = 0, i.e.,

VaRk(S)(Pr(S ≤ VaRk(S) − k))

1 − k
= 0.

The TVaR of S takes the form

TVaRk(S) =
1

1 − k

∫ ∞

VaRk(S)

sfS(s)ds =
1

1 − k

M
∑

t=0

[

πt

∫ ∞

VaRk(S)

sfS1
(s − tD)ds

]

=
1

1 − k

M
∑

t=0

[

πt

∫ ∞

VaRk(S)

s(1 + θ)h(s − tD; λ1; λ2) − θh(s − tD; λ1; 2λ2)−

θh(s − tD; 2λ1; λ2) + θh(s − tD; 2λ1; 2λ2)ds
]

. (8)

Define
∫ ∞

VaRk(S)

sh(s − tD; λ1; λ2)ds =

∫ ∞

VaRk(S)∨tD

s
[ λ1λ2

λ2 − λ1
e−λ1(s−tD) +

λ1λ2

λ1 − λ2
e−λ2(s−tD)

]

ds

=
λ2

λ2 − λ1
eλ1(tD−(VaRk(S)∨tD))[(VaRk(S) ∨ tD) +

1

λ1
)]+

λ1

λ1 − λ2
eλ2(tD−(VaRk(S)∨tD))[(VaRk(S) ∨ tD) +

1

λ2
]

=ϕ1(t; VaRk(S); λ1; λ2),

where a ∨ b = max(a, b). Substituting ϕ1 into (7) gives

TVaRk(S) =
1

1 − k

M
∑

t=0

[(1 + θ)ϕ1(t; VaRk(S); λ1; λ2) − θϕ1(t; VaRk(S); 2λ1; λ2)−
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θϕ1(t; VaRk(S); λ1; 2λ2) + θϕ1(t; VaRk(S); 2λ1; 2λ2)],

where

ϕ1(t; x; λ1; λ2) =
λ2

λ2 − λ1
eλ1(tD−x)

−((x ∨ tD) +
1

λ1
) +

λ1

λ1 − λ2
eλ2(tD−x)

−((x ∨ tD) +
1

λ2
).

Proposition 2 Under the assumptions mentioned in Proposition 1, we have

EVaRk(S) = logeδ{
1

1 − k

M
∑

t=0

[(1 + θ)ϕ2(t; VaRk(S); λ1; λ2) − θϕ2(t; VaRk(S); 2λ1; λ2)−

θϕ2(t; VaRk(S); λ1; 2λ2) + θϕ2(t; VaRk(S); 2λ1; 2λ2)]},

where

ϕ2(t; x; λ1; λ2) =
λ1λ2

λ1 − λ2
eλ1tD[

1

λ1 − δ
e(δ−λ1)(x∨tD)] +

λ1λ2

λ1 − λ2
eλ2tD[

1

λ2 − δ
e(δ−λ2)(x∨tD)].

Proof Basically, the proof is analogous to the prior proposition. According to the definition of

EVaR (5), if we have the related integral result to the ϕ1(t; b; a; λ1; λ2) in the proposition which

we denote ϕ2(t; b; a; λ1; λ2), actually

ϕ2(t; x; λ1; λ2) :=

∫ ∞

x

esh(s − tD; λ1; λ2)ds

=
λ1λ2

λ1 − λ2
eλ1tD[

1

λ1 − δ
e(δ−λ1)(x∨tD)] +

λ1λ2

λ1 − λ2
eλ2tD[

1

λ2 − δ
e(δ−λ2)(x∨tD)].

We could obtain the expression of EVaR represented in proposition.

4.1.2. The multivariate case

Now supposing that there are N different exponential claim losses variables joined by a

multivariate FGM copula, we have the pdf of S2 (see (1)). Therefore, in terms of TVaR and

EVaR for the multivariate case, the results can be got by substituting function ϕ1 for ϕ3 and ϕ2

for ϕ4, where

ϕ3(t; x; λ1; λ2; . . . ; λN ) :=

∫ ∞

x

sh(s − tD; λ1; λ2; . . . ; λN )ds

=
N

∑

i=1

[

N
∏

j=1,j 6=i

λj

λi(λi − λj)
eλi(tD−x)

−((x ∨ tD) +
1

λi

)
]

,

ϕ4(t; x; λ1; λ2; . . . ; λN ) :=

∫ ∞

x

eδsh(s − tD; λ1; λ2 : . . . ; λN )ds

=

N
∑

i=1

[

N
∏

j=1,j 6=i

λiλj

λi − λj

λie
λitDe(δ−λi)(x∨tD)

λi − δ

]

.

Thus

TVaRk(S)

=
1

1 − k

M
∑

t=0

[

ϕ3(t; VaRk(S); λ1, . . . , λN ) +

N
∑

k=2

∑

1≤j1≤j2≤···jk≤N

θj1j2···jk
×
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(

k
∑

l=0

∑

(a1···ak)∈Al,k

(−1)lϕ3(t; VaRk(S); 2a1λj1 , 2
a2λj2 , . . . , 2

akλjk
, λik+1

, . . . , λiN
)
)]

,

EVaRk(S)

= logeδ

{ 1

1 − k

M
∑

t=0

[

ϕ4(t; VaRk(S); λ1, . . . , λN ) +
N

∑

k=2

∑

1≤j1≤j2≤···jk≤N

θj1j2···jk
×

(

k
∑

l=0

∑

(a1···ak)∈Al,k

(−1)lϕ4(t; VaRk(S); 2a1λj1 , 2
a2λj2 , . . . , 2

akλjk
, λik+1

, . . . , λiN
)
)]}

.

4.2. TVaR-based capital allocation

The risk of measure presents the capital amount that has to be allocated to the total risk

portfolio which includes N insurances portfolio and credit portfolio for consolidating the capital,

such as TVaR-based capital. Then this subsection presents the expressions for the contributions

to the N insurances portfolio and the credit portfolio by using the criteria (6). The related

results are given in the following propositions.

Proposition 3 On the above assumptions, the attribution to S2 over the TVaR-based capital

is:

TVaRk(S2; S)

=
1

1 − k

{

M
∑

t=0

tDπt

[

ϕ5(t; VaRk(S); λ1, . . . , λN ) +

N
∑

k=2

∑

1≤j1≤j2≤···jk≤N

θj1j2···jk
×

(

k
∑

l=0

∑

(a1···ak)∈Al,k

(−1)lϕ5(t; VaRk(S); 2a1λj1 , 2
a2λj2 , . . . , 2

akλjk
, λik+1

, . . . , λiN
)
)]}

where

ϕ5(t; VaRk(S); λ1, . . . , λN ) =
N

∑

i=1

(

N
∏

j=1,j 6=i

λj

λj − λi

)

e−λi(VaRk(S)−tD)+

Proof By the conditional expectation and independence of S1 and S2, we obtain:

E[S2I{S>VaRk(s)}] =

M
∑

t=0

tDπnP (S1 > (VaRk(S) − tD)).

Define
∫ ∞

VaRk(S)−tD

h(s1; λ1, . . . , λN )ds1

=

∫ ∞

(VaRk(S)−nD)+

h(s1; λ1, . . . , λN )ds1

=

N
∑

i=1

(

N
∏

j=1,j 6=i

λj

λj − λi

)

e−λi(VaRk(S)−tD)+

= ϕ5(t; VaRk(S); λ1, . . . , λN ),
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thus

E[S2I{S>VaRk(s)}]

=

M
∑

t=0

tDπt

[

ϕ5(t; VaRk(S); λ1, . . . , λN ) +

N
∑

k=2

∑

1≤j1≤j2≤···jk≤N

θj1j2···jk
×

(

k
∑

l=0

∑

(a1···ak)∈Al,k

(−1)lϕ5(t; VaRk(S); 2a1λj1 , 2
a2λj2 , . . . , 2

akλjk
, λik+1

, . . . , λiN
)
)]

.

Because β = 0, i.e., Pr(S ≤ VaRk(S) − k) = 0, the proposition is got.

Proposition 4 The capital attributed to S1 can be expressed as

TVaRk(S1; S)

=
1

1 − k

M
∑

t=0

[

ϕ6((VaRk(S) − tD); λ1, . . . , λN ) +
N

∑

k=2

∑

1≤j1≤j2≤···jk≤N

θj1j2···jk
×

(

k
∑

l=0

∑

(a1···ak)∈Al,k

(−1)lϕ6(VaRk(S) − tD; 2a1λj1 , 2
a2λj2 , . . . , 2

akλjk
, λik+1

, . . . , λiN
)
)]

,

where

ϕ6(t; x; λ1; λ2; . . . ; λN ) =
N

∑

i=1

[

N
∏

j=1,j 6=i

λj

λi(λi − λj)
e−λix+(x+ +

1

λi

)
]

.

Proof Because S1 is a continuous random variable, by the conditional expectation and inde-

pendence of S1 and S2, we obtain:

E[S1I{S=VaRk(s)}] =

+∞
∑

n=0

E[S1I{S1=VaRk(S)−nL}]P (S2 = nL) = 0,

1

1 − k
E[S1I{S>VaRk(s)}] =

1

1 − k

M
∑

n=0

πn

∫ ∞

VaRk(S)−tD

s1fs1
(s1)ds1.

Define

ϕ6(t; x; λ1; λ2; . . . ; λN ) :=

∫ ∞

x

s1h(s1; λ1; λ2; . . . ; λN )ds1

=
N

∑

i=1

[

N
∏

j=1,j 6=i

λj

λi(λi − λj)
e−λi(x)+((x)+ +

1

λi

)
]

,

thus

TVaRk(S1; S)

=
1

1 − k

M
∑

t=0

[

ϕ6((V aRk(S) − tD); λ1, . . . , λN ) +

N
∑

k=2

∑

1≤j1≤j2≤···jk≤N

θj1j2···jk
×

(

k
∑

l=0

∑

(a1···ak)∈Al,k

(−1)lϕ6((VaRk(S) − tD); 2a1λj1 , 2
a2λj2 , . . . , 2

akλjk
, λik+1

, . . . , λiN
)
)]

.
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5. An numerical example

In this concluding example we show how the risk measure and risk contribution discussed

in Section 3 may be calculated. We consider the default portfolio of size M=1000 and insurance

portfolio of size N=2 with parameter θ = 0.8 which implicates a correlation of 0.2 between X1

and X2. In terms of other parameters, λ1 = 1/2, λ1 = 1/3 and the default probability p equals

0.05. In order to make the expectation loss of two risk portfolio be equal, we consider D = 0.1.

Then we estimate VaR, TVaR and EVaR at different probability levels. The results are listed in

Table 1.

S1 S2 S

k VaR TVaR EVaR VaR TVaR EVaR VaR TVaR EVaR

0.95 12.5627 15.7272 17.5756 6.1000 6.4579 6.4676 17.6887 20.7826 22.6194

0.97 14.4736 17.3885 19.0187 6.3000 6.6558 6.6645 19.5288 22.4125 24.0206

0.99 18.0508 21.2234 22.5651 6.7000 6.9307 6.9385 23.1233 26.2947 27.5809

Table 1 Estimates of risk measure for different portfolios

From Table 1 we have that with the increase of the value of k, the estimates of risk of

measure are also increasing. Secondly, we could find that TVaR and EVaR for S are smaller

than the sum of TVaR and EVaR for S1 and the risk of measure for S2. From the economical

aspect, the risk becomes smaller by diversification. Another result is that the EVaR mostly

highlights the tail risk, TVaR more and the VaR is smallest among the three risk measure tools.

S′
2 S2

k VaR TVaR EVaR VaR TVaR EVaR

0.95 6.1000 6.4579 6.4676 6.2000 6.5250 6.5375

0.97 6.3000 6.6558 6.6645 6.4000 6.6801 6.6905

0.99 6.7000 6.9307 6.9395 6.7000 6.9703 6.9764

Table 2 Estimates of default portfolio with binomial distribution and poisson distribution

We could find that when dealing with the large default portfolio, the poisson distribution

is a nice estimate of the binomial distribution from Table 2. The relative errors are less than 2

percent at different levels and it could simplify the process when getting the expression of TVaR

and EVaR.

k TVaR(S) TVaR(S1; S) TVaR(S2; S)

0.95 20.7826 6.0821 14.7005

0.97 22.4125 6.0937 16.3188

0.99 26.2947 6.1313 20.1634

Table 3 TVaR-based allocations for different portfolios
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At last we show the estimates of TVaR-based allocations for different portfolios by Table 3.

Comparing the TVaRk(S1) and TVaRk(S2) in Table 1 with TVaR(S1; S) and TVaR(S2; S), we

could find that the risks become smaller whatever is S1 or S2. In other ways, the two portfolios

both decrease their risk by diversification.
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