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Abstract In this paper, the generalized local time of the indefinite Wiener integral Xt is dis-

cussed through white noise approach, which means to regard the local time as a Hida distribution.

Moreover, similar result is also obtained in case of two independent Brownian motions by using

the similar approach.
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1. Introduction

Let B(u) be a Brownian motion. The indefinite Wiener integral Xt is defined as follows

Xt =
∫ t

0
f(u)dB(u). The object of study in this paper will be the generalized local time of

indefinite Wiener integral, which is formally defined as

LT (s, t) =

∫ T

0

∫ T

0

δ(Xt − Xs)dsdt,

where δ(Xt−Xs) is called the Donsker’s delta function. Moreover, for two independent Brownian

motions B(1) and B(2), the similar result is also discussed.

In recent years, local times of Brownian motion (BM) and fractional Brownian motion (FBM)

have been studied by several authors, e.g., see [1–3]. In [1], authors discussed the intersection

local time of two independent BMs in (S)∗. They gave the chaos expansion of local time and

proved it was square integrable through the white noise approach. Drumond et al. [2] discussed

the local time for FBM as generalized white noise functionals, and for any dimension d ≥ 1

expansions of self-intersection local times were given. On the other hand, Liang in [4] considered

the generalized local time of the indefinite Skorohod integral by using the technique of the Itô-

Skorohod integral and Malliavin calculus.

In this paper, motivated by [1, 4], we discuss the generalized local time of indefinite Wiener

integral through white noise approach. The paper is organized as follows. In Section 2, we
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provide some background materials from white noise analysis. In Sections 3 and 4, we present

the main results and their demonstrations.

2. White noise analysis

In this section we briefly recall some notions and facts in white noise analysis, and refer to

[1, 5] for details.

The starting point of white noise analysis is the real Gelfand triple S(R) ⊂ L2(R, Rd) ⊂

S∗(R) where S(R), S∗(R) are the Schwartz spaces of test functions and tempered distributions,

respectively.

Let (L2) ≡ L2(S∗(R), dµ) be the Hilbert space µ-square integrable functionals on S∗(R).

Then by the Wiener-Itô-Segal isomorphism theorem, for each Φ ∈ (L2) this implies the chaos

expansion Φ(ω) =
∑∞

n=0〈: ω⊗n :, Fn〉. The second Gelfand triple is: (S) ⊂ (L2) ⊂ (S)∗. Elements

of (S) (resp. (S)∗) are called Hida testing (resp. generalized) functionals. For f ∈ S(R), S-

transform is defined to be the bilinear dual product on (S)×(S)∗ by SΦ(f) =≪ Φ, : exp〈·, f〉 :≫.

Lemma 2.1 ([1,5]) Let (Ω, F, µ) be a measure space, and Φλ be a mapping defined on Ω with

values in (S)∗. We assume S-transform of Φ:

(1) is a µ-measurable function of λ for f ∈ S(R);

(2) obeys a U-functional estimate

| SΦλ(zf) |≤ C1(λ) exp{C2(λ) | z |2| Apf |22}

for some fixed p and for C1 ∈ L1(µ), C2 ∈ L∞(µ). Then Φλ is Bochner-integrable in the Hilbert

spaces (S)−q for q large enough and∫
Ω

Φλdµ(λ) ∈ (S)∗, S(

∫
Ω

Φλdµ(λ))(f) =

∫
Ω

(SΦλ)(f)dµ(λ).

3. The generalized intersection local time of Xt and Xs

In this section we will study the generalized local time LT of indefinite integral Xt =∫ t

0
f(u)dB(u), which is formally defined by the following expression

LT (s, t) =

∫ T

0

∫ T

0

δ(Xt − Xs)dsdt

where δ is a Dirac delta function and f is the square integral function of L2[0, T ]. We always

approximate the Dirac delta function by the heat kernel pε(x) = 1√
2πε

exp {−x2

2ε
}.

Theorem 3.1 For each t > s > 0, the Bochner integral

δ(Xt − Xs) =
1

2π

∫
R

exp{iλ(Xt − Xs}dλ =
1

2π

∫
R

exp{iλ

∫ t

s

f(u)dB(u)}dλ

is a generalized white noise functional.

Proof To show this result, we need apply Lemma 2.1 to the S-transform of the integral with re-
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spect to Lebesgue measure on [0, T ]. First suppose f is a step function f(u) =
∑n

j=1 ajI[tj−1,tj)(u)

where t0 = s and tn = t. We only need prove the result is true for the following equality

δ(Xt − Xs) =
1

2π

∫
R

exp{iλ
n∑

j=1

aj(B(tj) − B(tj−1))}dλ.

In fact, since Brownian motion has independent increments, i.e., for any s ≤ t1 < t2 < · · · <

tn = t the random variables B(t1), B(t2) − B(t1), . . . , B(tn) − B(tn−1) are independent, by the

definition of S-transform, we have

S(exp{iλ

n∑
j=1

aj(B(tj) − B(tj−1))})(g)

= E(eiλa1〈ω+g,I[t0,t1)〉)E(eiλa2〈ω+g,I[t1,t2)〉) · · ·E(eiλan〈ω+g,I[tn−1,tn)〉)

= exp{−
| λ |

2

2

n∑
j=1

a2
j(tj − tj−1)} exp{iλ

n∑
j=1

aj

∫ tj

tj−1

g(x)dx}

for g ∈ S(R). The measurability condition is obvious. Now we prove the bound condition. For

z ∈ C and g ∈ S(R), by Schwartz equality we have

| S(exp{iλ(B(tj) − B(tj−1))})(zg) |

≤ exp{−
1

4
| λ |2 a2

j(tj − tj−1)} exp{−
1

4
| λ |2 a2

j(tj − tj−1)+ | z || λ |

∫ tj

tj−1

g(x)dx}

≤ exp{−
1

4
| λ |2 a2

j(tj − tj−1)} exp{
| z |2

tj − tj−1
(

∫ tj

tj−1

g(x)dx)2}

≤ exp{−
1

4
| λ |2 a2

j(tj − tj−1)} exp{| z |2‖ g(x) ‖2
L2},

where, as a function of λ, the first factor is integral on R and the second factor is a constant.

Hence

| S(exp{iλ

n∑
j=1

aj(B(tj) − B(tj−1))})(zg) |≤ exp{−
1

4
C3 | λ |2 (t − s)} exp{n | z |2‖ g ‖2

L2},

where C3 = min1≤j≤n{a
2
j}. By Lemma 2.1, the result is obtained.

Next suppose f ∈ L2[0, T ]. By [6], we can choose a sequence {fn}
∞
n=1 of step functions

converging to f in L2[0, T ]. By the dominate convergence theorem, we obtain

lim
n→∞

δ(Xt − Xs) = lim
n→∞

1

2π

∫
R

exp{iλ

∫ t

s

fn(u)dB(u)}dλ.

By the first part proof, the result is also proved in the case of f ∈ L2[0, T ]. 2

We are now ready to state our main result on the generalized intersection local time LT as

well as on its subtracted counterpart L
(N)
T .

Theorem 3.2 For t > s > 0, the truncated generalized intersection local time of Xt and Xs

given by

L
(N)
T (s, t) =

∫ T

0

∫ T

0

δ(N)(Xt − Xs)dsdt
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is a Hida distribution, where

δ(N)(Xt − Xs) ≡
1

2π

∫
R

expN{iλ(Xt − Xs)}dλ, expN (x) ≡

∞∑
n=N

xn

n!
.

Proof Let f be a step function f(u) =
∑n

j=1 ajI[tj−1,tj)(u) where t0 = s and tn = t. By

Theorem 3.1, it is easy to see that

S(δ(N)(Xt − Xs))(g) =
1

(2π
∑n

j=1 a2
j(tj − tj−1))

1
2

expN{−
(
∑n

j=1 aj

∫ tj

tj−1
g(x)dx)2

2
∑n

j=1 a2
j (tj − tj−1)

}

for all g ∈ S(R). Hence for z ∈ C, it follows that

| S(δ(N)(Xt − Xs))(zg) |

≤
1

(2π min1≤j≤n{a2
j}

∑n

j=1(tj − tj−1))
1
2

(t − s)N expN{C4 | z |2 { inf
s≤x≤t

| g(x) |}2}

= C5(t − s)N− 1
2 exp{C4 | z |2 { inf

s≤x≤t
| g(x) |}2}

for suitable constants C4 and C5, where (t − s)N− 1
2 is integral on [0, T ] × [0, T ] for all positive

integers N . In fact, we have

| expN{−
(
∑n

j=1 aj

∫ tj

tj−1
zg(x)dx)2

2
∑n

j=1 a2
j(tj − tj−1)

} |

≤ expN{
{
∑n

j=1 a2
j}{

∑n

j=1(tj − tj−1)
2} | z |2 {infs≤x≤t | g(x) |}2

2 min1≤j≤n{a2
j}

∑n

j=1(tj − tj−1)
}

≤ expN{C4(t − s) | z |2 { inf
s≤x≤t

| g(x) |}2}

≤ (t − s)N exp{C4 | z |2 { inf
s≤x≤t

| g(x) |}2}. 2

From the proof of Theorem 3.2, when we take f(u) = I[0,t](u), the intersection local time of

Xt and Xs is the intersection local time of Bt and Bs. Hence the following corollary is obtained.

Corollary 3.3 For t > s > 0, the intersection local time of Bt and Bs given by

LT (s, t) =
1

2π

∫ T

0

∫ T

0

∫
R

exp{iλ(Bt − Bs)}dλdsdt

is a Hida distribution.

4. The generalized collision local time of X
(1)
t and X

(2)
s

In the section we will discuss the generalized local time LT of indefinite integral X
(1)
t =∫ t

0
f1(u)dB(1)(u) and X

(2)
s =

∫ s

0
f2(v)dB(2)(v), where B(1) and B(2) are two independent Brow-

nian motions and f1, f2 are all in L2[0, T ].

Theorem 4.1 For each t, s > 0, the Bochner integral

δ(X
(1)
t − X(2)

s ) =
1

2π

∫
R

exp{iλ(X
(1)
t − X(2)

s )}dλ

is a generalized white noise functional.
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Proof Suppose f1 and f2 are all step functions

f1(u) =

n∑
l=1

alI[tl−1,tl)(u), f2(v) =

m∑
k=1

bkI[sk−1,sk)(v),

where t0 = 0, tn = t, 0 ≤ u < t ≤ T = 1 and s0 = 0, sm = s, 0 ≤ v < s ≤ T = 1. Since B(1) and

B(2) are two independent Brownian motions, B(1)(tl)−B(1)(tl−1) and B(2)(sk)−B(2)(sk−1) are

also independent. By the definition of S-transform, we have

S(exp{iλ(X
(1)
t − X(2)

s )})(g)

=

n∏
l=1

E(e
iλal〈ω1+g,I[tl−1,tl)

〉
)

m∏
k=1

E(e
−iλbk〈ω2+g,I[sk−1,sk)〉)

= {exp{−
| λ |

2

2

n∑
l=1

a2
l (tl − tl−1)} exp{iλ

n∑
l=1

al

∫ tl

tl−1

g(x)dx}}·

{exp{−
| λ |

2

2

m∑
k=1

b2
k(sk − sk−1)} exp{−iλ

m∑
k=1

bk

∫ sk

sk−1

g(x)dx}}

for g ∈ S(R). The measurability condition is obvious. Similarly to the proof of Theorem 3.1, for

z ∈ C and g ∈ S(R), we have

| S({exp iλ(X
(1)
t − X(2)

s )})(zg) |

≤ exp{−
1

4
| λ |2 (

n∑
l=1

a2
l (tl − tl−1) +

m∑
k=1

b2
k(sk − sk−1))} exp{(n + m) | z |2‖ g(x) ‖2

L2},

where, as a function of λ, the first factor is integral on R and the second factor is a constant,

which implies that δ(X
(1)
t − X

(2)
s ) is a Hida distribution. 2

Theorem 4.2 For t, s > 0, the truncated generalized collision local time of X
(1)
t and X

(2)
s given

by

L
(N)
T (s, t) =

∫ T

0

∫ T

0

δ(N)(X
(1)
t − X(2)

s )dsdt

is a Hida distribution, where

δ(N)(X
(1)
t − X(2)

s ) ≡
1

2π

∫
R

expN{iλ(X
(1)
t − X(2)

s )}dλ, expN (x) ≡
∞∑

n=N

xn

n!
.

Proof Let f1 and f2 be step functions f1(u) =
∑n

l=1 alI[tl−1,tl)(u), f2(v) =
∑m

k=1 bkI[sk−1,sk)(v).

By Theorem 4.1, we find that

S(δ(N)(X
(1)
t − X(2)

s ))(g) =
1

(2π(
∑n

l=1 a2
l (tl − tl−1) +

∑m

k=1 b2
k(sk − sk−1)))

1
2

·

expN{−
(
∑n

l=1 al

∫ tl

tl−1
g(x)dx −

∑m

k=1 bk

∫ sk

sk−1
g(x)dx)2

2(
∑n

l=1 a2
l (tl − tl−1) +

∑m

k=1 b2
k(sk − sk−1))

}

for all g ∈ S(R). Because

| expN{−
(
∑n

l=1 al

∫ tl

tl−1
g(x)dx −

∑m

k=1 bk

∫ sk

sk−1
g(x)dx)2

2(
∑n

l=1 a2
l (tl − tl−1) +

∑m

k=1 b2
k(sk − sk−1))

} |
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≤ expN{
2(

∑n

l=1 al

∫ tl

tl−1
g(x)dx)(

∑m

k=1

∫ sk

sk−1
g(x)dx)

C6(s + t)
}

≤ expN{
2 min1≤l≤n{al} inf0≤x≤T | {g(x) |}

∑n

l=1

∫ tl

tl−1
dx

C6(s + t)
·

min
1≤k≤m

{bk} inf
0≤x≤T

{| g(x) |}
m∑

k=1

∫ sk

sk−1

dx}

≤ expN{
min1≤l≤n{al}min1≤k≤m{bk}(inf0≤x≤T | g(x) |)2(s + t)2

C6(s + t)
}

≤ (s + t)N exp{C7( inf
0≤x≤T

| g(x) |)2},

where C6 = min1≤l≤n,1≤k≤m{a2
l , b

2
k} and C7 =

(max1≤l≤n,1≤k≤m{al,bk})2
C6

.

Hence, it follows that

| S(δ(N)(X
(1)
t − X(2)

s ))(zg) | ≤
(s + t)N

(2πC6(t + s))
1
2

exp{C7( inf
0≤x≤T

| g(x) |)2 | z |2}

≤ C8(s + t)N− 1
2 expN{C7( inf

0≤x≤T
| g(x) |)2 | z |2},

where C8 = (2πC6)
− 1

2 is a constant. And (s + t)N− 1
2 is integral on [0, T ]× [0, T ] for all positive

integers N . 2

From the proof of Theorem 4.2, the following corollary is obvious.

Corollary 4.3 For t, s > 0, the collision local time of B
(1)
t and B

(2)
s given by

LT (s, t) =
1

2π

∫ T

0

∫ T

0

∫
R

exp{iλ(B
(1)
t − B(2)

s )}dλdsdt

is a Hida distribution.

Remark 4.4 Comparing with work in [1], we extend the collision local time of Brownian motion

to the case of indefinite Wiener integral X
(1)
t and X

(2)
s .
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