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Abstract An acyclic edge coloring of a graph G is a proper edge coloring such that there

are no bichromatic cycles. The acyclic edge chromatic number of a graph G is the minimum

number k such that there exists an acyclic edge coloring using k colors and is denoted by

χ′

a
(G). In this paper we prove that χ′

a
(G) ≤ ∆(G) + 5 for planar graphs G without adjacent

triangles.
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1. Introduction

All graphs considered in this paper are finite and simple. For any graph G, we denote its

vertex set, edge set, maximum degree and minimum degree by V (G), E(G), ∆(G) and δ(G),

respectively. For undefined concepts we refer the readers to [1].

A proper edge coloring C is called an acyclic edge coloring if there are no bichromatic cycles

in the graph G. The acyclic edge k-coloring of a graph G is that there exists an acyclic edge

coloring using k colors. The acyclic edge chromatic number of a graph G is the minimum number

k such that there exists an acyclic edge coloring using k colors and is denoted by χ′

a(G). In this

paper, we use B to denote the color set of coloring.

In 2001, Alon et al. [2] gave the Acyclic Edge Coloring Conjecture (AECC for short). For

any graphs G, χ′

a(G) ≤ ∆(G) + 2.

For any graphs G, Alon et al. [3] proved that χ′

a(G) ≤ 64∆(G). Molloy and Reed [4] proved

that χ′

a(G) ≤ 16∆(G). Basavaraju and Chandran [5] proved that χ′

a(G) ≤ ∆(G) + 3 for graphs

G with maximum degree 4.

For planar graph G, Hou et al. [6] proved that χ′

a(G) ≤ max{2∆(G) − 2, ∆(G) + 22}.

Fiedorowicz et al. [7] proved that χ′

a(G) ≤ ∆(G) + 6 for a planar graph G without cycles of

length three. Borowiecki and Fiedorowicz [8] proved that χ′

a(G) ≤ ∆(G)+15 for a planar graph

G without cycles of length four. Basavaraju and Chandran [9] proved that χ′

a(G) ≤ ∆(G)+12 for
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any planar graphs G. Wang et al. [10] proved that χ′

a(G) ≤ ∆(G) if there exists a pair(k, m) ∈

{(3, 11), (4, 8), (5, 7), (8, 6)} such that planar graph G satisfies ∆ ≥ k and g(G) ≥ m. In this

paper we prove that χ′

a(G) ≤ ∆(G) + 5 for planar graph G without adjacent triangles.

Let G be a graph. A k-vertex of G is a vertex of degree k. Similarly, a k+-vertex of G is a

vertex of degree at least k. A face of degree 3 will be called a triangle. Furthermore, a triangle

is called a good triangle if the boundary vertices of it have at least two 5+-vertices. A triangle is

called a bad triangle if the boundary vertices of it have exactly two 4-vertices and a 5+-vertex.

A 4-vertex is called a bad 4-vertex if it is adjacent to a 4-vertex. For v ∈ V (G), we denote by

lk(v)(lk+(v)) the number of k-vertices (k+-vertices) adjacent to v. Furthermore, we denote by

lt(v) the number of triangles incident to v, and by l4(v) (or lt(v)) the number of bad 4-vertices

adjacent to v (or bad triangles incident to v).

Let H be a nonempty proper subgraph of G. A coloring C is said to be a partial coloring

of G if the coloring C is a coloring of H . Furthermore, an acyclic edge coloring C of H is said

to be a partial acyclic edge coloring of G. For e ∈ E(G), the color α of B is said to candidate

for edge e with respect to a partial acyclic edge coloring C of G if none of the adjacent edges

of e is colored α. We denote by RC(e) the set of candidate colors of edge e with respect to

the coloring C. An (α, β)-maximal bichromatic path with respect to a partial coloring C of G

is a maximal path consisting of edges that are colored using the colors α and β alternatingly.

An (α, β, u, v)-maximal bichromatic path is an (α, β)-maximal bichromatic path which starts at

the vertex u with an edge colored α and ends at v. An (α, β, uv)-critical path is an (α, β, u, v)

maximal bichromatic path which starts out from the vertex u with an edge colored α and ends at

the vertex v with an edge colored α. For uv ∈ E(G), let H = G−uv. With respect to an acyclic

edge coloring C of H , C(v) denotes the set of colors which are assigned by C to those edges in

E(H) incident to v. We denote by C(uv) the color of edge uv with respect to the coloring C.

Let Cuv = C(v) − C(uv). A multiset is generalized set where a member can appear multiple in

the set. If an element x appears t times in the multiset S, then we say that multiplicity of x in

S is t, denoted by DS(α). We denote by ‖S‖ =
∑

α∈S DS(α) the cardinality of finite multiset.

Let S and S′ be two multisets. A multiset is said to be the union of S and S′, denoted by S⊎S′,

if the multiset S ⊎ S′ has all the members of S and S′ and DS⊎S′(x) = DS(x) + DS′(x) for any

member x ∈ S ⊎ S′.

Lemma 1 ([5]) Given a pair of colors α and β of a proper coloring C of G, there can be at most

one maximal (α, β)-bichromatic path containing a particular vertex v, with respect to C.

Lemma 2([5]) Let u, i, j, a, b ∈ V (G), ui, uj, ab ∈ E(G). Also let {λ, ξ} ⊆ B such that {λ, ξ} ∩

{C(ui), C(uj)} 6= ∅ and {i, j} ∩ {a, b} = ∅. Suppose there exists a (λ, ξ, ab)-critical path that

contains vertex u with respect to a partial acyclic edge coloring C of G. Let C′ be the partial

coloring obtained from C by exchanging colors with respect to the edges ui and uj. If C′ is

proper, then there will not be any (λ, ξ, ab)-critical path in G with respect to the partial coloring

C′.
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2. Lemma and the main result

Lemma 3 Let G be a planar graph without adjacent triangles and δ(G) ≥ 2. Let v ∈ V (G)

and d(v) = l. If the neighbors of v are v1, . . . , vl, where d(v1) ≤ · · · ≤ d(vl), then G contains at

least one of the following configurations:

(A1) l = 3, d(v1) ≤ 6;

(A2) l = 4, d(v1) ≤ 4, d(v2) ≤ 5;

(A3) l = 2.

Proof We use the discharging method to prove the lemma. Suppose that the lemma is false

and let G be a counterexample. We fix a plane embedding of G. Thus G contains none

of the configurations (A1)–(A3). By Euler’s formula |V (G)| − |E(G)| + |F (G)| = 2, using
∑

v∈V (G) d(v) = 2|E(G)| and
∑

f∈F (G) d(f) = 2|E(G)|, we rewrite Euler’s formula into the

following new form:
∑

v∈V (G)

(d(v) − 4) +
∑

f∈F (G)

(d(f) − 4) = −8.

Suppose that w(x) denotes the weight function defined on x ∈ V (G) ∪ F (G) by w(x) =

d(x) − 4. By some rules, we will get a new weight function w′(x) ≥ 0 for all x ∈ V (G) ∪ F (G).

However, the total sum of weight is kept fixed. We have

0 ≤
∑

x∈V (G)∪F (G)

w′(x) =
∑

x∈V (G)∪F (G)

w(x) = −8,

which leads to an obvious contradiction. For v ∈ V (G), we define the discharging rules as follows:

(R1) Every 7+-vertex v, sends 1
3 to each adjacent 3-vertex and 1

12 to each adjacent bad

4-vertex;

(R2) Every 5+-vertex v, sends 1
2 to each incident triangle;

(R3) Every bad 4-vertex v, sends 1
4 to each incident bad triangle;

(R4) Every 6-vertex v, sends 1
12 to each adjacent bad 4-vertex.

Now we begin to prove the non-negativity of new weight w′(x) for every x ∈ V (G) ∪ F (G).

Suppose that v ∈ V (G). Since G contains no (A3), we have δ(G) ≥ 3.

If d(v) = 3, then w(v) = −1. Since G contains no (A1), v is adjacent to all vertices which

are 7+-vertices. By rule (R1), we have w′(v) = d(v) − 4 + 1
3 · l7+(v) = −1 + 1

3 · 3 = 0.

If d(v) = 4, then w(v) = 0. If v is not a bad 4-vertex, we have w′(v) = w(v) = 0. If v is a

bad 4-vertex, since G contains no (A1) and (A2), by definition of the bad 4-vertex, it is easy to

find that v is exactly adjacent to three 6+-vertices and incident to at most one bad triangle. By

rules (R1), (R3) and (R4), we have w′(v) = d(v) − 4 + 1
12 · l6+(v) − 1

4 · lt(v) ≥ 1
12 · 3 − 1

4 = 0.

If d(v) = 5, then w(v) = 1. Since G contains no adjacent triangles, v is incident to at most

two triangles. By rule (R2), we have w′(v) = d(v) − 4 − 1
2 · lt(v) ≥ 1 − 1

2 · 2 = 0.

If d(v) = 6, then w(v) = 2. Since G contains no adjacent triangles, v is incident to at most

three triangles. By rules (R2) and (R4), we have w′(v) = d(v) − 4 − 1
2 · lt(v) − 1

12 · l4(v) ≥

2 − 1
2 · 3 − 1

12 · 6 = 0.
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If d(v) = 7, then w(v) = 3. Since G contains no adjacent triangles, v is incident to at

most three triangles. We have l3(v)+ lt(v) ≤ d(v) and 3-vertex is adjacent to 7+-vertices since G

contains no (A1). By rules (R1) and (R2), we have w′(v) = d(v)−4− 1
3 ·l3(v)− 1

12 ·l4(v)− 1
2 ·lt(v) ≥

3 − 1
3 · 4 − 1

2 · 3 = 1
6 .

If d(v) ≥ 8, then w(v) = d(v) − 4. Since G contains no adjacent triangles and (A1),

lt(v) ≤ ⌊d(v)
2 ⌋ and l3(v) + lt(v) ≤ d(v). By rules (R1) and (R2), we have w′(v) = d(v) − 4 − 1

3 ·

l3(v) − 1
12 · l4(v) − 1

2 · lt(v) ≥ d(v) − 4 − 1
2 · d(v) = d(v)

2 − 4 ≥ 0.

Suppose that f ∈ F (G). If d(f) = 3, then w(f) = −1. Since G contains no (A1) and (A2),

a triangle of G is either a good triangle or a bad triangle. If f is a good triangle, by rule (R2),

we have w′(f) = d(f) − 4 + 1
2 · l5+(v) ≥ −1 + 1

2 · 2 = 0. If f is a bad triangle, by rules (R2) and

(R3), we have w′(f) = d(f) − 4 + 1
2 · l5+(v) + 1

4 · l4(v) = −1 + 1
2 · 1 + 1

4 · 2 = 0.

If d(f) ≥ 4, then w′(f) = w(f) ≥ 0.

Hence for each x ∈ V (G) ∪ F (G), we have w′(x) ≥ 0 and the proof is completed. �

Theorem 1 Let G be a planar graph without adjacent triangles. Then χ′

a(G) ≤ ∆(G) + 5.

Proof Let G be a counterexample to the theorem with the minimum number of edges. It

is obvious that G is a connected graph and δ(G) ≥ 2. So G contains at least one of three

configurations described in Lemma 3. Let k = ∆(G) + 5.

Case 1 G contains a 3-vertex v. Let the neighbors of v be v1, v2, v3, where d(v1) ≤ d(v2) ≤ d(v3)

and d(v1) ≤ 6.

Let H = G − vv1. By the minimality of G, H has an acyclic edge coloring C using k

colors. Without loss of generality, we can assume that d(v1) = 6. Let Sv be a multiset defined

as Sv = Cvv2
⊎ Cvv3

.

Suppose that |C(v) ∩ C(v1)| = 0. Since |C(v) ∪ C(v1)| ≤ 2 + ∆(G) − 1 = ∆(G) + 1, there

exists a color α of B such that α ∈ B − C(v) ∪ C(v1). Using it to color the edge vv1, therefore,

there are no bichromatic cycles. So we can extend the coloring C to an acyclic edge k-coloring

of G, a contradiction.

Suppose that |C(v) ∩ C(v1)| = 1. Let v′1 ∈ NH(v1). Without loss of generality, we can

assume that C(vv3) = C(v1v
′

1) = 1. If there exists a color θ of B such that θ ∈ RC(vv1),

using it to color the edge vv1, there are no bichromatic cycles. So we can extend the coloring

C to an acyclic edge k-coloring of G, a contradiction. Otherwise, there exists a (1, θ, vv1)-

critical path with respect to the coloring C. We denote by C1 the set of candidate colors of

the edge vv1, and one of C1 and color 1 are the colors of the critical paths with respect to

the coloring C. Since |RC(vv1)| = k − 6 = ∆(G) − 1, this implies that C(vv2) /∈ C(v3). If

C(vv3) /∈ C(v2), now we exchange colors of the edges vv2 and vv3 to get a coloring C′. It is

obvious that the coloring C′ is an acyclic edge coloring of H . By Lemma 2, there exists no

(1, γ, vv1)-critical path for any color γ ∈ C1 with respect to the coloring C′. We color vv1 with

a color α of B such that α ∈ RC′(vv1), therefore, there are no bichromatic cycles. So we can

extend the coloring C to an acyclic edge k-coloring of G, a contradiction. If C(vv3) ∈ C(v2),
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since |B − C(v1) ∪ C(v2)| ≥ k − (5 + ∆(G) − 1) = 1, there exists a color α of B such that

α ∈ B − C(v1) ∪ C(v2). We recolor the edge vv2 with α to get a coloring C′. It is obvious that

the coloring C′ is an acyclic edge coloring of H . Otherwise, there exists a (1, α, vv2)-critical path

with respect to the coloring C. But, there exists a (1, α, vv1)-critical path with respect to the

coloring C, leading to a contradiction by Lemma 1. Now we color vv1 with C(vv2). So we can

extend the coloring C to an acyclic edge k-coloring of G, a contradiction.

Suppose that |C(v) ∩ C(v1)| = 2. Let v′1, v
′′

1 ∈ NH(v1), and let C(vv2) = C(v1v
′

1)=1,

C(vv3) = C(v1v
′′

1 )=2. Since |C(v) ∪ C(v1)| = 5, we have |RC(vv1)| = k − 5 = ∆(G). If

there exists a color θ of B such that θ ∈ RC(vv1), using it to color the edge vv1, there are

no bichromatic cycles. So we can extend the coloring C to an acyclic edge k-coloring of G, a

contradiction. Otherwise, there exists a (1, θ, vv1)-critical path or (2, θ, vv1)-critical path with

respect to the coloring C. Since ‖Sv‖ = d(v2) − 1 + d(v3) − 1 ≤ 2∆(G) − 2, there exists a color

α of B such that α ∈ RC(vv1) with multiplicity at most one in Sv. We can assume that the

color α is in C(v3). Since there exists a (2, α, vv1)-critical path with respect to the coloring C,

by Lemma 1, there exists no (2, α, vv2)-critical path with respect to the coloring C. Thus we

recolor the edge vv2 with the color α to get a coloring C′. It is obvious that the coloring C′ is an

acyclic edge coloring of H . We have |C′(v) ∩ C′(v1)| = 1, this situation is argued out as above,

a contradiction.

Case 2 G contains a 4-vertex v. Let the neighbors of v be v1, v2 v3 and v4, where d(v1) ≤

d(v2) ≤ d(v3) ≤ d(v4), d(v1) ≤ 4 and d(v2) ≤ 5.

Let H = G− vv1. By the minimality of G, H has an acyclic edge coloring C using k colors.

Without loss of generality, we can assume that d(v1) = 4 and d(v2) = 5. Let Sv be a multiset

defined as Sv = Cvv2
⊎ Cvv3

⊎ Cvv4
.

Suppose that |C(v) ∩C(v1)| = 0. Since |C(v) ∪C(v1)| ≤ 3 + (∆(G) − 1) = ∆(G) + 2, there

exists a color α of B such that α ∈ B − C(v) ∪ C(v1), using it to color the edge vv1, therefore,

there are no bichromatic cycles. So we can extend the coloring C to an acyclic edge k-coloring

of G, a contradiction.

Suppose that |C(v) ∩ C(v1)| = 1. Let v′1 ∈ NH(v1). Without loss of generality, we can

assume that C(vv4) = C(v1v
′

1) = 1. Thus |RC(vv1)| = k − 5 = ∆(G). So there exists a color α

of B such that α ∈ RC(vv1), using it to color the edge vv1, there are no bichromatic cycles. So

we can extend the coloring C to an acyclic edge k-coloring of G, a contradiction.

Suppose that |C(v) ∩ C(v1)| = 2. Let v′1, v
′′

1 ∈ NH(v1). Without loss of generality, we can

assume that C(vv3) = C(v1v
′

1)=1, C(vv4) = C(v1v
′′

1 )=2. Since |C(v) ∪ C(v1)| = 4, we have

|RC(vv1)| = k − 4 = ∆(G) + 1. If there exists a color θ of B such that θ ∈ RC(vv1), using it

to color the edge vv1, there are no bichromatic cycles. So we can extend the coloring C to an

acyclic edge k-coloring of G, a contradiction. Otherwise, there exists a (1, θ, vv1)-critical path

or (2, θ, vv1)-critical path with respect to the coloring C. We denote by C2 the set of candidate

colors of the edge vv1, and one of C2 and color 2 are the colors of the critical paths with respect

to the coloring C. If colors 1 and 2 are not in Sv, we exchange colors of the edges vv3 and
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vv4 to get a coloring C′. It is obvious that the coloring C′ is an acyclic edge coloring of H .

By Lemma 2, there exist no (1, γ, vv1)-critical path for any color γ ∈ C1 and (2, ξ, vv1)-critical

path for any color ξ ∈ C2. If there exists a color θ of B such that θ ∈ C1, using it to color

the edge vv1, there are no bichromatic cycles. So we can extend the coloring C to an acyclic

edge k-coloring of G, a contradiction. Otherwise, by Lemma 2, there exists no (1, θ, vv1)-critical

path with respect to the coloring C′, we have C1 ⊆ C′(v′′1 ). Thus (C1 ∪ C2) ⊆ C′(v′′1 ). But

|C1 ∪ C2| ≥ ∆(G) + 1, a contradiction since |C′(v′′1 )| ≤ ∆(G). If the color 1 or 2 is in Sv,

since ‖Sv‖ = d(v2) − 1 + d(v3) − 1 + d(v4) − 1 ≤ 4 + ∆(G) − 1 + ∆(G) − 1 = 2∆(G) + 2 and

|RC(vv1)| = ∆(G) + 1, there exists a color α of RC(vv1) such that the color α is in Sv with

multiplicity at most one. Without loss of generality, we can assume that α ∈ C(v4). Now we

can recolor the edge vv3 with α to get a coloring C′. The coloring C′ is an acyclic edge coloring

of H since the coloring C′ is proper edge coloring and there exists no (2, α, vv3)-critical path

with respect to the coloring C (since there exists a (2, α, vv1)-critical path with respect to the

coloring C and Lemma 1). Thus |C′(v) ∩ C′(v1)| = 1, this situation is argued out as above, a

contradiction.

Suppose that |C(v)∩C(v1)| = 3. Let C(vv2)=1, C(vv3)=2 and C(vv4)=3. Thus |RC(vv1)| =

k − 3 = ∆(G) + 2. If there exists a color θ of B such that θ ∈ RC(vv1), using it to color the

edge vv1, there are no bichromatic cycles. So we can extend the coloring C to an acyclic edge

k-coloring of G, a contradiction. Otherwise, there exists a (1, θ, vv1)-critical path, (2, θ, vv1)-

critical path or (3, θ, vv1)-critical path with respect to the coloring C. Since ‖Sv‖ = (d(v2)−1)+

(d(v3)−1)+(d(v4)−1) ≤ 4+∆(G)−1+∆(G)−1 = 2∆(G)+2 and |RC(vv1)| = ∆(G)+2, there

exists a color α of B such that α ∈ RC(vv1) with multiplicity at most one in Sv. We can assume

that the color α is in C(v4). Now we recolor the edge vv3 with the color α to get a coloring C′. If

the coloring C′ is an acyclic edge coloring of H , thus |C′(v)∩C′(v1)| = 2, this situation is argued

out as above, a contradiction. If the coloring C′ is not an acyclic edge coloring of H , there exists

a (3, α, vv3)-critical path with respect to the coloring C. But, there exist a (3, α, vv1)-critical

path with respect to the coloring C, by Lemma 1, a contradiction.

Now we consider that there exists no vertex v that belongs to configurations (A1) and (A2)

as follows.

Case 3 G contains a 2-vertex v. Let the neighbors of v be v1 and v2, where d(v1) ≤ d(v2).

Now we delete all the 2-vertices from G to get a graph G′.

Case 3.1 If δ(G′) ≤ 1, without loss of generality, we can assume that δ(G′) = 1. Let dG′(v′) = 1,

and let u be the neighbor of v′ in G′. Since δ(G) ≥ 2 and there exists no vertex v that belongs to

configurations (A1) and (A2), we have dG(v′) ≥ 5. Let x be the neighbor of v′ and dG(x) = 2, and

let H = G− v′x. By the minimality of G, H has an acyclic edge coloring C using k colors. Let y

be the neighbor of x different from v′. If |C(x)∩C(v′)| = 0, since |C(v′)∪C(x)| ≤ ∆(G)−1+1 =

∆(G), there exists a color α of B such that α ∈ B −C(v′)∪C(x), using it to color the edge v′x,

therefore, there are no bichromatic cycles. So we can extend the coloring C to an acyclic edge

k-coloring of G, a contradiction. If |C(x) ∩ C(v′)| = 1, let z be 2-vertex in G and the neighbor
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of v′, and let C(v′z) = C(xy). Since |C(v′) ∪ C(x) ∪ C(z)| ≤ (∆(G) − 1) + 1 − 1 + 1 = ∆(G),

there exists a color α of B such that α ∈ B −C(v′)∪C(x)∪C(z), using it to color the edge v′x,

therefore, there exists no bichromatic cycles. So we can extend the coloring C to an acyclic edge

k-coloring of G, a contradiction. If C(xy) = C(uv′), since |C(y)| < k, there exists a color α of

B such that α ∈ B − C(y). We recolor the edge xy with α to get a coloring C′, so it is obvious

that the coloring C′ is an acyclic edge coloring of H . If |C′(x) ∩ C′(v′)| = 0, this situation is

argued out as above, a contradiction. If |C′(x)∩C′(v′)| = 1, then there exists a 2-vertex w which

is the neighbor of v′ in H such that C′(v′w) = C′(xy), this situation is argued out as above, a

contradiction.

Case 3.2 If δ(G′) ≥ 2, by Lemma 3, there exists a vertex v′ in G′ such that v′ belongs to

one of the configurations (A1)-(A3), say A′, and is not already in configuration A′ in G. Let

M = {x|x ∈ {v′} ∪ NG′(v′), dG′(x) < dG(x)}, and let u be the minimum degree vertex in M in

the graph G′. It is obvious that dG′(u) ≤ 6. Let N ′(u) = {x|x ∈ NG(u), dG(x) = 2}, and let

N ′′(u) = NG(u) − N ′(u). So, N ′′(u) = NG′(u). Since u ∈ M , we have |N ′(u)| 6= 0. Thus there

exists a vertex u′ in N ′(u). Let the neighbors of u′ be u and u′′ in G, and let H = G − {uu′}.

By the minimality of G, H has an acyclic edge k-coloring C. Let B′′(u) = {C(ux)|x ∈ N ′′(u)}.

Suppose that |C(u)∩C(u′)| = 0. Since |B −C(u)∪C(u′)| ≥ k − (∆(G)− 1)− 1 = 5, there

exists a color α of B such that α ∈ B − C(u) ∪ C(u′), using it to color the edge uu′, therefore,

there exists no bichromatic cycles. So we can extend the coloring C to an acyclic edge k-coloring

of G, a contradiction.

Suppose that |C(u)∩C(u′)| = 1. Let u1 be the neighbor of u different from u′ and C(u′u′′) =

C(uu1) = 1. Furthermore, if u1 ∈ N ′(u), then |C(u)∪C(u′)∪C(u1)| ≤ (∆(G)− 1)+1− 1+1 =

∆(G). So there exists a color α of B such that α ∈ B − C(u) ∪ C(u′) ∪ C(u1), using it to color

the edge uu′, therefore, there exists no bichromatic cycles. So we can extend the coloring C to

an acyclic edge k-coloring of G, a contradiction. If u1 ∈ N ′′(u), we need to consider two cases

as follows:

(1) If dG′(u) ≤ 5, since |B −B′′(u) ∪C(u′′)| ≥ k − (5 + ∆(G) − 1) = 1, there exists a color

α of B such that α ∈ B − B′′(u) ∪ C(u′′). We recolor the edge u′u′′ with α to get a coloring

C′, it is obvious that the coloring C′ is an acyclic edge coloring of H . If |C′(u) ∩ C′(u′)| = 0,

this situation is argued out as above, a contradiction. If |C′(u) ∩ C′(u′)| = 1, then there exists

a 2-vertex u2 in N ′(u) different from u′ such that C′(uu2) = C′(u′u′′), this situation is argued

out as above, a contradiction.

(2) If dG′(u) = 6, then the vertex u is adjacent to at least one 3-vertex y in G which is not

adjacent to 2-vertices. If u1 = y, since |B−C(u)∪C(u′)∪C(u1)| ≥ k−(∆(G)−1+1−1+2) = 4,

there exists a color α of B such that α ∈ B−C(u)∪C(u′)∪C(u1), using it to color the edge uu′,

therefore, there exists no bichromatic cycles. So we can extend the coloring C to an acyclic edge

k-coloring of G, a contradiction. If u1 6= y, since there exists a 3-vertex y which is in N ′′(u) and is

not adjacent to 2-vertices in G, we have |B−C(u′′)∪(B′′(u)\C(uy))| ≥ k−(∆(G)+6−1−1) = 1.

Thus there exists a color α of B such that α ∈ B −C(u′′)∪ (B′′(u) \C(uy)) with respect to the
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coloring C. We recolor the edge u′u′′ with the color α to get a coloring C′. It is obvious that

the coloring is an acyclic edge coloring of H . If |C′(u) ∩C′(u′)| = 0, this situation is argued out

as above, a contradiction. If |C′(u)∩C′(u′)| = 1, then there exists a vertex u2 which is 2-vertex

or 3-vertex not adjacent to 2-vertices in NH(u) such that C′(uu2) = C′(u′u′′), this situation is

argued out as above, a contradiction. �
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