
Journal of Mathematical Research with Applications

Jul., 2012, Vol. 32, No. 4, pp. 450–458

DOI:10.3770/j.issn:2095-2651.2012.04.009

Http://jmre.dlut.edu.cn

Property (ω) and Its Perturbations

Qiaoling XIN, Xiaohong CAO∗

College of Mathematics and Information Science, Shaanxi Normal University,

Shaanxi 710062, P. R. China

Abstract In the note, we establish for a bounded linear operator defined on a Hilbert

space the necessary and sufficient conditions for the stability of property (ω) by means of the

variant of the essential approximate point spectrum and the induced spectrum of consistency

in Fredholm and index. In addition, the stability of property (ω) for H(P ) operators is

considered.
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1. Introduction

Weyl [1] examined the spectra of all compact perturbations of a hermitian operator on

Hilbert space and found in 1909 that their intersection consisted precisely of those points of

the spectrum which were not isolated eigenvalues of finite multiplicity. This “Weyl’s theorem”

has been considered by many authors. Variants have been discussed by Harte and Lee [2] and

Rakočevic̀ [3, 4]. In this note, using a subset of the spectrum derived from “consistent in Fredholm

and index”, we study the perturbations of a new variant of Weyl’s theorem called property (ω),

and show that how property (ω) holds under perturbations by power finite rank operators, by

nilpotent operators and Riesz operators.

Throughout this paper, H will denote an infinite-dimensional complex Hilbert space, B(H)

the algebra of all bounded linear operators on H . For a bounded linear T ∈ B(H) on Hilbert

space the spectrum σ(T ) collects the complex numbers λ for which T − λI fails to be invertible,

equivalently is either not one to one or not onto, let ρ(T ) = C\σ(T ). We shall denote by n(T )

the dimension of the kernel N(T ) of T ∈ B(H), and by d(T ) the codimension of the range R(T ).

We recall that an operator T ∈ B(H) is called upper semi-Fredholm if n(T ) < ∞ and R(T ) is

closed, while T ∈ B(H) is called lower semi-Fredholm if d(T ) < ∞. If both the deficiency indices

n(T ) and d(T ) are finite, T is a Fredholm operator. If T is upper (lower) semi-Fredholm, the

index of T is denoted by ind(T ) = n(T ) − d(T ). The operator T is Weyl if it is Fredholm of

index zero. Recall that a bounded operator T is said bounded below if it is injective and has
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closed range. Define

SF−

+ (H) = {T ∈ B(H), T is upper semi-Fredholm and ind(T ) ≤ 0}.

The classes of operators defined above generate the following spectra. The Weyl essential ap-

proximate point spectrum σwa(T ) and the approximate point spectrum σa(T ) are defined by:

σwa(T ) = {λ ∈ C : T − λI /∈ SF−

+ (H)};

σa(T ) = {λ ∈ C : T − λI is not bounded below}.

Note that σwa(T ) is the intersection of all approximate point spectra σa(T + K) of compact

perturbations K of T . Write isoG for the set of all isolated points of G ⊆ C, accG = G\isoG.

It is known that if K is finite rank operator commuting with T , then λ ∈ accσa(T ) if and only

if λ ∈ accσa(T + K), for a proof see Theorem 3.2 in [5].

For an operator T the ascent is defined as p = p(T ) = inf{n ∈ N : N(T n) = N(T n+1)},

while the descent is defined as q = q(T ) = inf{n ∈ N : R(T n) = R(T n+1)}, the infimum

over the empty set is taken ∞. It is well known that if p(T ) and q(T ) are both finite, then

p(T ) = q(T ). Moreover, 0 < p(T −λI) = q(T −λI) < ∞ precisely when λ is a polar point of the

resolvent set of T . The class of all upper semi-Browder operators, and the class of all Browder

operators are defined: B+(H) = {T ∈ B(H) : T is upper semi-Fredholm with p(T ) < ∞},

BR(H) = {T ∈ B(H) : T is Fredholm with p(T ) = q(T ) < ∞}. The Browder spectrum of T is

defined by σb(T ) = {λ ∈ C : T − λI /∈ BR(H)}.

Recall that T ∈ B(H) is said to be a Riesz operator if T −λI is Fredholm for all λ ∈ C\{0}.

Evidently, quasi-nilpotent operators and compact operators are Riesz operators. The proof of

the following result may be found in Rakočevic̀ [6].

Theorem 1.1 Let T ∈ B(H), and K ∈ B(H) be a Riesz operator commuting with T . Then

(1) T ∈ SF−

+ (H) ⇔ T + K ∈ SF−

+ (H);

(2) T ∈ B+(H) ⇔ T + K ∈ B+(H);

(3) T ∈ BR(H) ⇔ T + K ∈ BR(H).

We shall describe a Hilbert space operator T ∈ B(H) as consistent in Fredholm and in-

dex(CFI) provided there is implication, for arbitrary S ∈ B(H), one of the cases occures: (1) ST

and TS are Fredholm and ind(ST ) = ind(TS) = ind(S); (2) Both TS and ST are not Fredhlom.

We shall write

σCFI(T ) = {λ ∈ C, T − λI is not CFI}.

The CFI spectrum does not need to be closed or nonempty [7].

In Section 2, using the CFI spectrum, we study the stability of property (ω), for a bounded

operator T acting on a Hilbert space, under perturbations by power finite rank operators, by

nilpotent operators and Riesz operators commuting with T . Also, the stability of property (ω)

for H(P ) operators is considered.

2. Property (ω) and perturbations
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A bounded operator T ∈ B(H) is said to satify property (ω) if

σa(T )\σaw(T ) = π00(T ),

where π00(T ) = π0(T ) ∩ iso σ(T ); π0(T ) = {λ ∈ C : 0 < n(T − λI) < ∞}.

An operator K ∈ B(H) is said to be power finite rank if there exists a positive integer m

such that Km is finite rank.

Property (ω) is fulfilled by a relevant number of Hilbert space operators [8], for example,

property (ω) is satisfied by scalar operators, or if the Hilbert adjoint T ∗ has property H(p). For

the stability of property (ω), let us begin with a lemma.

Lemma 2.1 Let T ∈ B(H). If K ∈ B(H) is a power finite rank operator that commutes with

T , then

(1) K is a Riesz operator;

(2) n(T + K) < ∞ ⇔ n(T ) < ∞;

(3) isoσ(T + K) ⊆ isoσ(T ) ∪ ρ(T );

(4) isoσa(T + K) ⊆ isoσa(T ) ∪ ρa(T ).

Proof Suppose that there exists a positive integer m such that Km is finite rank.

(1) For any λ ∈ C\{0}, we have Km−λmI = (K −λI)h(K), h(K) = Km−1 + · · ·+λm−1I.

Since Km − λmI is Browder and K − λI commutes with h(K), K − λI is Fredholm. Hence K

is a Riesz operator.

(2) We only need to prove that n(T ) < ∞ whenever n(T +K) < ∞. If n(T +K) < ∞, then

n((T +K)m) < ∞. As (T +K)m = (T m + · · ·+mTKm−1)+Km, let S = T m + · · ·+mTKm−1.

Then n(S) < ∞. We conclude that n(T ) < ∞ since N(T ) ⊆ N(S).

(3) Assume that λ0 ∈ isoσ(T + K). If λ0 /∈ isoσ(T ) ∪ ρ(T ), then λ0 ∈ accσ(T ). There

exists a sequence {λn}∞n=1 ⊆ σ(T ), λn → λ0 (n → ∞), and T − λnI is not invertible. Also we

can get T + K − λnI is invertible since λ0 ∈ isoσ(T + K). Then T − λnI is Browder (Theorem

1.1), and 0 < dimN(T − λnI) < ∞. Let Kn = K|N (T − λnI). Then Kn is invertible. In

fact, if Knx = 0, where x ∈ N(T − λnI), then (T + Kn − λnI)x = 0. Since T + K − λnI is

invertible, we have x = 0, thus Kn is injective. We know that in finite dimensional linear space

N(T −λnI), Kn is injective if and only if Kn is surjective. Hence KnN(T −λnI) = N(T −λnI).

Then
⋃

∞

n=1
N(T − λnI) ⊆

⋃
∞

n=1
R(Km

n ) ⊆ R(Km), thus
∑

∞

n=1
⊕N(T − λnI) ⊆ R(Km). We

have that
∑

∞

n=1
dimN(T − λnI) ≤ dimR(Km). We conclude that dimR(Km) = ∞ because

dimN(T − λnI) > 0 for any n ∈ N . It is in contradiction to the fact that Km is finite rank.

This shows that if λ0 ∈ isoσ(T + K), then λ0 ∈ isoσ(T ) ∪ ρ(T ).

The proof of (4) is similar to that of (3). �

We recall that an “isoloid” operator is the one such that the isolated points of the spectrum

are all eigenvalues, while an “a-isoloid” operator is the one such that the isolated points of its

approximate point spectrum are all eigenvalues.

We turn to a variant of the essential approximate point spectrum, involving a condition



Property (ω) and its perturbations 453

introduced by Saphar [9] and the zero jump condition of Kato [10]. Let

ρ1(T ) = {λ ∈ C : dim N(T − λI) < ∞ and there exists ǫ > 0 such that T − µI ∈ SF−

+ (H)

N(T − µI) ⊆
∞⋂

n=1

R[(T − µI)n] if 0 < |µ − λ| < ǫ}

and let σ1(T ) = C\ρ1(T ). Then σ1(T ) ⊆ σea(T ) ⊆ σb(T ) ⊆ σ(T ).

Theorem 2.2 Suppose that T ∈ B(H). If K is a power finite rank operator commuting

with T , then T + K is isoloid and satisfies property (ω) if and only if σb(T ) ∩ σa(T + K) =

σ1(T ) ∪ ∂σCFI(T ).

Proof Suppose that σb(T )∩σa(T +K) = σ1(T )∪∂σCFI(T ). Let λ0 ∈ σa(T +K)\σaw(T +K).

Then T − λ0I ∈ SF−

+ (H) (Theorem 1.1), hence n(T − λ0I) < ∞ and there exists ǫ > 0 such

that T − λI ∈ SF−

+ (H), N(T − λI) ⊆
⋂

∞

n=1
R[(T − λI)n] and ind(T − λ0I) = ind(T − λI) if

0 < |λ − λ0| < ǫ. We assert that λ0 /∈ ∂σCFI(T ). Otherwise, we have λ0 ∈ int ρCFI(T ) since

ind(T − λ0I) = ind(T − λI) = 0 if 0 < |λ − λ0| is small enough. It is in contradiction to the

definition of boundary point. Then λ0 /∈ σ1(T )∪ ∂σCFI(T ). Thus λ0 /∈ σb(T )∩ σa(T + K). But

since λ0 ∈ σa(T + K), we know λ0 /∈ σb(T ). This induces that T + K −λ0I is Browder. Now we

prove that λ0 ∈ π00(T + K). For the converse, let λ0 ∈ π00(T + K). Then λ0 ∈ isoσ(T ) ∪ ρ(T )

and n(T −λ0I) < ∞ (Lemma 2.1). Without loss of generality, we may let λ0 ∈ iso σ(T ). Now we

can see that λ0 /∈ σ1(T )∪∂σCFI(T ). Then T−λ0I is Browder, and hence T +K−λ0I is Browder,

which means that λ0 ∈ σa(T + K)\σaw(T + K). In the following, we will prove that T + K is

isoloid. Let λ0 ∈ isoσ(T +K) but n(T +K−λ0I) = 0. Then λ0 ∈ isoσ(T )∪ρ(T ). The fact that

K is power finite rank tells that n(T −λ0I) < ∞. This shows that λ0 /∈ σ1(T )∪∂σCFI(T ). Thus

T +K−λ0I is bounded below or T −λ0I is Browder. In each case, we may get that T +K−λ0I

is invertible, which contradicts the fact that λ0 ∈ isoσ(T + K). Therefore T + K is isoloid.

Conversely, suppose T +K is isoloid and satisfies property (ω). The inclusion “σb(T )∩σa(T +

K) ⊇ σ1(T ) ∪ ∂σCFI(T )” is easy to prove. Let λ0 /∈ σ1(T ) ∪ ∂σCFI(T ). Then n(T − λ0I) < ∞

and there exists ǫ > 0 such that T − λI ∈ SF−

+ (H) and N(T − λI) ⊆
⋂

∞

n=1
R[(T − λI)n] if

0 < |λ − λ0| < ǫ. Hence λ /∈ σa(T + K) or λ ∈ σa(T + K)\σaw(T + K). Since property (ω)

holds for T + K, it follows that T − λI is bounded below if 0 < |λ − λ0| < ǫ, which shows that

λ0 ∈ isoσa(T ) ∪ ρa(T ). There are two cases to consider.

Case 1 Suppose λ0 ∈ isoσa(T ). If R(T − λ0I) is closed, then T − λ0I ∈ SF−

+ (H), thus

λ0 /∈ σa(T + K) or λ0 ∈ σa(T + K)\σaw(T + K). The fact that property (ω) holds for T + K

tells that λ0 /∈ σa(T + K) ∩ σb(T + K), then λ0 /∈ σa(T + K) ∩ σb(T ). In the case that

R(T − λ0I) is not closed. Then λ0 /∈ σCFI(T ). From the fact that λ0 /∈ ∂σCFI(T ), we know

that λ0 /∈ σCFI(T ). Then T − λI is invertible if 0 < |λ − λ0| is small enough. This means that

λ0 ∈ isoσ(T )∪ρ(T ). Thus λ0 ∈ isoσ(T +K)∪ρ(T +K) (Lemma 2.1). Since property (ω) holds

for T +K and T +K is isoloid, T +K −λ0I is Browder. Then T −λ0I is Browder, which means

that λ0 /∈ σb(T ) ∩ σa(T + K).
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Case 2 If λ0 /∈ σa(T ), then λ0 /∈ σa(T + K) or λ0 ∈ σa(T + K)\σaw(T + K). We may suppose

that λ0 ∈ σa(T + K)\σaw(T + K). Since property (ω) holds for T + K, T + K −λ0I is Browder.

Then T − λ0I is Browder. Again we prove that λ0 /∈ σb(T ) ∩ σa(T + K). �

Remark 2.3 (1) “T + K is isoloid” is essential. For example, let K = 0 and T ∈ B(ℓ2) be

defined by:

T (x1, x2, x3, . . .) = (0, x1,
x2

2
,
x3

3
, . . .).

Then K is power finite rank and TK = KT . Also T +K satisfies property (ω) and is not isoloid.

But σb(T ) ∩ σa(T + K) = {0}, σ1(T ) ∪ ∂σCFI(T ) = ∅.

(2) In Theorem 2.2, “K commutes with T ” is essential. For example, let T, K ∈ B(ℓ2) be

defined by:

T (x1, x2, x3, . . .) = (0, 0, x2, x3, . . .),

K(x1, x2, x3, . . .) = (0, x1, 0, 0, . . .).

Clearly, K is a power finite rank operator, TK 6= KT . We can see that T + K is isoloid and

satisfies property (ω). On the other hand, it is easily seen that σb(T ) ∩ σa(T + K) = {λ ∈ C :

|λ| = 1}, while σ1(T ) ∪ ∂σCFI(T ) = {λ ∈ C : |λ| = 1} ∪ {0}.

(3) “K is power finite rank” is essential. For example, let T = 0, K ∈ B(ℓ2) be defined by:

K(x1, x2, x3, . . .) = (
x2

2
,
x3

3
,
x4

4
, . . .).

Then K is not power finite rank and TK = KT ; Also σb(T ) ∩ σa(T + K) = σ2(T ) ∪ ∂σCFI(T ).

But property (ω) fails for T + K.

As an immediate consequence we have:

Corollary 2.4 Suppose that T ∈ B(H). If K ∈ B(H) is a finite rank operator commuting

with T , then T + K is isoloid and satisfies property (ω) if and only if σb(T ) ∩ σa(T + K) =

σ1(T ) ∪ ∂σCFI(T ).

In [11], Aiena and Biondi studied the stability of property (ω). We will give another proof

of their main theorem:

Corollary 2.5 Suppose that T ∈ B(H) is a-isoloid and K is a finite rank operator commuting

with T such that σa(T ) = σa(T + K). If T satisfies property (ω), then T + K satisfies property

(ω).

Proof Using Corollary 2.4, we need to prove that σb(T )∩σa(T +K) = σ1(T )∪∂σCFI(T ). Since

T is a-isoloid and property (ω) holds for T , we can get that σb(T )∩ σa(T ) = σ1(T )∪ ∂σCFI(T ).

Then σb(T ) ∩ σa(T + K) = σb(T ) ∩ σa(T ) = σ1(T ) ∪ ∂σCFI(T ). �

Recall that T is finite-isoloid if isoσ(T ) ⊆ {λ ∈ C : 0 < n(T − λI) < ∞}. Similarly to the

proof of Theorem 2.2, we get:

Corollary 2.6 Suppose that T is finite-isoloid. If K is a compact operator commuting with

T , then T + K is isoloid and satisfies property (ω) if and only if σb(T ) ∩ σa(T + K) = σ1(T ) ∪

∂σCFI(T ) ∪ {λ ∈ C : n(T + K − λI) = ∞}.
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“T is finite-isoloid” is essential in Corollary 2.6. For example, let T = 0, K ∈ B(ℓ2) be

defined by:

K(x1, x2, x3, . . .) = (
x2

2
,
x3

3
,
x4

4
, . . .).

Clearly, K is compact and TK = KT . Since n(T ) = ∞, T is not finite-isoloid. It is easy to

check that σb(T ) ∩ σa(T + K) = {0} = σ2(T ) ∪ ∂σCFI(T ) ∪ {λ ∈ C : n(T + K − λI) = ∞}. On

the other hand, property (ω) fails for T + K.

Corollary 2.7 Suppose that T ∈ B(H). If K ∈ B(H) is a power finite rank operator commuting

with T , then T + K is finite-isoloid and satisfies property (ω) if and only if σb(T )∩σa(T + K) =

[σ1(T ) ∩ accσ(T )] ∪ ∂σCFI(T ).

Proof Suppose that σb(T )∩σa(T+K) = [σ1(T )∩acc σ(T )]∪∂σCFI(T ), then σb(T )∩σa(T +K) ⊆

σ1(T )∪∂σCFI(T ). And σb(T )∩σa(T +K) ⊇ σ1(T )∪∂σCFI(T ) is easy to prove. Now we can get

that σb(T ) ∩ σa(T + K) = σ1(T ) ∪ ∂σCFI(T ). From Theorem 2.2, T + K is isoloid and satisfies

property (ω). In the following we can prove T + K is finite-isoloid. Let λ0 ∈ isoσ(T + K). Then

λ0 ∈ isoσ(T ) ∪ ρ(T ). This shows that λ0 /∈ accσ(T ) ∪ ∂σCFI(T ), thus λ0 /∈ σb(T ) ∩ σa(T + K),

which means that n(T + K − λ0I) < ∞.

Conversely, using Theorem 2.2, we need to prove that σb(T ) ∩ σa(T + K) ⊆ accσ(T ) ∪

∂σCFI(T ) = accσ(T ). Let λ0 /∈ accσ(T ). Then λ0 ∈ isoσ(T )∪ ρ(T ). Without loss of generality,

let λ0 ∈ isoσ(T ). From Lemma 2.1, we get that λ0 ∈ isoσ(T + K) ∪ ρ(T + K). The fact that

property (ω) holds for T + K and T + K is finite-isoloid tells us that T + K − λ0I is Browder.

Then T − λ0I is Browder, which shows that λ0 /∈ σb(T ) ∩ σa(T + K). �

Let H(T ) be the class of all complex-valued functions which are analytic on a neighborhood

of σ(T ) and are not constant on any component of σ(T ).

Corollary 2.8 Suppose that T ∈ B(H). If K ∈ B(H) is a power finite rank operator commuting

with T , then the following statements are equivalent:

(1) For any f ∈ H(T ), f(T ) + K satisfies property (ω) and is isoloid, σa(f(T ) + K) =

σ(f(T ) + K);

(2) For any f ∈ H(T ), f(T ) satisfies property (ω) and is isoloid, σa(f(T )) = σ(f(T ));

(3) σb(T ) = σ1(T ).

Proof (1)⇒(2). Clearly.

(2)⇒(3). We only need to prove that σb(T ) ⊆ σ1(T ). Let λ0 /∈ σ1(T ). Then n(T−λ0I) < ∞

and T − λI ∈ SF−

+ (H) and N(T − λI) ⊆
⋂

∞

n=1
R[(T − λI)n] if 0 < |λ − λ0| is sufficiently small.

Since property (ω) holds for T , T − λI is bounded below. From the fact that σ(T ) = σa(T ), we

know that T − λI is invertible. This shows that λ0 ∈ isoσ(T ) ∪ ρ(T ). Then T − λ0I is Browder

since T is isoloid and satisfies property (ω), which means that λ0 /∈ σb(T ), hence σb(T ) = σ1(T ).

(3)⇒(1). Suppose that σb(T ) = σ1(T ), we can get that f(σ1(T )) = σ1(f(T )). In fact,

we have that f(σ1(T )) = f(σb(T )) = σb(f(T )) ⊇ σ1(f(T )). For the converse inclusion, let

µ0 /∈ σ1(f(T )). Then n(f(T )−µ0I) < ∞ and there exists ǫ > 0 such that f(T )−µI ∈ SF−

+ (H)
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and N(f(T ) − µI) ⊆
⋂

∞

n=1
R[(f(T ) − µI)n] if 0 < |µ − µ0| < ǫ. Let f(T ) − µ0I = (T −

λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ), where λi 6= λj and g(T ) is invertible. By continuity

of f(λ), there exists δ > 0 such that 0 < |f(λ) − f(λi)| = |f(λ) − µ0| < ǫ if 0 < |λ − λ0| <

δ. Then f(T ) − f(λ)I ∈ SF−

+ (H) and N(f(T ) − f(λ)I) ⊆
⋂

∞

n=1
R[(f(T ) − f(λ)I)n]. Thus

f(λ) /∈ σk(f(T )) = f(σk(T )) (see [12, Satz 6]), so λ /∈ σk(T ). Since f(T ) − f(λ)I is upper

semi-Fredholm, T − λI is upper semi-Fredholm and hence λ /∈ σ1(T ), it follows that T − λI is

Browder. Then N(T −λI) = N(T −λI)∩
⋂

∞

n=1
R[(T −λI)n] = {0}, and we know that T −λI is

invertible. Now we have that λi ∈ isoσ(T ) ∪ ρ(T ) and n(T − λiI) < ∞, then λi /∈ σ1(T ). Hence

f(σ1(T )) ⊆ σ1(f(T )). This shows that σb(f(T )) = σ1(f(T )), and σa(f(T ) + K) ⊇ σb(f(T )),

then σb(f(T ))∩σa(f(T )+K) = σb(f(T )) = σ1(f(T ))∪∂σCFI(f(T )). By Theorem 2.2, f(T )+K

is isoloid and property (ω) holds for f(T )+K. Since σa(f(T )+K) ⊇ σb(f(T ))(= σb(f(T )+K)),

we know that σa(f(T ) + K) = σ(f(T ) + K). �

In the sequel we shall consider nilpotent perturbations of operators. It is easy to check that

if N is a nilpotent operator commuting with T , then σ(T ) = σ(T + N) and σa(T ) = σa(T + N).

It is easily proved that:

Theorem 2.9 Suppose N ∈ B(H) is a nilpotent operator that commutes with T ∈ B(H). Then

T + N is isoloid and satisfies property (ω) if and only if σb(T ) ∩ σa(T ) = σ1(T ) ∪ ∂σCFI(T ).

“N is a nilpotent operator” is essential. Let T = 0, N ∈ B(ℓ2) be defined by:

N(x1, x2, x3, . . .) = (
x2

2
,
x3

3
,
x4

4
, . . .).

Clearly, property (ω) fails for T + N , while σb(T ) ∩ σa(T ) = {0} = σ1(T ) ∪ ∂σCFI(T ).

For the stability of property (ω) for quasi-nilpotent operators or Riesz operators, we can

get:

Theorem 2.10 Suppose that T ∈ B(H). If K ∈ B(H) is a Riesz operator commuting with

T , then T + K is isoloid and satisfies property (ω) if and only if σb(T ) ∩ σa(T + K) = [σ1(T ) ∩

accσ(T + K)] ∪ ∂σCFI(T ) ∪ {λ ∈ C : n(T + K − λI) = ∞}.

A bounded operator T ∈ B(H) is said to have property H(P ) if for every complex number λ

there exists a positive integer dλ for which H0(T −λI) = N((T −λI)dλ), where H0(T ) = {x ∈ H :

limn→∞ ‖T nx‖
1

n = 0}. This class has been studied in [13] and for the constant function dλ = 1

has been also studied in [14]. Also property H(P ) is satisfied by p-hyponormal operators and log-

hyponormal operators, M -hyponormal operators, ω-hyponormal operators, totally paranormal

operators and totally ∗-paranormal operators. As an application, we shall consider the stability

of property (ω) for H(P ) operators.

Theorem 2.11 Suppose that T ∗ ∈ H(P ). Then for any f ∈ H(T ) and any power finite rank

K commuting with T , property (ω) holds for f(T ) + K.

Proof First we assert that σ1(T ) = σb(T ). In fact, we only need to prove σb(T ) ⊆ σ1(T ).

Suppose that λ0 /∈ σ1(T ), then n(T−λ0I) < ∞ and there exists ǫ > 0 such that T−λI ∈ SF−

+ (H)

and N(T − λI) ⊆
⋂

∞

n=1
R[(T − λI)n] if 0 < |λ − λ0| < ǫ. By p(T ∗ − λI) < ∞, we know that
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ind(T − λI) = 0, then T − λI is Weyl if 0 < |λ− λ0| < ǫ. Since T ∗ ∈ H(P ) and q(T − λI) < ∞,

we know that T − λI is Browder, then N(T −λI) = N(T −λI)∩
⋂

∞

n=1
R[(T −λI)n] = {0}, this

means that T − λI is invertible. Now we have that λ0 ∈ isoσ(T ), then λ0 ∈ isoσ(T ∗). Since

T ∗ ∈ H(P ), λ0 is a polar point of resolvent set of T ∗. We get that λ0 is a polar point of resolvent

set of T . Using the fact that n(T − λ0I) < ∞, we know T − λ0I is Browder, that is λ0 /∈ σb(T ).

Thus σb(T ) ⊆ σ1(T ).

By Corollary 2.8, we know that property (ω) holds for f(T ) + K. �

If T ∈ H(P ), K ∈ B(H) is a power finite rank operator commuting with T , then property

(ω) may fail for T + K.

Theorem 2.12 Suppose that T ∈ H(P ), if K is a power finite rank operator and TK = KT ,

then T + K is isoloid and satisfies property (ω) ⇔ σCFI(T ) = σb(T ) ∩ ρa(T + K).

Proof Suppose that T + K satisfies property (ω) and is isoloid. The inclusion σCFI(T ) ⊇

σb(T ) ∩ ρa(T + K) is easy to prove. Let λ0 /∈ σb(T ) ∩ ρa(T + K). Without loss of generality, we

suppose that λ0 ∈ σa(T + K).

Case 1 Suppose λ0 /∈ σaw(T + K), T + K −λ0I is Browder since property (ω) holds for T + K,

this induces that T − λ0I is Browder, which means λ0 /∈ σCFI(T ).

Case 2 Suppose λ0 ∈ σaw(T + K), then λ0 ∈ σaw(T ). If R(T − λ0I) is not closed, we can

get λ0 /∈ σCFI(T ). In the case that R(T − λ0I) is closed, then n(T − λ0I) = ∞, we claim that

d(T − λ0I) = ∞. Otherwise if d(T − λ0I) < ∞, then n(T − λ0I) ≤ d(T − λ0I) < ∞ since

p(T − λ0I) < ∞. It is a contradiction. Then n(T − λ0I) = d(T − λ0I) = ∞. Again we have

λ0 /∈ σCFI(T ).

Conversely, suppose σCFI(T ) = σb(T )∩ ρa(T +K). By Theorem 2.2, we need to prove that

“σb(T ) ∩ σa(T + K) ⊆ σ1(T ) ∪ ∂σCFI(T ).” Let λ0 /∈ σ1(T ) ∪ ∂σCFI(T ). Then n(T − λ0I) < ∞

and there exists ǫ > 0 such that T − λI ∈ SF−

+ (H) and N(T − λI) ⊆
⋂

∞

n=1
R[(T − λI)n] if

0 < |λ− λ0| < ǫ. By p(T − λI) < ∞, we know that T − λI is bounded below. This induces that

λ0 ∈ isoσa(T ) ∪ ρa(T ).

Case 1 Suppose λ0 ∈ ρa(T ), that is λ0 /∈ σa(T ), then λ0 /∈ σa(T + K) or λ0 ∈ σa(T + K).

We may suppose that λ0 ∈ σa(T + K). From the fact that σCFI(T ) = σb(T ) ∩ ρa(T + K),

λ0 /∈ σCFI(T ), hence λ0 /∈ σ(T ), which means that λ0 /∈ σb(T ).

Case 2 Suppose λ0 ∈ isoσa(T ), then λ0 ∈ isoσa(T + K) ∪ ρa(T + K) (Lemma 2.1). Without

loss of generality, let λ0 ∈ σa(T + K). Since σCFI(T ) = σb(T ) ∩ ρa(T + K), we know that

λ0 /∈ σCFI(T ). Then T − λI is invertible if 0 < |λ − λ0| is small enough. Thus λ0 ∈ isoσ(T ).

Since T ∈ H(P ), it follows that λ0 is a polar point of resolvent set of T. Using the fact that

n(T − λ0I) < ∞, we know that T − λ0I is Browder, that is λ0 /∈ σb(T ). �

Corollary 2.13 Suppose that T ∈ H(P ). If σCFI(T ) = ∅, then T + K is isoloid and satisfies

property (ω) for any power finite rank operator K commuting with T .
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Corollary 2.14 Suppose that T ∈ H(P ) is finite-isoloid. If K is a Riesz operator commuting

with T , then T + K is isoloid and satisfies property (ω) ⇔ σCFI(T ) = σb(T ) ∩ ρa(T + K).
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