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1. Introduction and preliminaries

The problem of determining linear map Φ on B(X) preserving certain properties has at-

tracted attention of many mathematicians in recent decade. They have been devoted to the

study of linear maps preserving spectrum, rank, nilpotency, etc.

Rank preserving problem is a basic problem in the study of linear preserving problem. Rank

preserving linear maps have been studied intensively by Hou in [1]. In [2, 3] the authors used

very elegant arguments to completely describe the additive mappings preserving (or decreasing)

rank one.

In our study of free probability theory, we find that modular maps on Hilbert C∗-module

preserving certain properties are also important [4, 5], and thus the study of the modular pre-

serving problem becomes attractive. In [6], a complete description of modular maps preserving

rank one modular operators was given. Naturally in the present paper we consider quasi-modular

maps on modules preserving rank one, which are much more complicated than the modular maps

case.

A Hilbert C∗-module over a C∗-algebra A is a left A-module M equipped with an A-valued

inner product 〈, 〉 which is A-linear in the first and conjugate A-linear in the second variable

such that M is a Banach space with the norm ‖v‖M = ‖〈v, v〉‖
1
2 , ∀v ∈ M. Hilbert C∗-modules

first appeared in the work of Kaplansky [7], who used them to prove that derivations of type I

AW ∗-algebras are inner. Now a good text book about Hilbert C∗-module is [8]. In this paper

we mainly consider Hilbert A-module A⊗H (or denoted by HA), where H is a separable infinite

dimentional Hilbert space and A is a unital commutative C∗-algebra. HA plays a special role
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in the theory of Hilbert C∗-modules [8]. Obviously, HA is countably generated and possesses an

orthonormal basis {1 ⊗ ei} := ε, where {ei} is an orthonormal basis in H .

We introduce a class of modular operators which is analogous to rank one operators on a

Hilbert space. For all x, y ∈ HA, define θx,y : HA → HA by θx,y(ξ) := 〈ξ, y〉x, for every ξ ∈ HA.

Note that θx,y is quite different from rank one linear operators on Hilbert space. For instance,

we cannot infer x = 0 or y = 0 from θx,y = 0. For convenience, we still call θx,y rank one. We

denote the set {
∑n

i=1 αiθxi,yi
, ∀n ∈ N, αi ∈ A} by F(HA).

In the present paper, we will describe the locally quasi-modular map Φ : F(HA) → F(HA)

which maps θx,y to some θs,t, and in this case Φ is always quasi-modular. The methods are

analogous to those in [1–3] but much more complicated.

2. Definitions and lemmas

In this section we mainly introduce some definitions and prove some lemmas.

Definition 2.1 ([6]) Let ε be a orthonormal basis in HA. x 6= 0 in HA will be called coordinately

invertible if for all e ∈ ε, 〈e, x〉 is invertible in A unless 〈e, x〉 = 0.

We denote the set of all the coordinately invertible elements in HA by CI(HA) or CI for

short and the set of all the invertible elements in A by Inv(A). Obviously, ε ⊆ CI.

Coordinately invertible elements in Hilbert C∗-module are analogous to the elements in

Hilbert space to some extents.

Lemma 2.2 ([6]) Suppose y ∈ CI and θx,y = 0, then x = 0.

Lemma 2.3 ([6]) Let M be a Hilbert A-module, where A is a unital C∗-algebra, and let

φ, σ : M → A be A-linear operators. Suppose that σ vanishes on the kernel of φ. Then there

exists b ∈ A such that σ = φ · b.

Corollary 2.4 ([6]) Let g1, g2 ∈ M. If for all x ∈ M, 〈x, g1〉 = 0 implies 〈x, g2〉 = 0, then there

is a ∈ A such that g2 = ag1.

The following Lemma 2.5, which will be used frequently, has been obtained in [6]. Never-

theless we give its proof for the sake of completeness.

Lemma 2.5 Let A be a unital C∗-algebra, x1, x2 ∈ M, g1, g2 ∈ CI satisfying θx1,g1
+ θx2,g2

=

θx3,g3
. Then at least one of the following is true:

(i) There exists an invertible α1 ∈ A such that g1 = α1g2;

(ii) There are β1, β2 ∈ A such that x1 = β1x3, x2 = β2x3.

Proof We will complete the proof by considering the following four cases.

Case 1 For all ξ ∈ HA, 〈ξ, g2〉 = 0 implies 〈ξ, g1〉 = 0. From Corollary 2.4, there exists α1 ∈ A

such that g1 = α1g2. Furthermore from g1, g2 ∈ CI, we infer that α1 ∈ A is invertible.

Case 2 For all ξ ∈ HA, 〈ξ, g1〉 = 0 implies 〈ξ, g2〉 = 0. Still from Corollary 2.4, there is α2 ∈ A
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such that g2 = α2g1 and α2 is invertible.

Case 3 There exists ξ0 ∈ HA such that 〈ξ0, g2〉 = 0 but 〈ξ0, g1〉 6= 0. We can find e ∈ ε such

that 〈e, g2〉 = 0 but 〈e, g1〉 6= 0. Then from 〈e, g1〉x1 + 〈e, g2〉x2 = 〈e, g3〉x3, it follows 〈e, g1〉x1 =

〈e, g3〉x3. Since g1 ∈ CI, we have x1 = 〈e, g1〉
−1〈e, g3〉x3. We put β1 = 〈e, g1〉

−1〈e, g3〉 and get

θβ1x3,g1
+ θx2,g2

= θx3,g3
. Thus θx2,g2

= θx3,g3−β∗

1
g1

. Now choosing e′ ∈ ε, we get 〈e′, g2〉x2 =

〈e′, g3 − β∗
1g1〉x3 and thus x2 = 〈e′, g2〉

−1〈e′, g3 − β∗
1g1〉x3. Putting β2 = 〈e′, g2〉

−1〈e′, g3 − β∗
1g1〉

then we obtain (ii).

Case 4 There exists ξ0 ∈ HA such that 〈ξ0, g1〉 = 0 but 〈ξ0, g2〉 6= 0. Similarly to Case 3, we

get (ii) again. �

Corollary 2.6 With the notations in the above lemma, suppose g1 6= αg2, for all α ∈ A. If

g3 ∈ CI, then there exist β1, β2 ∈ A which are invertible such that x1 = β1x3, x2 = β2x3.

Furthermore, x1 = β0x2 for some β0 ∈ Inv(A).

Proof Denote {x|〈x, gi〉 = 0} by ker gi, i = 1, 2. Since g1 6= αg2, g2 6= βg1, we have ker g1 *

ker g2, kerg2 * ker g1. So there exists e1 ∈ ε, such that 〈e1, g1〉 6= 0 but 〈e1, g2〉 = 0. Then

〈e1, g1〉x1 + 〈e1, g2〉x2 = 〈e1, g3〉x3, i.e. 〈e1, g1〉x1 = 〈e1, g3〉x3 and thus x1 = 〈e1, g1〉
−1〈e1, g3〉x3.

〈e1, g1〉
−1〈e1, g3〉 = β1 is invertible.

Similarly, if there exits e2 ∈ ε such that 〈e2, g1〉 = 0 but 〈e2, g2〉 6= 0, then

x2 = 〈e2, g2〉
−1〈e2, g3〉x3.

Putting β2 = 〈e2, g2〉
−1〈e2, g3〉, we get the desired result. �

Definition 2.7 Φ : F(HA) → F(HA) is a map. If for any x ∈ HA, y ∈ CI, there are s ∈ HA,

t ∈ CI such that Φ(θx,y) = θs,t, Φ(θy,x) = θt,s, x 6= 0 implies s 6= 0, and s, t can be chosen in CI

whenever x, y ∈ CI, then Φ will be called rank one preserving.

Definition 2.8 Φ : F(HA) → F(HA) is an additive map and for arbitrary θx,y, Φ(λθx,y) =

τx,y(λ)Φ(θx,y) where τx,y : A → A is a surjective multiplicative ∗-transform. Then Φ will be

called a locally quasi-modular map.

If in addition, there exists τ : A → A, which is a surjective multiplicative ∗-transform such

that Φ(λT ) = τ(λ)Φ(T ), for all T ∈ F(HA), then Φ will be called a τ -quasi-modular map.

It is well known that two locally linearly dependent linear operators are linearly dependent.

The following lemma is an analogue of this result in modular operator case.

Lemma 2.9 Let A be a unital commutative C∗-algebra, and A, B be injective τ -quasi-modular

continuous maps on HA. Suppose for all e, e′ ∈ ε, there exists λe ∈ A such that Be = λeAe.

Then B = λA for some λ ∈ A.

Proof Let e1, e2 ∈ ε. From the assumptions, we know there exist λ1, λ2 ∈ A such that

Be1 = λ1Ae1 and Be2 = λ2Ae2. B(e1 + e2) = λ3A(e1 + e2). On the other hand B(e1 + e2) =
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λ1Ae1 + λ2Ae2. Thus

(λ3 − λ1)Ae1 + (λ3 − λ2)Ae2 = 0.

Suppose τ(β1) = λ3−λ1, τ(β2) = λ3−λ2. Then A(β1e1)+A(β2e2) = 0, i.e., A(β1e1 +β2e2) = 0.

Since A is injective, we get β1e1 + β2e2 = 0 and β1 = β2 = 0. Therefore, λ1 = λ2 = λ3.

For arbitrary e ∈ ε and e 6= e1, e2. Be = λeAe. Repeating the above process, we have

λe = λ1 = λ2 = λ3.

For arbitrary f ∈ HA, f =
∑

i αiei. Then we have

B(f) = B(
∑

i

αiei) =
∑

i

τ(αi)Bei =
∑

i

τ(αi)λ3Aei

= λ3A(
∑

i

αiei) = λ3A(f).

Denote λ3 by λ and we get B = λA.

Now we introduce some notations. Lx := {θx,g | g ∈ HA}, Rf := {θx,f | x ∈ HA},

LCI
x := {θx,g | g ∈ CI}, RCI

f := {θy,f | y ∈ CI}, Lε
x := {θx,e | e ∈ ε}, Rε

f := {θe,f | e ∈ ε}. �

In the following, A is a unital commutative C∗-algebra and Φ is always a locally quasi-

modular preserving rank one map on HA. The following lemma plays important roles in this

paper.

Lemma 2.10 For every x ∈ CI there exists either y ∈ CI such that Φ(Lε
x) ⊆ LCI

y or f ∈ CI

such that Φ(Lε
x) ⊆ RCI

f .

Proof For e1, e2 ∈ ε, Φ(θx,e1
) = θy1,g1

, Φ(θx,e2
) = θy2,g2

, where y1, y2, g1, g2 ∈ CI. Since

e1 + e2 ∈ CI, there are y12, g12 ∈ CI such that Φ(θx,e1+e2
) = θy1,g1

+ θy2,g2
= θy12,g12

. From

Corollary 2.6, there exist α12, β12 ∈ Inv(A) such that y1 = α12y2 or g1 = β12g2.

Case 1 We suppose g1 = β12g2 and y1 6= αy2, for all α ∈ Inv(A). For arbitrary ei ∈ ε, i 6= 1, 2,

Φ(θx,ei
) = θyi,gi

where gi, yi ∈ CI. Assume that g1 6= βgi, for all β ∈ Inv(A). Then there exists

αi ∈ Inv(A) such that y1 = αiyi.

Φ(θx,e1+e2+ei
) = θy1,g1

+ θy2,g2
+ θyi,gi

= θαiyi,β12g2
+ θy2,g2

+ θyi,gi

= θβ∗

12
αiyi+y2,g2

+ θyi,gi
.

Since g1 = β12g2, g1 6= βgi for all β ∈ Inv(A) and Φ preserving rank one, we know there exists

α0 ∈ Inv(A) such that yi = α0(β
∗
12αiyi + y2) and (1 − α0β

∗
12αi)yi = α0y2. Consequently

y2 = α−1
0 (1 − β∗

12α0αi)α
−1
i y1.

On the other hand, y1, y2 ∈ CI, so α−1
0 (1 − β∗

12α0αi)α
−1
i ∈ Inv(A), which contradicts our

assumption. Thus we have proved g1 = β1igi for some β1i ∈ Inv(A).

Then Φ(θx,ei
) = θyi,gi

= θβ
−1∗

12
yi,g1

. So we have Φ(Lε
x) ⊆ RCI

g1
.

Case 2 We suppose y1 = α12y2 for some α12 ∈ Inv(A) and g1 6= βg2, for all β ∈ Inv(A).

For arbitrary ei ∈ ε, i 6= 1, 2, Φ(θx,ei
) = θyi,gi

, for some yi, gi ∈ CI.
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Assume y1 6= αyi, for all α ∈ Inv(A), then g1 = β1igi, for some β1i ∈ Inv(A).

Φ(θx,e1+e2+ei
) = θy1,g1

+ θy2,g2
+ θyi,gi

= θy1,β1igi
+ θα

−1

12
y1,g2

+ θyi,β
−1

1i
g1

= θy1,β1igi+α
−1∗

12
g2

+ θyi,β
−1

1i g1
.

Since x, e1 + e2 + ei ∈ CI, we know there exists β0 ∈ Inv(A) such that β−1
1i g1 = β0(g1 + α−1∗

12 g2)

and g2 = β−1
0 α∗

12(β
−1
1i − β0)g1 which contradicts g1 6= βg2, for all β ∈ Inv(A). Thus we have

proved y1 = α1iyi, for some α1i ∈ Inv(A). Then Φ(θx,ei
) = θyi,gi

= θα
−1

1i
y1,gi

= θy1,α
−1∗

1i
gi

and

Φ(Lε
x) ⊆ LCI

y1
.

Case 3 If for all ej ∈ ε, j 6= 1, Φ(θx,ej
) = θyj ,gj

such that y1 = α1jyj , g1 = β1jgj , then both

Φ(Lε
x) ⊆ LCI

y1
and Φ(Lε

x) ⊆ RCI
g1

hold. �

Lemma 2.11 At least one of the following is true

(1) For all x ∈ CI, there exists y ∈ CI such that Φ(Lε
x) ⊆ LCI

y ;

(2) For all x ∈ CI, there exists f ∈ CI such that Φ(Lε
x) ⊆ RCI

f .

Proof If for some x ∈ CI, Φ(Lε
x) ⊆ Inv(A)θy,g where y, g ∈ CI, then both Φ(Lε

x) ⊆ LCI
y and

Φ(Lε
x) ⊆ RCI

g hold.

Now we assume that there exist x0, x1 ∈ CI such that Φ(Lε
x0

) ⊆ LCI
y0

, Φ(Lε
x1

) ⊆ RCI
g1

and

Φ(Lε
x0

) * Inv(A)θy,g, Φ(Lε
x1

) * Inv(A)θy,g for any θy,g. We say there exists an e0 ∈ ε such

that Φ(θx0,e0
) = θy0,g where g 6= αg1 (If such an e0 does not exist, then both Φ(Lε

x0
) ⊆ LCI

y0

and Φ(Lε
x0

) ⊆ RCI
g1

). We can find an e1 ∈ ε such that Φ(θx1,e1
) = θz,g1

where z 6= αy0 for

all α ∈ Inv(A). We put Φ(θx0,e1
) = θy0,m for some m ∈ CI. It follows that m = λg1 for

some λ ∈ Inv(A) from Φ(θx0+x1,e1
) = θz,g1

+ θy0,m and z 6= αy0 for any α ∈ A. And then

Φ(θx0,e1
) = θy0,λg1

.

On the other hand Φ(θx1,e0
) = θy1,g1

for some y1 ∈ CI. Then Φ(θx0+x1,e0
) = θy0,g + θy1,g1

.

From g 6= αg1, we infer that y1 = µy0 for some µ ∈ Inv(A) and Φ(θx1,e0
) = θµy0,g1

.

Now we have

Φ(θx0+x1,e0+e1
) = θy0,g + θy0,λg1

+ θµy0,g1
+ θz,g1

= θy0,g + θλ∗y0+µy0+z,g1

We say that θy0,g + θλ∗y0+µy0+z,g1
cannot be a rank one operator since g1 6= αg, z 6= βy0 for

all α, β ∈ Inv(A) and e1 + e2 ∈ CI which contradicts Φ preserving rank one. Thus we get the

desired results. �

Corollary 2.12 At least one of the following is true

(i) For all f ∈ CI there exists g ∈ CI such that Φ(Rε
f ) ⊆ RCI

g ;

(ii) For all f ∈ CI there exists y ∈ CI with Φ(Rε
f ) ⊆ LCI

y .

Lemma 2.13 (i) If for all x ∈ CI, there exists y ∈ CI such that Φ(Lε
x) ⊆ LCI

y , then for all

f ∈ CI, there exists g ∈ CI such that Φ(Rε
f ) ⊆ RCI

g ;

(ii) If for all x ∈ CI, there exists g ∈ CI such that Φ(Lε
x) ⊆ RCI

g , then for all f ∈ CI there

exists z ∈ CI such that Φ(Rε
f ) ⊆ LCI

z .
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Proof We only prove (i). If Φ(Rε
f ) ⊆ Inv(A)θy,g for some y, g ∈ CI, then both Φ(Rε

f ) ⊆ RCI
g

and Φ(Rε
f ) ⊆ LCI

y hold.

In the following we suppose Φ(Rε
f ) * Inv(A)θy,g for any y, g ∈ CI. We assume, to reach a

contradiction, that we have simultaneously Φ(Lε
x) ⊆ LCI

y and Φ(Rε
f ) ⊆ LCI

z where x, y, f, z ∈ CI.

We can find e1, e2 ∈ ε such that Φ(θx,e1
) = θy,g1

and Φ(θx,e2
) = θy,g2

where g1, g2 ∈ CI, g1 6= αg2

for all α ∈ Inv(A). From Φ preserving rank one we can find x1 ∈ CI with Φ(Lε
x1

) ⊆ LCI
y1

such

that y1 6= αy for all α ∈ Inv(A). We put Φ(θx1,e1
) = θy1,u for some u ∈ CI. Then we have

Φ(θx+x1,e1
) = θy,g1

+ θy1,u = θy0,g0
where g0 ∈ CI. From Corollary 2.6 and y1 6= α0y we have

g1 = λu for some λ ∈ Inv(A) and Φ(θx1,e1
) = θy1,λ−1g1

.

For arbitrary x′ ∈ CI, with Φ(θx′,e1
) = θy′,g′ such that y′, g′ ∈ CI. If y′ = α′y for some

α′ ∈ Inv(A), then y′ 6= αy1 for all α ∈ Inv(A). By considering Φ(θx′+x1,e1
) we get g′ = β1g1 for

some β1 ∈ Inv(A). If y′ 6= αy for all α ∈ Inv(A), then we consider Φ(θx′+x,e1
) and can get the

same result. Anyway we have proved Φ(RCI
e1

) ⊆ RCI
g1

.

We assume Φ(Rε
e1

) ⊆ LCI
z for some z ∈ CI. For all e ∈ ε with Φ(θe,e1

) = θz,g0
such that

z, g0 ∈ CI. As the argument in the above paragraph, we consider Φ(θe+x,e1
) or Φ(θe+x′,e1

). Then

we get g0 = α0g1 for some α0 ∈ Inv(A). Therefore, Φ(Rε
e1

) ⊆ Inv(A)θz,g1
which contradicts our

assumption. Thus Φ(Rε
e1

) * LCI
z for any z ∈ CI and Φ(Rε

e1
) ⊆ RCI

g for some g ∈ CI. From

Lemma 2.11 we get that for all y ∈ CI, Φ(Rε
y) ⊆ RCI

g which contradicts Φ(Rε
f ) ⊆ LCI

z . �

Lemma 2.14 If for x ∈ CI, Φ(Lε
x) ⊆ LCI

y , then Φ(Lx) ⊆ Ly.

Proof For all f ∈ HA, f =
∑

i αiei where αi ∈ A, ei ∈ ε, then

Φ(θx,f ) = Φ(θx,
∑

i

αiei
) = Φ(

∑

i

α∗
i θx,ei

) =
∑

i

τx,ei
(α∗

i )Φ(θx,ei
)

= θy,
∑

i

τx,ei
(αi)gi

.

Therefore, Φ(Lx) ⊆ Ly. �

Similarly we can prove

Lemma 2.15 If Φ(Lε
x) ⊆ RCI

f , for some f ∈ CI, then Φ(Lx) ⊆ Rf .

3. Main results

In this section, we characterize the rank one preserving quasi-modular maps on Hilbert

C∗-modules. We find that their forms are very similar to those of rank one preserving maps

on linear spaces. We also get that a rank one preserving locally quasi-modular map is always

quasi-modular.

Theorem 3.1 Φ : F(HA) → F(HA) is a surjective preserving rank one locally quasi-modular

map. Then one of the following is true: (i) For all x, f ∈ HA, Φ(θx,f) = θAx,Cf where A, C are

injective quasi-modular maps on HA;

(ii) For all x, f ∈ HA, Φ(θx,f) = θCf,Ax where A, C are injective conjugate quasi-modular

maps on HA.
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Proof We consider the case of x ∈ CI first. In this case we have Φ(θx,f) = θy,Cxf . For all

f ∈ HA, from Lemma 2.14 we have the following claims.

Claim 1 Cx is a map. In fact, putting f1 = f2, we have Φ(θx,f1
) = θy,Cxf1

and Φ(θx,f2
) =

θy,Cxf2
. We infer Cxf1 = Cxf2 from y ∈ CI.

Claim 2 Cx is injective. Otherwise, there exists f0 6= 0 but Cxf0 = 0. Then Φ(θx,f0
) =

θy,Cxf0
= 0 which contradicts Φ preserving rank one.

Claim 3 Cx is additive. For f1, f2 ∈ HA, Φ(θx,f1+f2
) = θy,Cx(f1+f2). On the other hand

Φ(θx,f1+f2
) = Φ(θx,f1

)+ Φ(θx,f2
) = θy,Cxf1

+ θy,Cxf2
. It follows Cx(f1 + f2) = Cxf1 + Cxf2 from

y ∈ CI.

Claim 4 Cx is a locally quasi-modular map. In fact, for all λ ∈ A, Φ(λθx,f ) = τx,f (λ)Φ(θx,f ) =

τx,f (λ)θy,Cxf . At the same time Φ(λθx,f ) = Φ(θx,λ∗f ) = θy,Cx(λ∗f). So we have Cx(λ∗f) =

τx,f (λ∗)Cxf .

Claim 5 τx,f is independent of f . Since τx,f is surjective, Cx(HA) is a submodule of HA.

Without loss of generality, we suppose {Cx(hi)} is the orthonormal basis in Cx(HA). For a

λ ∈ A, we have Cx(λh1 +λh2) = τx,h1+h2
(λ)(Cxh1 +Cxh2) and Cx(λh1 +λh2) = τx,h1

(λ)Cxh1 +

τx,h2
(λ)Cx(h2). Thus [τx,h1+h2

(λ) − τx,h1
(λ)]Cxh1 + [τx,h1+h2

(λ) − τx,h2
(λ)]Cxh2 = 0. It fol-

lows from [τx,h1+h2
(λ) − τx,h1

(λ)]Cxh1 = [τx,h1+h2
(λ) − τx,h2

(λ)]Cxh2 = 0 that τx,h1+h2
(λ) =

τx,h1
(λ) = τx,h2

(λ). Thus for every hi, τx,hi
= τx,h1+h2

.

For all h ∈ HA, Cx(h) =
∑

i αiCx(hi). Since τx,hi
is surjective, there exists βi such that

αi = τx,hi
(βi). Then Cx(h) =

∑

i αiCx(hi) =
∑

i τx,hi
(βi)Cx(hi) =

∑

i Cx(βihi). We infer

h =
∑

i βihi from the fact that Cx is injective.

Now for arbitrary λ ∈ A, we have

Φ(λθx,h) = θy,Cx(λ∗h) = θy,Cx(λ∗
∑

i

βihi)

=
∑

i

θy,Cx(λ∗βihi) =
∑

i

θy,τx,h1+h2
(λ∗βi)Cxhi

=
∑

i

θy,τx,h1+h2
(λ∗)τx,h1+h2

(βi)Cxhi

= θy,τx,h1+h2
(λ∗)Cx(h) = τx,h1+h2

(λ)Φ(θx,h).

Therefore, τx,h is independent of h and we denote it by τx.

Claim 6 τx is a injective homomorphism from A onto A. We show τx is additive first. In fact,

for all λ1, λ2 ∈ A, Φ((λ1 + λ2)θx,f) = τx(λ1 + λ2)Φ(θx,f) = τx(λ1 + λ2)θy,Cxf . On the other

hand, Φ((λ1 + λ2)θx,f ) = Φ(λ1θx,f) + Φ(λ2θx,f ) = [τx(λ1) + τx(λ2)]θy,Cxf . From y ∈ CI, we

infer τx(λ1 + λ2)Cxf = [τx(λ1) + τx(λ2)]Cxf . When we choose f ∈ ε, from Lemma 2.10, we get

Cxf ∈ CI. Then τx(λ1) + τx(λ2) = τx(λ1 + λ2) and τx is additive.

Next we show τx is injective. Otherwise, there exists 0 6= λ0 ∈ A but τx(λ0) = 0. So

Φ(λ0θx,f) = τx(λ0)θy,Cxf = 0 which contradicts Φ preserving rank one.
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Claim 7 τx is independent of x. We choose x1, x2 ∈ CI with Φ(Lε
x1

) ⊆ LCI
y1

, Φ(Lε
x2

) ⊆ LCI
y2

such that 〈y1, y2〉 = 0. We will complete the proof by 5 steps.

Step 1. We consider Φ(θx1+x2,e) = θy1,Cx1
e + θy2,Cx2

e. From 〈y1, y2〉 = 0, there exists

σ ∈ Inv(A) such that Cx1
e = σCx2

e.

We choose e′ ∈ ε such that Cx2
e′ 6= αCx2

e for all α ∈ Inv(A). Repeating the above process,

we have Cx1
e′ = νCx2

e′ for some ν ∈ Inv(A). Then

Φ(θx1+x2,e+e′ ) = θy1,Cx1
e + θy1,Cx1

e′ + θy2,Cx2
e + θy2,Cx2

e′

= θy1,σCx2
e + θy1,νCx2

e′ + θy2,Cx2
e + θy2,Cx2

e′

= θσ∗y1+y2,Cx2
e + θν∗y1+y2,Cx2

e′ .

Since e + e′ ∈ CI, Cx2
e 6= αCx2

e′ for all α ∈ Inv(A), there exists α0 ∈ Inv(A) such that

σ∗y1 + y2 = α0(ν
∗y1 + y2), i.e., (σ∗−α0ν

∗)y1 +(1−α0)y2 = 0. It follows σ = ν from 〈y1, y2〉 = 0

and y1, y2 ∈ CI.

Step 2. We put λ ∈ Inv(A). Then Φ(θx1+x2,λe′) = θy1,Cx1
(λe′) + θy2,Cx2

(λe′). Since λe′ ∈ CI

and y1 6= αy2, there exists a(λ) ∈ Inv(A) such that Cx1
(λe′) = a(λ)Cx2

(λe′).

Φ(θx1+x2,e+λe′ ) = θy1,Cx1
e + θy1,Cx1

(λe′) + θy2,Cx2
e + θy2,Cx2

(λe′)

= θy1,σCx2
e + θy1,a(λ)Cx2

(λe′) + θy2,Cx2
e + θy2,Cx2

(λe′)

= θσ∗y1+y2,Cx2
e + θa(λ)∗y1+y2,Cx2

(λe′)

Since Cx2
(e′) 6= αCx2

e, for all α ∈ Inv(A) and e + λe′ ∈ CI we know there exists c(λ) ∈ Inv(A)

such that σ∗y1 + y2 = c(λ)(a(λ)∗y1 + y2), i.e., [σ∗ − c(λ)a(λ)∗]y1 + [1 − c(λ)]y2 = 0. Then it

follows σ∗ = c(λ)a(λ)∗, c(λ) = 1 and a(λ) = σ. Thus we have Cx1
(λe′) = σCx2

(λe′).

Step 3. When λ is not in Inv(A), we may suppose ‖λ‖ < 1 (If not, we can consider λ
2‖λ‖ ).

We have

Φ(θx1+x2,λe′ ) = θy1,Cx1
(λe′) + θy2,Cx2

(λe′) = θτx1
(λ∗)y1,Cx1

e′ + θτx2
(λ∗)y2,Cx2

e′

= θσ∗τx1
(λ∗)y1+τx2

(λ∗)y2,Cx2
e′ := θy3,g3

Note that y1, y2 ∈ CI but Cx1
(λe′), Cx2

(λe′) are not in CI. We get for some a(λ), b(λ), a(1 −

λ), b(1 − λ) ∈ A,
{

Cx1
(λe′) = a(λ)g3,

Cx2
(λe′) = b(λ)g3,

and
{

Cx1
[(1 − λ)e′] = a(1 − λ)g3,

Cx2
[(1 − λ)e′] = b(1 − λ)g3.

On the one hand, Cx1
[(1− λ)e′] = Cx1

(e′ − λe′) = σCx2
e′ − a(λ)g3 = [σ − a(λ)]g3. On the other

hand, since (1− λ) ∈ Inv(A), Cx1
[(1−λ)e′] = σCx2

[(1− λ)e′] = σ[1− b(λ)]g3. From g3 ∈ CI we

have σ − a(λ) = σ(1 − b(λ)) i.e., a(λ) = σb(λ). Consequently, Cx1
(λe′) = a(λ)g3 = σb(λ)g3 =

σCx2
(λe′).

Step 4. For all λ ∈ A, Cx1
(λe′) = τx1

(λ)Cx1
e′ = τx1

(λ)σCx2
e′. At the same time Cx1

(λe′) =

σCx2
(λe′) = στx2

(λ)Cx2
e′. We can get τx1

(λ) = τx2
(λ) since σ ∈ Inv(A), Cx2

e′ ∈ CI.
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Step 5. For every x ∈ CI, Φ(Lε
x) ⊆ LCI

y for some y ∈ CI. Then y =
∑

i βiyi, where {yi}

is the orthonormal basis. Since Φ is surjective, there exists {xi} ⊆ CI such that Φ(Lε
xi

) ⊆ LCI
yi

.

Now we investigate

Φ(θx1,e + θx,e) = θy1,Cx1
e + θy,Cxe = θy1,Cx1

e + θ ∞
∑

i=1

βiyi,Cxe

= θy1,Cx1
e + θβ1y1,Cxe + θ ∞

∑

i=2

βiyi,Cxe

= θy1,Cx1
e+β∗

1
Cxe + θ ∞

∑

i=2

βiyi,Cxe

and we have Cx1
e + β∗

1Cxe = βCxe for some β ∈ A i.e., Cx1
e = (β − β∗

1 )Cxe. Since Cx1
e, Cxe ∈

CI, we get β − β∗
1 ∈ Inv(A) and denote β − β∗

1 by γ1.

Similarly, we have Cxi
e = γiCxe for some γi ∈ Inv(A). Suppose τxi

(αi) = βi, τxi
(δi) =

(γ−1
i )∗ for some αi, δi ∈ A and

Φ(θ∑

i

δiαixi,e) =
∑

i

Φ(θδiαixi,e) =
∑

i

τxi
(δiαi)Φ(θxi,e) =

∑

i

(γ−1
i )∗βiθyi,Cxi

e

=
∑

i

(γ−1
i )∗βiθyi,γiCxe =

∑

i

θβiyi,Cxe = θy,Cxe = Φ(θx,e).

Then Φ(θ∑

i δiαixi−x,e) = 0. We infer that x =
∑

i δiαixi.

For all λ ∈ A, e ∈ ε and from the above step, τx1
= τx2

= · · · := τ , we have

Φ(λθx,e) = Φ(λθ∑

i

δiαixi,e) =
∑

i

Φ(λδiαiθxi,e)

=
∑

i

τxi
(λδiαi)Φ(θxi,e) =

∑

i

τ(λ)τ(δiαi)Φ(θxi,e)

=
∑

i

τ(λ)Φ(θδiαixi,e) = τ(λ)Φ(θx,e).

Thus τx = τ is independent of x.

Claim 8 Cx is independent of x ∈ CI. For x1, x2 ∈ CI with Φ(Lε
x1

) ⊆ LCI
y1

, Φ(Lε
x2

) ⊆ LCI
y2

such that y1 6= αy2 for all α ∈ Inv(A).

Φ(θx1+x2,e) = Φ(θx1,e) + Φ(θx2,e) = θy1,Cx1
e + θy2,Cx2

e

which yields Cx1
e = αeCx2

e for all e ∈ ε. From Lemma 2.9, we can see αe is independent of the

choice of e ∈ ε. Then there exists α0 ∈ Inv(A) such that Cx1
= α0Cx2

:= C.

For arbitrary x ∈ CI with Φ(Lε
x) ⊆ LCI

y for some y ∈ CI, then y 6= αy1 or y 6= βy2, for all

α, β ∈ Inv(A). So Cx = αxCx1
(or Cx = βxCx2

) for some αx ∈ Inv(A).

Then we have

Φ(θx,e) = θy,Cxe = θy,αxCx1
e

and

Φ(θx,f) = θy,Cxf = θy,αxCx1
f = θα∗

xy,Cf .

Denote α∗
xy by A′x and get

Φ(θx,f ) = θA′x,Cf
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for all x ∈ CI, f ∈ HA.

Now for arbitrary x ∈ HA (may not in CI), x =
∑

i αixi where xi ∈ CI with Φ(θxi,f) =

θA′xi,Cf . Then

Φ(θx,f ) = Φ(θ∑

i

αixi,f) =
∑

i

τ(αi)θA′xi,Cf = θ∑

i

τ(αi)A′xi,Cf .

We denote
∑

i τ(αi)A
′xi by Ax. Then for all x, f ∈ HA, we always have Φ(θx,f ) = θAx,Cf .

Especially, we choose f ∈ ε, and then one can see A is an injective quasi-modular map.

The statement (ii) can be shown by the similar methods and its proof is omitted here. �
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