Quasi-Modular Preserving Rank One Maps on Hilbert C^{*}-Modules

Bin MENG
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, P. R. China

Abstract

In this paper, we characterize a class of quasi-modular maps on Hilbert C^{*}-modules which map a "rank one" adjointable operator to another rank one operator.

Keywords Hilbert C^{*}-module; coordinate inverse; quasi-modular map.
MR(2010) Subject Classification 47B49; 46B28

1. Introduction and preliminaries

The problem of determining linear map Φ on $\mathbf{B}(X)$ preserving certain properties has attracted attention of many mathematicians in recent decade. They have been devoted to the study of linear maps preserving spectrum, rank, nilpotency, etc.

Rank preserving problem is a basic problem in the study of linear preserving problem. Rank preserving linear maps have been studied intensively by Hou in [1]. In [2, 3] the authors used very elegant arguments to completely describe the additive mappings preserving (or decreasing) rank one.

In our study of free probability theory, we find that modular maps on Hilbert C^{*}-module preserving certain properties are also important $[4,5]$, and thus the study of the modular preserving problem becomes attractive. In [6], a complete description of modular maps preserving rank one modular operators was given. Naturally in the present paper we consider quasi-modular maps on modules preserving rank one, which are much more complicated than the modular maps case.

A Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A} is a left \mathcal{A}-module \mathcal{M} equipped with an \mathcal{A}-valued inner product \langle,$\rangle which is \mathcal{A}$-linear in the first and conjugate \mathcal{A}-linear in the second variable such that \mathcal{M} is a Banach space with the norm $\|v\|_{M}=\|\langle v, v\rangle\|^{\frac{1}{2}}, \forall v \in \mathcal{M}$. Hilbert C^{*}-modules first appeared in the work of Kaplansky [7], who used them to prove that derivations of type I $A W^{*}$-algebras are inner. Now a good text book about Hilbert C^{*}-module is [8]. In this paper we mainly consider Hilbert \mathcal{A}-module $\mathcal{A} \otimes H$ (or denoted by $H_{\mathcal{A}}$), where H is a separable infinite dimentional Hilbert space and \mathcal{A} is a unital commutative C^{*}-algebra. $H_{\mathcal{A}}$ plays a special role

[^0]in the theory of Hilbert C^{*}-modules [8]. Obviously, $H_{\mathcal{A}}$ is countably generated and possesses an orthonormal basis $\left\{1 \otimes e_{i}\right\}:=\varepsilon$, where $\left\{e_{i}\right\}$ is an orthonormal basis in H.

We introduce a class of modular operators which is analogous to rank one operators on a Hilbert space. For all $x, y \in H_{\mathcal{A}}$, define $\theta_{x, y}: H_{\mathcal{A}} \rightarrow H_{\mathcal{A}}$ by $\theta_{x, y}(\xi):=\langle\xi, y\rangle x$, for every $\xi \in H_{\mathcal{A}}$. Note that $\theta_{x, y}$ is quite different from rank one linear operators on Hilbert space. For instance, we cannot infer $x=0$ or $y=0$ from $\theta_{x, y}=0$. For convenience, we still call $\theta_{x, y}$ rank one. We denote the set $\left\{\sum_{i=1}^{n} \alpha_{i} \theta_{x_{i}, y_{i}}, \forall n \in \mathbb{N}, \alpha_{i} \in \mathcal{A}\right\}$ by $\mathcal{F}\left(H_{\mathcal{A}}\right)$.

In the present paper, we will describe the locally quasi-modular map $\Phi: \mathcal{F}\left(H_{\mathcal{A}}\right) \rightarrow \mathcal{F}\left(H_{\mathcal{A}}\right)$ which maps $\theta_{x, y}$ to some $\theta_{s, t}$, and in this case Φ is always quasi-modular. The methods are analogous to those in $[1-3]$ but much more complicated.

2. Definitions and lemmas

In this section we mainly introduce some definitions and prove some lemmas.
Definition 2.1 ([6]) Let ε be a orthonormal basis in $H_{\mathcal{A}} . x \neq 0$ in $H_{\mathcal{A}}$ will be called coordinately invertible if for all $e \in \varepsilon,\langle e, x\rangle$ is invertible in \mathcal{A} unless $\langle e, x\rangle=0$.

We denote the set of all the coordinately invertible elements in $H_{\mathcal{A}}$ by $C I\left(H_{\mathcal{A}}\right)$ or $C I$ for short and the set of all the invertible elements in \mathcal{A} by $\operatorname{Inv}(\mathcal{A})$. Obviously, $\varepsilon \subseteq C I$.

Coordinately invertible elements in Hilbert C^{*}-module are analogous to the elements in Hilbert space to some extents.

Lemma 2.2 ([6]) Suppose $y \in C I$ and $\theta_{x, y}=0$, then $x=0$.
Lemma 2.3 ([6]) Let \mathcal{M} be a Hilbert \mathcal{A}-module, where \mathcal{A} is a unital C^{*}-algebra, and let $\phi, \sigma: \mathcal{M} \rightarrow \mathcal{A}$ be \mathcal{A}-linear operators. Suppose that σ vanishes on the kernel of ϕ. Then there exists $b \in \mathcal{A}$ such that $\sigma=\phi \cdot b$.

Corollary $2.4([6])$ Let $g_{1}, g_{2} \in \mathcal{M}$. If for all $x \in \mathcal{M},\left\langle x, g_{1}\right\rangle=0$ implies $\left\langle x, g_{2}\right\rangle=0$, then there is $a \in \mathcal{A}$ such that $g_{2}=a g_{1}$.

The following Lemma 2.5, which will be used frequently, has been obtained in [6]. Nevertheless we give its proof for the sake of completeness.

Lemma 2.5 Let \mathcal{A} be a unital C^{*}-algebra, $x_{1}, x_{2} \in \mathcal{M}, g_{1}, g_{2} \in C I$ satisfying $\theta_{x_{1}, g_{1}}+\theta_{x_{2}, g_{2}}=$ $\theta_{x_{3}, g_{3}}$. Then at least one of the following is true:
(i) There exists an invertible $\alpha_{1} \in \mathcal{A}$ such that $g_{1}=\alpha_{1} g_{2}$;
(ii) There are $\beta_{1}, \beta_{2} \in \mathcal{A}$ such that $x_{1}=\beta_{1} x_{3}, x_{2}=\beta_{2} x_{3}$.

Proof We will complete the proof by considering the following four cases.
Case 1 For all $\xi \in H_{\mathcal{A}},\left\langle\xi, g_{2}\right\rangle=0$ implies $\left\langle\xi, g_{1}\right\rangle=0$. From Corollary 2.4, there exists $\alpha_{1} \in \mathcal{A}$ such that $g_{1}=\alpha_{1} g_{2}$. Furthermore from $g_{1}, g_{2} \in C I$, we infer that $\alpha_{1} \in \mathcal{A}$ is invertible.

Case 2 For all $\xi \in H_{\mathcal{A}},\left\langle\xi, g_{1}\right\rangle=0$ implies $\left\langle\xi, g_{2}\right\rangle=0$. Still from Corollary 2.4, there is $\alpha_{2} \in \mathcal{A}$
such that $g_{2}=\alpha_{2} g_{1}$ and α_{2} is invertible.
Case 3 There exists $\xi_{0} \in H_{\mathcal{A}}$ such that $\left\langle\xi_{0}, g_{2}\right\rangle=0$ but $\left\langle\xi_{0}, g_{1}\right\rangle \neq 0$. We can find $e \in \varepsilon$ such that $\left\langle e, g_{2}\right\rangle=0$ but $\left\langle e, g_{1}\right\rangle \neq 0$. Then from $\left\langle e, g_{1}\right\rangle x_{1}+\left\langle e, g_{2}\right\rangle x_{2}=\left\langle e, g_{3}\right\rangle x_{3}$, it follows $\left\langle e, g_{1}\right\rangle x_{1}=$ $\left\langle e, g_{3}\right\rangle x_{3}$. Since $g_{1} \in C I$, we have $x_{1}=\left\langle e, g_{1}\right\rangle^{-1}\left\langle e, g_{3}\right\rangle x_{3}$. We put $\beta_{1}=\left\langle e, g_{1}\right\rangle^{-1}\left\langle e, g_{3}\right\rangle$ and get $\theta_{\beta_{1} x_{3}, g_{1}}+\theta_{x_{2}, g_{2}}=\theta_{x_{3}, g_{3}}$. Thus $\theta_{x_{2}, g_{2}}=\theta_{x_{3}, g_{3}-\beta_{1}^{*} g_{1}}$. Now choosing $e^{\prime} \in \varepsilon$, we get $\left\langle e^{\prime}, g_{2}\right\rangle x_{2}=$ $\left\langle e^{\prime}, g_{3}-\beta_{1}^{*} g_{1}\right\rangle x_{3}$ and thus $x_{2}=\left\langle e^{\prime}, g_{2}\right\rangle^{-1}\left\langle e^{\prime}, g_{3}-\beta_{1}^{*} g_{1}\right\rangle x_{3}$. Putting $\beta_{2}=\left\langle e^{\prime}, g_{2}\right\rangle^{-1}\left\langle e^{\prime}, g_{3}-\beta_{1}^{*} g_{1}\right\rangle$ then we obtain (ii).

Case 4 There exists $\xi_{0} \in H_{\mathcal{A}}$ such that $\left\langle\xi_{0}, g_{1}\right\rangle=0$ but $\left\langle\xi_{0}, g_{2}\right\rangle \neq 0$. Similarly to Case 3 , we get (ii) again.

Corollary 2.6 With the notations in the above lemma, suppose $g_{1} \neq \alpha g_{2}$, for all $\alpha \in \mathcal{A}$. If $g_{3} \in C I$, then there exist $\beta_{1}, \beta_{2} \in \mathcal{A}$ which are invertible such that $x_{1}=\beta_{1} x_{3}, x_{2}=\beta_{2} x_{3}$. Furthermore, $x_{1}=\beta_{0} x_{2}$ for some $\beta_{0} \in \operatorname{Inv}(\mathcal{A})$.

Proof Denote $\left\{x \mid\left\langle x, g_{i}\right\rangle=0\right\}$ by $\operatorname{ker} g_{i}, i=1,2$. Since $g_{1} \neq \alpha g_{2}, g_{2} \neq \beta g_{1}$, we have ker $g_{1} \nsubseteq$ $\operatorname{ker} g_{2}, \operatorname{kerg}_{2} \nsubseteq \operatorname{ker} g_{1}$. So there exists $e_{1} \in \varepsilon$, such that $\left\langle e_{1}, g_{1}\right\rangle \neq 0$ but $\left\langle e_{1}, g_{2}\right\rangle=0$. Then $\left\langle e_{1}, g_{1}\right\rangle x_{1}+\left\langle e_{1}, g_{2}\right\rangle x_{2}=\left\langle e_{1}, g_{3}\right\rangle x_{3}$, i.e. $\left\langle e_{1}, g_{1}\right\rangle x_{1}=\left\langle e_{1}, g_{3}\right\rangle x_{3}$ and thus $x_{1}=\left\langle e_{1}, g_{1}\right\rangle^{-1}\left\langle e_{1}, g_{3}\right\rangle x_{3}$. $\left\langle e_{1}, g_{1}\right\rangle^{-1}\left\langle e_{1}, g_{3}\right\rangle=\beta_{1}$ is invertible.

Similarly, if there exits $e_{2} \in \varepsilon$ such that $\left\langle e_{2}, g_{1}\right\rangle=0$ but $\left\langle e_{2}, g_{2}\right\rangle \neq 0$, then

$$
x_{2}=\left\langle e_{2}, g_{2}\right\rangle^{-1}\left\langle e_{2}, g_{3}\right\rangle x_{3}
$$

Putting $\beta_{2}=\left\langle e_{2}, g_{2}\right\rangle^{-1}\left\langle e_{2}, g_{3}\right\rangle$, we get the desired result.
Definition $2.7 \Phi: \mathcal{F}\left(H_{\mathcal{A}}\right) \rightarrow \mathcal{F}\left(H_{\mathcal{A}}\right)$ is a map. If for any $x \in H_{\mathcal{A}}, y \in C I$, there are $s \in H_{\mathcal{A}}$, $t \in C I$ such that $\Phi\left(\theta_{x, y}\right)=\theta_{s, t}, \Phi\left(\theta_{y, x}\right)=\theta_{t, s}, x \neq 0$ implies $s \neq 0$, and s, t can be chosen in $C I$ whenever $x, y \in C I$, then Φ will be called rank one preserving.

Definition $2.8 \Phi: \mathcal{F}\left(H_{\mathcal{A}}\right) \rightarrow \mathcal{F}\left(H_{\mathcal{A}}\right)$ is an additive map and for arbitrary $\theta_{x, y}, \Phi\left(\lambda \theta_{x, y}\right)=$ $\tau_{x, y}(\lambda) \Phi\left(\theta_{x, y}\right)$ where $\tau_{x, y}: \mathcal{A} \rightarrow \mathcal{A}$ is a surjective multiplicative $*$-transform. Then Φ will be called a locally quasi-modular map.

If in addition, there exists $\tau: \mathcal{A} \rightarrow \mathcal{A}$, which is a surjective multiplicative $*$-transform such that $\Phi(\lambda T)=\tau(\lambda) \Phi(T)$, for all $T \in \mathcal{F}\left(H_{\mathcal{A}}\right)$, then Φ will be called a τ-quasi-modular map.

It is well known that two locally linearly dependent linear operators are linearly dependent. The following lemma is an analogue of this result in modular operator case.

Lemma 2.9 Let \mathcal{A} be a unital commutative C^{*}-algebra, and A, B be injective τ-quasi-modular continuous maps on $H_{\mathcal{A}}$. Suppose for all $e, e^{\prime} \in \varepsilon$, there exists $\lambda_{e} \in \mathcal{A}$ such that $B e=\lambda_{e} A e$. Then $B=\lambda A$ for some $\lambda \in \mathcal{A}$.

Proof Let $e_{1}, e_{2} \in \varepsilon$. From the assumptions, we know there exist $\lambda_{1}, \lambda_{2} \in \mathcal{A}$ such that $B e_{1}=\lambda_{1} A e_{1}$ and $B e_{2}=\lambda_{2} A e_{2} . B\left(e_{1}+e_{2}\right)=\lambda_{3} A\left(e_{1}+e_{2}\right)$. On the other hand $B\left(e_{1}+e_{2}\right)=$
$\lambda_{1} A e_{1}+\lambda_{2} A e_{2}$. Thus

$$
\left(\lambda_{3}-\lambda_{1}\right) A e_{1}+\left(\lambda_{3}-\lambda_{2}\right) A e_{2}=0 .
$$

Suppose $\tau\left(\beta_{1}\right)=\lambda_{3}-\lambda_{1}, \tau\left(\beta_{2}\right)=\lambda_{3}-\lambda_{2}$. Then $A\left(\beta_{1} e_{1}\right)+A\left(\beta_{2} e_{2}\right)=0$, i.e., $A\left(\beta_{1} e_{1}+\beta_{2} e_{2}\right)=0$. Since A is injective, we get $\beta_{1} e_{1}+\beta_{2} e_{2}=0$ and $\beta_{1}=\beta_{2}=0$. Therefore, $\lambda_{1}=\lambda_{2}=\lambda_{3}$.

For arbitrary $e \in \varepsilon$ and $e \neq e_{1}, e_{2} . B e=\lambda_{e} A e$. Repeating the above process, we have $\lambda_{e}=\lambda_{1}=\lambda_{2}=\lambda_{3}$.

For arbitrary $f \in H_{\mathcal{A}}, f=\sum_{i} \alpha_{i} e_{i}$. Then we have

$$
\begin{aligned}
B(f) & =B\left(\sum_{i} \alpha_{i} e_{i}\right)=\sum_{i} \tau\left(\alpha_{i}\right) B e_{i}=\sum_{i} \tau\left(\alpha_{i}\right) \lambda_{3} A e_{i} \\
& =\lambda_{3} A\left(\sum_{i} \alpha_{i} e_{i}\right)=\lambda_{3} A(f) .
\end{aligned}
$$

Denote λ_{3} by λ and we get $B=\lambda A$.
Now we introduce some notations. $L_{x}:=\left\{\theta_{x, g} \mid g \in H_{\mathcal{A}}\right\}, R_{f}:=\left\{\theta_{x, f} \mid x \in H_{\mathcal{A}}\right\}$, $L_{x}^{C I}:=\left\{\theta_{x, g} \mid g \in C I\right\}, R_{f}^{C I}:=\left\{\theta_{y, f} \mid y \in C I\right\}, L_{x}^{\varepsilon}:=\left\{\theta_{x, e} \mid e \in \varepsilon\right\}, R_{f}^{\varepsilon}:=\left\{\theta_{e, f} \mid e \in \varepsilon\right\}$.

In the following, \mathcal{A} is a unital commutative C^{*}-algebra and Φ is always a locally quasimodular preserving rank one map on $H_{\mathcal{A}}$. The following lemma plays important roles in this paper.

Lemma 2.10 For every $x \in C I$ there exists either $y \in C I$ such that $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y}^{C I}$ or $f \in C I$ such that $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq R_{f}^{C I}$.

Proof For $e_{1}, e_{2} \in \varepsilon, \Phi\left(\theta_{x, e_{1}}\right)=\theta_{y_{1}, g_{1}}, \Phi\left(\theta_{x, e_{2}}\right)=\theta_{y_{2}, g_{2}}$, where $y_{1}, y_{2}, g_{1}, g_{2} \in C I$. Since $e_{1}+e_{2} \in C I$, there are $y_{12}, g_{12} \in C I$ such that $\Phi\left(\theta_{x, e_{1}+e_{2}}\right)=\theta_{y_{1}, g_{1}}+\theta_{y_{2}, g_{2}}=\theta_{y_{12}, g_{12}}$. From Corollary 2.6, there exist $\alpha_{12}, \beta_{12} \in \operatorname{Inv}(\mathcal{A})$ such that $y_{1}=\alpha_{12} y_{2}$ or $g_{1}=\beta_{12} g_{2}$.

Case 1 We suppose $g_{1}=\beta_{12} g_{2}$ and $y_{1} \neq \alpha y_{2}$, for all $\alpha \in \operatorname{Inv}(\mathcal{A})$. For arbitrary $e_{i} \in \varepsilon, i \neq 1,2$, $\Phi\left(\theta_{x, e_{i}}\right)=\theta_{y_{i}, g_{i}}$ where $g_{i}, y_{i} \in C I$. Assume that $g_{1} \neq \beta g_{i}$, for all $\beta \in \operatorname{Inv}(\mathcal{A})$. Then there exists $\alpha_{i} \in \operatorname{Inv}(\mathcal{A})$ such that $y_{1}=\alpha_{i} y_{i}$.

$$
\begin{aligned}
\Phi\left(\theta_{x, e_{1}+e_{2}+e_{i}}\right) & =\theta_{y_{1}, g_{1}}+\theta_{y_{2}, g_{2}}+\theta_{y_{i}, g_{i}}=\theta_{\alpha_{i} y_{i}, \beta_{12} g_{2}}+\theta_{y_{2}, g_{2}}+\theta_{y_{i}, g_{i}} \\
& =\theta_{\beta_{12}^{*} \alpha_{i} y_{i}+y_{2}, g_{2}}+\theta_{y_{i}, g_{i}}
\end{aligned}
$$

Since $g_{1}=\beta_{12} g_{2}, g_{1} \neq \beta g_{i}$ for all $\beta \in \operatorname{Inv}(\mathcal{A})$ and Φ preserving rank one, we know there exists $\alpha_{0} \in \operatorname{Inv}(\mathcal{A})$ such that $y_{i}=\alpha_{0}\left(\beta_{12}^{*} \alpha_{i} y_{i}+y_{2}\right)$ and $\left(1-\alpha_{0} \beta_{12}^{*} \alpha_{i}\right) y_{i}=\alpha_{0} y_{2}$. Consequently

$$
y_{2}=\alpha_{0}^{-1}\left(1-\beta_{12}^{*} \alpha_{0} \alpha_{i}\right) \alpha_{i}^{-1} y_{1} .
$$

On the other hand, $y_{1}, y_{2} \in C I$, so $\alpha_{0}^{-1}\left(1-\beta_{12}^{*} \alpha_{0} \alpha_{i}\right) \alpha_{i}^{-1} \in \operatorname{Inv}(\mathcal{A})$, which contradicts our assumption. Thus we have proved $g_{1}=\beta_{1 i} g_{i}$ for some $\beta_{1 i} \in \operatorname{Inv}(\mathcal{A})$.

Then $\Phi\left(\theta_{x, e_{i}}\right)=\theta_{y_{i}, g_{i}}=\theta_{\beta_{12}^{-1 *} y_{i}, g_{1}}$. So we have $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq R_{g_{1}}^{C I}$.
Case 2 We suppose $y_{1}=\alpha_{12} y_{2}$ for some $\alpha_{12} \in \operatorname{Inv}(\mathcal{A})$ and $g_{1} \neq \beta g_{2}$, for all $\beta \in \operatorname{Inv}(\mathcal{A})$.
For arbitrary $e_{i} \in \varepsilon, i \neq 1,2, \Phi\left(\theta_{x, e_{i}}\right)=\theta_{y_{i}, g_{i}}$, for some $y_{i}, g_{i} \in C I$.

Assume $y_{1} \neq \alpha y_{i}$, for all $\alpha \in \operatorname{Inv}(\mathcal{A})$, then $g_{1}=\beta_{1 i} g_{i}$, for some $\beta_{1 i} \in \operatorname{Inv}(\mathcal{A})$.

$$
\begin{aligned}
\Phi\left(\theta_{x, e_{1}+e_{2}+e_{i}}\right) & =\theta_{y_{1}, g_{1}}+\theta_{y_{2}, g_{2}}+\theta_{y_{i}, g_{i}}=\theta_{y_{1}, \beta_{1 i} g_{i}}+\theta_{\alpha_{12}^{-1} y_{1}, g_{2}}+\theta_{y_{i}, \beta_{1 i}^{-1} g_{1}} \\
& =\theta_{y_{1}, \beta_{1 i} g_{i}+\alpha_{12}^{-1 *} g_{2}}+\theta_{y_{i}, \beta_{1 i}^{-1} g_{1}}
\end{aligned}
$$

Since $x, e_{1}+e_{2}+e_{i} \in C I$, we know there exists $\beta_{0} \in \operatorname{Inv}(\mathcal{A})$ such that $\beta_{1 i}^{-1} g_{1}=\beta_{0}\left(g_{1}+\alpha_{12}^{-1 *} g_{2}\right)$ and $g_{2}=\beta_{0}^{-1} \alpha_{12}^{*}\left(\beta_{1 i}^{-1}-\beta_{0}\right) g_{1}$ which contradicts $g_{1} \neq \beta g_{2}$, for all $\beta \in \operatorname{Inv}(\mathcal{A})$. Thus we have proved $y_{1}=\alpha_{1 i} y_{i}$, for some $\alpha_{1 i} \in \operatorname{Inv}(\mathcal{A})$. Then $\Phi\left(\theta_{x, e_{i}}\right)=\theta_{y_{i}, g_{i}}=\theta_{\alpha_{1 i}^{-1} y_{1}, g_{i}}=\theta_{y_{1}, \alpha_{1 i}^{-1 *} g_{i}}$ and $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y_{1}}^{C I}$.

Case 3 If for all $e_{j} \in \varepsilon, j \neq 1, \Phi\left(\theta_{x, e_{j}}\right)=\theta_{y_{j}, g_{j}}$ such that $y_{1}=\alpha_{1 j} y_{j}, g_{1}=\beta_{1 j} g_{j}$, then both $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y_{1}}^{C I}$ and $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq R_{g_{1}}^{C I}$ hold.

Lemma 2.11 At least one of the following is true
(1) For all $x \in C I$, there exists $y \in C I$ such that $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y}^{C I}$;
(2) For all $x \in C I$, there exists $f \in C I$ such that $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq R_{f}^{C I}$.

Proof If for some $x \in C I, \Phi\left(L_{x}^{\varepsilon}\right) \subseteq \operatorname{Inv}(\mathcal{A}) \theta_{y, g}$ where $y, g \in C I$, then both $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y}^{C I}$ and $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq R_{g}^{C I}$ hold.

Now we assume that there exist $x_{0}, x_{1} \in C I$ such that $\Phi\left(L_{x_{0}}^{\varepsilon}\right) \subseteq L_{y_{0}}^{C I}, \Phi\left(L_{x_{1}}^{\varepsilon}\right) \subseteq R_{g_{1}}^{C I}$ and $\Phi\left(L_{x_{0}}^{\varepsilon}\right) \nsubseteq \operatorname{Inv}(\mathcal{A}) \theta_{y, g}, \Phi\left(L_{x_{1}}^{\varepsilon}\right) \nsubseteq \operatorname{Inv}(\mathcal{A}) \theta_{y, g}$ for any $\theta_{y, g}$. We say there exists an $e_{0} \in \varepsilon$ such that $\Phi\left(\theta_{x_{0}, e_{0}}\right)=\theta_{y_{0}, g}$ where $g \neq \alpha g_{1}$ (If such an e_{0} does not exist, then both $\Phi\left(L_{x_{0}}^{\varepsilon}\right) \subseteq L_{y_{0}}^{C I}$ and $\left.\Phi\left(L_{x_{0}}^{\varepsilon}\right) \subseteq R_{g_{1}}^{C I}\right)$. We can find an $e_{1} \in \varepsilon$ such that $\Phi\left(\theta_{x_{1}, e_{1}}\right)=\theta_{z, g_{1}}$ where $z \neq \alpha y_{0}$ for all $\alpha \in \operatorname{Inv}(\mathcal{A})$. We put $\Phi\left(\theta_{x_{0}, e_{1}}\right)=\theta_{y_{0}, m}$ for some $m \in C I$. It follows that $m=\lambda g_{1}$ for some $\lambda \in \operatorname{Inv}(\mathcal{A})$ from $\Phi\left(\theta_{x_{0}+x_{1}, e_{1}}\right)=\theta_{z, g_{1}}+\theta_{y_{0}, m}$ and $z \neq \alpha y_{0}$ for any $\alpha \in \mathcal{A}$. And then $\Phi\left(\theta_{x_{0}, e_{1}}\right)=\theta_{y_{0}, \lambda g_{1}}$.

On the other hand $\Phi\left(\theta_{x_{1}, e_{0}}\right)=\theta_{y_{1}, g_{1}}$ for some $y_{1} \in C I$. Then $\Phi\left(\theta_{x_{0}+x_{1}, e_{0}}\right)=\theta_{y_{0}, g}+\theta_{y_{1}, g_{1}}$. From $g \neq \alpha g_{1}$, we infer that $y_{1}=\mu y_{0}$ for some $\mu \in \operatorname{Inv}(\mathcal{A})$ and $\Phi\left(\theta_{x_{1}, e_{0}}\right)=\theta_{\mu y_{0}, g_{1}}$.

Now we have

$$
\Phi\left(\theta_{x_{0}+x_{1}, e_{0}+e_{1}}\right)=\theta_{y_{0}, g}+\theta_{y_{0}, \lambda g_{1}}+\theta_{\mu y_{0}, g_{1}}+\theta_{z, g_{1}}=\theta_{y_{0}, g}+\theta_{\lambda^{*} y_{0}+\mu y_{0}+z, g_{1}}
$$

We say that $\theta_{y_{0}, g}+\theta_{\lambda^{*} y_{0}+\mu y_{0}+z, g_{1}}$ cannot be a rank one operator since $g_{1} \neq \alpha g, z \neq \beta y_{0}$ for all $\alpha, \beta \in \operatorname{Inv}(\mathcal{A})$ and $e_{1}+e_{2} \in C I$ which contradicts Φ preserving rank one. Thus we get the desired results.

Corollary 2.12 At least one of the following is true
(i) For all $f \in C I$ there exists $g \in C I$ such that $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq R_{g}^{C I}$;
(ii) For all $f \in C I$ there exists $y \in C I$ with $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq L_{y}^{C I}$.

Lemma 2.13 (i) If for all $x \in C I$, there exists $y \in C I$ such that $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y}^{C I}$, then for all $f \in C I$, there exists $g \in C I$ such that $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq R_{g}^{C I}$;
(ii) If for all $x \in C I$, there exists $g \in C I$ such that $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq R_{g}^{C I}$, then for all $f \in C I$ there exists $z \in C I$ such that $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq L_{z}^{C I}$.

Proof We only prove (i). If $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq \operatorname{Inv}(\mathcal{A}) \theta_{y, g}$ for some $y, g \in C I$, then both $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq R_{g}^{C I}$ and $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq L_{y}^{C I}$ hold.

In the following we suppose $\Phi\left(R_{f}^{\varepsilon}\right) \nsubseteq \operatorname{Inv}(A) \theta_{y, g}$ for any $y, g \in C I$. We assume, to reach a contradiction, that we have simultaneously $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y}^{C I}$ and $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq L_{z}^{C I}$ where $x, y, f, z \in C I$. We can find $e_{1}, e_{2} \in \varepsilon$ such that $\Phi\left(\theta_{x, e_{1}}\right)=\theta_{y, g_{1}}$ and $\Phi\left(\theta_{x, e_{2}}\right)=\theta_{y, g_{2}}$ where $g_{1}, g_{2} \in C I, g_{1} \neq \alpha g_{2}$ for all $\alpha \in \operatorname{Inv}(\mathcal{A})$. From Φ preserving rank one we can find $x_{1} \in C I$ with $\Phi\left(L_{x_{1}}^{\varepsilon}\right) \subseteq L_{y_{1}}^{C I}$ such that $y_{1} \neq \alpha y$ for all $\alpha \in \operatorname{Inv}(\mathcal{A})$. We put $\Phi\left(\theta_{x_{1}, e_{1}}\right)=\theta_{y_{1}, u}$ for some $u \in C I$. Then we have $\Phi\left(\theta_{x+x_{1}, e_{1}}\right)=\theta_{y, g_{1}}+\theta_{y_{1}, u}=\theta_{y_{0}, g_{0}}$ where $g_{0} \in C I$. From Corollary 2.6 and $y_{1} \neq \alpha_{0} y$ we have $g_{1}=\lambda u$ for some $\lambda \in \operatorname{Inv}(\mathcal{A})$ and $\Phi\left(\theta_{x_{1}, e_{1}}\right)=\theta_{y_{1}, \lambda^{-1} g_{1}}$.

For arbitrary $x^{\prime} \in C I$, with $\Phi\left(\theta_{x^{\prime}, e_{1}}\right)=\theta_{y^{\prime}, g^{\prime}}$ such that $y^{\prime}, g^{\prime} \in C I$. If $y^{\prime}=\alpha^{\prime} y$ for some $\alpha^{\prime} \in \operatorname{Inv}(\mathcal{A})$, then $y^{\prime} \neq \alpha y_{1}$ for all $\alpha \in \operatorname{Inv}(\mathcal{A})$. By considering $\Phi\left(\theta_{x^{\prime}+x_{1}, e_{1}}\right)$ we get $g^{\prime}=\beta_{1} g_{1}$ for some $\beta_{1} \in \operatorname{Inv}(\mathcal{A})$. If $y^{\prime} \neq \alpha y$ for all $\alpha \in \operatorname{Inv}(\mathcal{A})$, then we consider $\Phi\left(\theta_{x^{\prime}+x, e_{1}}\right)$ and can get the same result. Anyway we have proved $\Phi\left(R_{e_{1}}^{C I}\right) \subseteq R_{g_{1}}^{C I}$.

We assume $\Phi\left(R_{e_{1}}^{\varepsilon}\right) \subseteq L_{z}^{C I}$ for some $z \in C I$. For all $e \in \varepsilon$ with $\Phi\left(\theta_{e, e_{1}}\right)=\theta_{z, g_{0}}$ such that $z, g_{0} \in C I$. As the argument in the above paragraph, we consider $\Phi\left(\theta_{e+x, e_{1}}\right)$ or $\Phi\left(\theta_{e+x^{\prime}, e_{1}}\right)$. Then we get $g_{0}=\alpha_{0} g_{1}$ for some $\alpha_{0} \in \operatorname{Inv}(\mathcal{A})$. Therefore, $\Phi\left(R_{e_{1}}^{\varepsilon}\right) \subseteq \operatorname{Inv}(\mathcal{A}) \theta_{z, g_{1}}$ which contradicts our assumption. Thus $\Phi\left(R_{e_{1}}^{\varepsilon}\right) \nsubseteq L_{z}^{C I}$ for any $z \in C I$ and $\Phi\left(R_{e_{1}}^{\varepsilon}\right) \subseteq R_{g}^{C I}$ for some $g \in C I$. From Lemma 2.11 we get that for all $y \in C I, \Phi\left(R_{y}^{\varepsilon}\right) \subseteq R_{g}^{C I}$ which contradicts $\Phi\left(R_{f}^{\varepsilon}\right) \subseteq L_{z}^{C I}$.

Lemma 2.14 If for $x \in C I, \Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y}^{C I}$, then $\Phi\left(L_{x}\right) \subseteq L_{y}$.
Proof For all $f \in H_{\mathcal{A}}, f=\sum_{i} \alpha_{i} e_{i}$ where $\alpha_{i} \in \mathcal{A}, e_{i} \in \varepsilon$, then

$$
\begin{aligned}
\Phi\left(\theta_{x, f}\right) & =\Phi\left(\theta_{x, \sum_{i}} \alpha_{i} e_{i}\right)=\Phi\left(\sum_{i} \alpha_{i}^{*} \theta_{x, e_{i}}\right)=\sum_{i} \tau_{x, e_{i}}\left(\alpha_{i}^{*}\right) \Phi\left(\theta_{x, e_{i}}\right) \\
& =\theta_{y, \sum_{i} \tau_{x, e_{i}}\left(\alpha_{i}\right) g_{i}} .
\end{aligned}
$$

Therefore, $\Phi\left(L_{x}\right) \subseteq L_{y}$.
Similarly we can prove
Lemma 2.15 If $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq R_{f}^{C I}$, for some $f \in C I$, then $\Phi\left(L_{x}\right) \subseteq R_{f}$.

3. Main results

In this section, we characterize the rank one preserving quasi-modular maps on Hilbert C^{*}-modules. We find that their forms are very similar to those of rank one preserving maps on linear spaces. We also get that a rank one preserving locally quasi-modular map is always quasi-modular.

Theorem 3.1 $\Phi: \mathcal{F}\left(H_{\mathcal{A}}\right) \rightarrow \mathcal{F}\left(H_{\mathcal{A}}\right)$ is a surjective preserving rank one locally quasi-modular map. Then one of the following is true: (i) For all $x, f \in H_{\mathcal{A}}, \Phi\left(\theta_{x, f}\right)=\theta_{A x, C f}$ where A, C are injective quasi-modular maps on $H_{\mathcal{A}}$;
(ii) For all $x, f \in H_{\mathcal{A}}, \Phi\left(\theta_{x, f}\right)=\theta_{C f, A x}$ where A, C are injective conjugate quasi-modular maps on $H_{\mathcal{A}}$.

Proof We consider the case of $x \in C I$ first. In this case we have $\Phi\left(\theta_{x, f}\right)=\theta_{y, C_{x} f}$. For all $f \in H_{\mathcal{A}}$, from Lemma 2.14 we have the following claims.

Claim $1 C_{x}$ is a map. In fact, putting $f_{1}=f_{2}$, we have $\Phi\left(\theta_{x, f_{1}}\right)=\theta_{y, C_{x} f_{1}}$ and $\Phi\left(\theta_{x, f_{2}}\right)=$ $\theta_{y, C_{x} f_{2}}$. We infer $C_{x} f_{1}=C_{x} f_{2}$ from $y \in C I$.

Claim $2 C_{x}$ is injective. Otherwise, there exists $f_{0} \neq 0$ but $C_{x} f_{0}=0$. Then $\Phi\left(\theta_{x, f_{0}}\right)=$ $\theta_{y, C_{x} f_{0}}=0$ which contradicts Φ preserving rank one.

Claim $3 C_{x}$ is additive. For $f_{1}, f_{2} \in H_{\mathcal{A}}, \Phi\left(\theta_{x, f_{1}+f_{2}}\right)=\theta_{y, C_{x}\left(f_{1}+f_{2}\right)}$. On the other hand $\Phi\left(\theta_{x, f_{1}+f_{2}}\right)=\Phi\left(\theta_{x, f_{1}}\right)+\Phi\left(\theta_{x, f_{2}}\right)=\theta_{y, C_{x} f_{1}}+\theta_{y, C_{x} f_{2}}$. It follows $C_{x}\left(f_{1}+f_{2}\right)=C_{x} f_{1}+C_{x} f_{2}$ from $y \in C I$.

Claim $4 C_{x}$ is a locally quasi-modular map. In fact, for all $\lambda \in \mathcal{A}, \Phi\left(\lambda \theta_{x, f}\right)=\tau_{x, f}(\lambda) \Phi\left(\theta_{x, f}\right)=$ $\tau_{x, f}(\lambda) \theta_{y, C_{x} f}$. At the same time $\Phi\left(\lambda \theta_{x, f}\right)=\Phi\left(\theta_{x, \lambda^{*} f}\right)=\theta_{y, C_{x}\left(\lambda^{*} f\right)}$. So we have $C_{x}\left(\lambda^{*} f\right)=$ $\tau_{x, f}\left(\lambda^{*}\right) C_{x} f$.

Claim $5 \tau_{x, f}$ is independent of f. Since $\tau_{x, f}$ is surjective, $C_{x}\left(H_{\mathcal{A}}\right)$ is a submodule of $H_{\mathcal{A}}$. Without loss of generality, we suppose $\left\{C_{x}\left(h_{i}\right)\right\}$ is the orthonormal basis in $C_{x}\left(H_{\mathcal{A}}\right)$. For a $\lambda \in \mathcal{A}$, we have $C_{x}\left(\lambda h_{1}+\lambda h_{2}\right)=\tau_{x, h_{1}+h_{2}}(\lambda)\left(C_{x} h_{1}+C_{x} h_{2}\right)$ and $C_{x}\left(\lambda h_{1}+\lambda h_{2}\right)=\tau_{x, h_{1}}(\lambda) C_{x} h_{1}+$ $\tau_{x, h_{2}}(\lambda) C_{x}\left(h_{2}\right)$. Thus $\left[\tau_{x, h_{1}+h_{2}}(\lambda)-\tau_{x, h_{1}}(\lambda)\right] C_{x} h_{1}+\left[\tau_{x, h_{1}+h_{2}}(\lambda)-\tau_{x, h_{2}}(\lambda)\right] C_{x} h_{2}=0$. It follows from $\left[\tau_{x, h_{1}+h_{2}}(\lambda)-\tau_{x, h_{1}}(\lambda)\right] C_{x} h_{1}=\left[\tau_{x, h_{1}+h_{2}}(\lambda)-\tau_{x, h_{2}}(\lambda)\right] C_{x} h_{2}=0$ that $\tau_{x, h_{1}+h_{2}}(\lambda)=$ $\tau_{x, h_{1}}(\lambda)=\tau_{x, h_{2}}(\lambda)$. Thus for every $h_{i}, \tau_{x, h_{i}}=\tau_{x, h_{1}+h_{2}}$.

For all $h \in H_{\mathcal{A}}, C_{x}(h)=\sum_{i} \alpha_{i} C_{x}\left(h_{i}\right)$. Since $\tau_{x, h_{i}}$ is surjective, there exists β_{i} such that $\alpha_{i}=\tau_{x, h_{i}}\left(\beta_{i}\right)$. Then $C_{x}(h)=\sum_{i} \alpha_{i} C_{x}\left(h_{i}\right)=\sum_{i} \tau_{x, h_{i}}\left(\beta_{i}\right) C_{x}\left(h_{i}\right)=\sum_{i} C_{x}\left(\beta_{i} h_{i}\right)$. We infer $h=\sum_{i} \beta_{i} h_{i}$ from the fact that C_{x} is injective.

Now for arbitrary $\lambda \in \mathcal{A}$, we have

$$
\begin{aligned}
\Phi\left(\lambda \theta_{x, h}\right) & \left.=\theta_{y, C_{x}\left(\lambda^{*} h\right)}=\theta_{y, C_{x}\left(\lambda^{*}\right.} \sum_{i} \beta_{i} h_{i}\right) \\
& =\sum_{i} \theta_{y, C_{x}\left(\lambda^{*} \beta_{i} h_{i}\right)}=\sum_{i} \theta_{y, \tau_{x, h_{1}+h_{2}}\left(\lambda^{*} \beta_{i}\right) C_{x} h_{i}} \\
& =\sum_{i} \theta_{y, \tau_{x, h_{1}+h_{2}}\left(\lambda^{*}\right) \tau_{x, h_{1}+h_{2}}\left(\beta_{i}\right) C_{x} h_{i}} \\
& =\theta_{y, \tau_{x, h_{1}+h_{2}}\left(\lambda^{*}\right) C_{x}(h)=\tau_{x, h_{1}+h_{2}}(\lambda) \Phi\left(\theta_{x, h}\right) .} .
\end{aligned}
$$

Therefore, $\tau_{x, h}$ is independent of h and we denote it by τ_{x}.
Claim $6 \tau_{x}$ is a injective homomorphism from \mathcal{A} onto \mathcal{A}. We show τ_{x} is additive first. In fact, for all $\lambda_{1}, \lambda_{2} \in \mathcal{A}, \Phi\left(\left(\lambda_{1}+\lambda_{2}\right) \theta_{x, f}\right)=\tau_{x}\left(\lambda_{1}+\lambda_{2}\right) \Phi\left(\theta_{x, f}\right)=\tau_{x}\left(\lambda_{1}+\lambda_{2}\right) \theta_{y, C_{x} f}$. On the other hand, $\Phi\left(\left(\lambda_{1}+\lambda_{2}\right) \theta_{x, f}\right)=\Phi\left(\lambda_{1} \theta_{x, f}\right)+\Phi\left(\lambda_{2} \theta_{x, f}\right)=\left[\tau_{x}\left(\lambda_{1}\right)+\tau_{x}\left(\lambda_{2}\right)\right] \theta_{y, C_{x} f}$. From $y \in C I$, we infer $\tau_{x}\left(\lambda_{1}+\lambda_{2}\right) C_{x} f=\left[\tau_{x}\left(\lambda_{1}\right)+\tau_{x}\left(\lambda_{2}\right)\right] C_{x} f$. When we choose $f \in \varepsilon$, from Lemma 2.10, we get $C_{x} f \in C I$. Then $\tau_{x}\left(\lambda_{1}\right)+\tau_{x}\left(\lambda_{2}\right)=\tau_{x}\left(\lambda_{1}+\lambda_{2}\right)$ and τ_{x} is additive.

Next we show τ_{x} is injective. Otherwise, there exists $0 \neq \lambda_{0} \in \mathcal{A}$ but $\tau_{x}\left(\lambda_{0}\right)=0$. So $\Phi\left(\lambda_{0} \theta_{x, f}\right)=\tau_{x}\left(\lambda_{0}\right) \theta_{y, C_{x} f}=0$ which contradicts Φ preserving rank one.

Claim $7 \tau_{x}$ is independent of x. We choose $x_{1}, x_{2} \in C I$ with $\Phi\left(L_{x_{1}}^{\varepsilon}\right) \subseteq L_{y_{1}}^{C I}, \Phi\left(L_{x_{2}}^{\varepsilon}\right) \subseteq L_{y_{2}}^{C I}$ such that $\left\langle y_{1}, y_{2}\right\rangle=0$. We will complete the proof by 5 steps.

Step 1. We consider $\Phi\left(\theta_{x_{1}+x_{2}, e}\right)=\theta_{y_{1}, C_{x_{1} e}}+\theta_{y_{2}, C_{x_{2}} e}$. From $\left\langle y_{1}, y_{2}\right\rangle=0$, there exists $\sigma \in \operatorname{Inv}(\mathcal{A})$ such that $C_{x_{1}} e=\sigma C_{x_{2}} e$.

We choose $e^{\prime} \in \varepsilon$ such that $C_{x_{2}} e^{\prime} \neq \alpha C_{x_{2}} e$ for all $\alpha \in \operatorname{Inv}(\mathcal{A})$. Repeating the above process, we have $C_{x_{1}} e^{\prime}=\nu C_{x_{2}} e^{\prime}$ for some $\nu \in \operatorname{Inv}(\mathcal{A})$. Then

$$
\begin{aligned}
\Phi\left(\theta_{x_{1}+x_{2}, e+e^{\prime}}\right) & =\theta_{y_{1}, C_{x_{1}} e}+\theta_{y_{1}, C_{x_{1}} e^{\prime}}+\theta_{y_{2}, C_{x_{2}} e}+\theta_{y_{2}, C_{x_{2}} e^{\prime}} \\
& =\theta_{y_{1}, \sigma C_{x_{2}} e}+\theta_{y_{1}, \nu C_{x_{2}} e^{\prime}}+\theta_{y_{2}, C_{x_{2}} e}+\theta_{y_{2}, C_{x_{2}} e^{\prime}} \\
& =\theta_{\sigma^{*} y_{1}+y_{2}, C_{x_{2}} e}+\theta_{\nu^{*} y_{1}+y_{2}, C_{x_{2}} e^{\prime}} .
\end{aligned}
$$

Since $e+e^{\prime} \in C I, C_{x_{2}} e \neq \alpha C_{x_{2}} e^{\prime}$ for all $\alpha \in \operatorname{Inv}(\mathcal{A})$, there exists $\alpha_{0} \in \operatorname{Inv}(\mathcal{A})$ such that $\sigma^{*} y_{1}+y_{2}=\alpha_{0}\left(\nu^{*} y_{1}+y_{2}\right)$, i.e., $\left(\sigma^{*}-\alpha_{0} \nu^{*}\right) y_{1}+\left(1-\alpha_{0}\right) y_{2}=0$. It follows $\sigma=\nu$ from $\left\langle y_{1}, y_{2}\right\rangle=0$ and $y_{1}, y_{2} \in C I$.

Step 2. We put $\lambda \in \operatorname{Inv}(\mathcal{A})$. Then $\Phi\left(\theta_{x_{1}+x_{2}, \lambda e^{\prime}}\right)=\theta_{y_{1}, C_{x_{1}}\left(\lambda e^{\prime}\right)}+\theta_{y_{2}, C_{x_{2}}\left(\lambda e^{\prime}\right)}$. Since $\lambda e^{\prime} \in C I$ and $y_{1} \neq \alpha y_{2}$, there exists $a(\lambda) \in \operatorname{Inv}(\mathcal{A})$ such that $C_{x_{1}}\left(\lambda e^{\prime}\right)=a(\lambda) C_{x_{2}}\left(\lambda e^{\prime}\right)$.

$$
\begin{aligned}
\Phi\left(\theta_{x_{1}+x_{2}, e+\lambda e^{\prime}}\right) & =\theta_{y_{1}, C_{x_{1}} e}+\theta_{y_{1}, C_{x_{1}}\left(\lambda e^{\prime}\right)}+\theta_{y_{2}, C_{x_{2}} e}+\theta_{y_{2}, C_{x_{2}}\left(\lambda e^{\prime}\right)} \\
& =\theta_{y_{1}, \sigma C_{x_{2}} e}+\theta_{y_{1}, a(\lambda) C_{x_{2}}\left(\lambda e^{\prime}\right)}+\theta_{y_{2}, C_{x_{2}} e}+\theta_{y_{2}, C_{x_{2}}\left(\lambda e^{\prime}\right)} \\
& =\theta_{\sigma^{*} y_{1}+y_{2}, C_{x_{2}} e}+\theta_{a(\lambda)^{*} y_{1}+y_{2}, C_{x_{2}}}\left(\lambda e^{\prime}\right)
\end{aligned}
$$

Since $C_{x_{2}}\left(e^{\prime}\right) \neq \alpha C_{x_{2}} e$, for all $\alpha \in \operatorname{Inv}(\mathcal{A})$ and $e+\lambda e^{\prime} \in C I$ we know there exists $c(\lambda) \in \operatorname{Inv}(\mathcal{A})$ such that $\sigma^{*} y_{1}+y_{2}=c(\lambda)\left(a(\lambda)^{*} y_{1}+y_{2}\right)$, i.e., $\left[\sigma^{*}-c(\lambda) a(\lambda)^{*}\right] y_{1}+[1-c(\lambda)] y_{2}=0$. Then it follows $\sigma^{*}=c(\lambda) a(\lambda)^{*}, c(\lambda)=1$ and $a(\lambda)=\sigma$. Thus we have $C_{x_{1}}\left(\lambda e^{\prime}\right)=\sigma C_{x_{2}}\left(\lambda e^{\prime}\right)$.

Step 3. When λ is not in $\operatorname{Inv}(\mathcal{A})$, we may suppose $\|\lambda\|<1$ (If not, we can consider $\frac{\lambda}{2\|\lambda\|}$).
We have

$$
\begin{aligned}
\Phi\left(\theta_{x_{1}+x_{2}, \lambda e^{\prime}}\right) & =\theta_{y_{1}, C_{x_{1}}\left(\lambda e^{\prime}\right)}+\theta_{y_{2}, C_{x_{2}}\left(\lambda e^{\prime}\right)}=\theta_{\tau_{x_{1}}\left(\lambda^{*}\right) y_{1}, C_{x_{1}} e^{\prime}}+\theta_{\tau_{x_{2}}\left(\lambda^{*}\right) y_{2}, C_{x_{2}} e^{\prime}} \\
& =\theta_{\sigma^{*} \tau_{x_{1}}\left(\lambda^{*}\right) y_{1}+\tau_{x_{2}}\left(\lambda^{*}\right) y_{2}, C_{x_{2}} e^{\prime}}:=\theta_{y_{3}, g_{3}}
\end{aligned}
$$

Note that $y_{1}, y_{2} \in C I$ but $C_{x_{1}}\left(\lambda e^{\prime}\right), C_{x_{2}}\left(\lambda e^{\prime}\right)$ are not in $C I$. We get for some $a(\lambda), b(\lambda), a(1-$ $\lambda), b(1-\lambda) \in \mathcal{A}$,

$$
\left\{\begin{array}{l}
C_{x_{1}}\left(\lambda e^{\prime}\right)=a(\lambda) g_{3}, \\
C_{x_{2}}\left(\lambda e^{\prime}\right)=b(\lambda) g_{3},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
C_{x_{1}}\left[(1-\lambda) e^{\prime}\right]=a(1-\lambda) g_{3} \\
C_{x_{2}}\left[(1-\lambda) e^{\prime}\right]=b(1-\lambda) g_{3}
\end{array}\right.
$$

On the one hand, $C_{x_{1}}\left[(1-\lambda) e^{\prime}\right]=C_{x_{1}}\left(e^{\prime}-\lambda e^{\prime}\right)=\sigma C_{x_{2}} e^{\prime}-a(\lambda) g_{3}=[\sigma-a(\lambda)] g_{3}$. On the other hand, since $(1-\lambda) \in \operatorname{Inv}(\mathcal{A}), C_{x_{1}}\left[(1-\lambda) e^{\prime}\right]=\sigma C_{x_{2}}\left[(1-\lambda) e^{\prime}\right]=\sigma[1-b(\lambda)] g_{3}$. From $g_{3} \in C I$ we have $\sigma-a(\lambda)=\sigma(1-b(\lambda))$ i.e., $a(\lambda)=\sigma b(\lambda)$. Consequently, $C_{x_{1}}\left(\lambda e^{\prime}\right)=a(\lambda) g_{3}=\sigma b(\lambda) g_{3}=$ $\sigma C_{x_{2}}\left(\lambda e^{\prime}\right)$.

Step 4. For all $\lambda \in \mathcal{A}, C_{x_{1}}\left(\lambda e^{\prime}\right)=\tau_{x_{1}}(\lambda) C_{x_{1}} e^{\prime}=\tau_{x_{1}}(\lambda) \sigma C_{x_{2}} e^{\prime}$. At the same time $C_{x_{1}}\left(\lambda e^{\prime}\right)=$ $\sigma C_{x_{2}}\left(\lambda e^{\prime}\right)=\sigma \tau_{x_{2}}(\lambda) C_{x_{2}} e^{\prime}$. We can get $\tau_{x_{1}}(\lambda)=\tau_{x_{2}}(\lambda)$ since $\sigma \in \operatorname{Inv}(\mathcal{A}), C_{x_{2}} e^{\prime} \in C I$.

Step 5. For every $x \in C I, \Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y}^{C I}$ for some $y \in C I$. Then $y=\sum_{i} \beta_{i} y_{i}$, where $\left\{y_{i}\right\}$ is the orthonormal basis. Since Φ is surjective, there exists $\left\{x_{i}\right\} \subseteq C I$ such that $\Phi\left(L_{x_{i}}^{\varepsilon}\right) \subseteq L_{y_{i}}^{C I}$. Now we investigate

$$
\begin{aligned}
\Phi\left(\theta_{x_{1}, e}+\theta_{x, e}\right) & =\theta_{y_{1}, C_{x_{1}} e}+\theta_{y, C_{x} e}=\theta_{y_{1}, C_{x_{1}} e}+\theta \sum_{i=1}^{\infty} \beta_{i} y_{i}, C_{x} e \\
& =\theta_{y_{1}, C_{x_{1}} e}+\theta_{\beta_{1} y_{1}, C_{x} e}+\theta \sum_{i=2}^{\infty} \beta_{i} y_{i}, C_{x} e \\
& =\theta_{y_{1}, C_{x_{1}} e+\beta_{1}^{*} C_{x} e}+\theta \sum_{i=2}^{\infty} \beta_{i} y_{i}, C_{x} e
\end{aligned}
$$

and we have $C_{x_{1}} e+\beta_{1}^{*} C_{x} e=\beta C_{x} e$ for some $\beta \in \mathcal{A}$ i.e., $C_{x_{1}} e=\left(\beta-\beta_{1}^{*}\right) C_{x} e$. Since $C_{x_{1}} e, C_{x} e \in$ $C I$, we get $\beta-\beta_{1}^{*} \in \operatorname{Inv}(\mathcal{A})$ and denote $\beta-\beta_{1}^{*}$ by γ_{1}.

Similarly, we have $C_{x_{i}} e=\gamma_{i} C_{x} e$ for some $\gamma_{i} \in \operatorname{Inv}(\mathcal{A})$. Suppose $\tau_{x_{i}}\left(\alpha_{i}\right)=\beta_{i}, \tau_{x_{i}}\left(\delta_{i}\right)=$ $\left(\gamma_{i}^{-1}\right)^{*}$ for some $\alpha_{i}, \delta_{i} \in \mathcal{A}$ and

$$
\left.\begin{array}{rl}
\Phi\left(\theta_{i} \delta_{i} \alpha_{i} x_{i}, e\right.
\end{array}\right)=\sum_{i} \Phi\left(\theta_{\delta_{i} \alpha_{i} x_{i}, e}\right)=\sum_{i} \tau_{x_{i}}\left(\delta_{i} \alpha_{i}\right) \Phi\left(\theta_{x_{i}, e}\right)=\sum_{i}\left(\gamma_{i}^{-1}\right)^{*} \beta_{i} \theta_{y_{i}, C_{x_{i}} e} .
$$

Then $\Phi\left(\theta_{\sum_{i} \delta_{i} \alpha_{i} x_{i}-x, e}\right)=0$. We infer that $x=\sum_{i} \delta_{i} \alpha_{i} x_{i}$.
For all $\lambda \in \mathcal{A}, e \in \varepsilon$ and from the above step, $\tau_{x_{1}}=\tau_{x_{2}}=\cdots:=\tau$, we have

$$
\left.\begin{array}{rl}
\Phi\left(\lambda \theta_{x, e}\right) & =\Phi\left(\lambda \theta_{\sum_{i}} \delta_{i} \alpha_{i} x_{i}, e\right.
\end{array}\right)=\sum_{i} \Phi\left(\lambda \delta_{i} \alpha_{i} \theta_{x_{i}, e}\right) .
$$

Thus $\tau_{x}=\tau$ is independent of x.
Claim $8 C_{x}$ is independent of $x \in C I$. For $x_{1}, x_{2} \in C I$ with $\Phi\left(L_{x_{1}}^{\varepsilon}\right) \subseteq L_{y_{1}}^{C I}, \Phi\left(L_{x_{2}}^{\varepsilon}\right) \subseteq L_{y_{2}}^{C I}$ such that $y_{1} \neq \alpha y_{2}$ for all $\alpha \in \operatorname{Inv}(\mathcal{A})$.

$$
\Phi\left(\theta_{x_{1}+x_{2}, e}\right)=\Phi\left(\theta_{x_{1}, e}\right)+\Phi\left(\theta_{x_{2}, e}\right)=\theta_{y_{1}, C_{x_{1}} e}+\theta_{y_{2}, C_{x_{2}} e}
$$

which yields $C_{x_{1}} e=\alpha_{e} C_{x_{2}} e$ for all $e \in \varepsilon$. From Lemma 2.9, we can see α_{e} is independent of the choice of $e \in \varepsilon$. Then there exists $\alpha_{0} \in \operatorname{Inv}(\mathcal{A})$ such that $C_{x_{1}}=\alpha_{0} C_{x_{2}}:=C$.

For arbitrary $x \in C I$ with $\Phi\left(L_{x}^{\varepsilon}\right) \subseteq L_{y}^{C I}$ for some $y \in C I$, then $y \neq \alpha y_{1}$ or $y \neq \beta y_{2}$, for all $\alpha, \beta \in \operatorname{Inv}(\mathcal{A})$. So $C_{x}=\alpha_{x} C_{x_{1}}\left(\right.$ or $\left.C_{x}=\beta_{x} C_{x_{2}}\right)$ for some $\alpha_{x} \in \operatorname{Inv}(\mathcal{A})$.

Then we have

$$
\Phi\left(\theta_{x, e}\right)=\theta_{y, C_{x} e}=\theta_{y, \alpha_{x} C_{x_{1}} e}
$$

and

$$
\Phi\left(\theta_{x, f}\right)=\theta_{y, C_{x} f}=\theta_{y, \alpha_{x} C_{x_{1}} f}=\theta_{\alpha_{x}^{*} y, C f}
$$

Denote $\alpha_{x}^{*} y$ by $A^{\prime} x$ and get

$$
\Phi\left(\theta_{x, f}\right)=\theta_{A^{\prime} x, C f}
$$

for all $x \in C I, f \in H_{\mathcal{A}}$.
Now for arbitrary $x \in H_{\mathcal{A}}$ (may not in $\left.C I\right), x=\sum_{i} \alpha_{i} x_{i}$ where $x_{i} \in C I$ with $\Phi\left(\theta_{x_{i}, f}\right)=$ $\theta_{A^{\prime} x_{i}, C f}$. Then

$$
\Phi\left(\theta_{x, f}\right)=\Phi\left(\theta_{\sum_{i} \alpha_{i} x_{i}, f}\right)=\sum_{i} \tau\left(\alpha_{i}\right) \theta_{A^{\prime} x_{i}, C f}=\theta_{\sum_{i} \tau\left(\alpha_{i}\right) A^{\prime} x_{i}, C f}
$$

We denote $\sum_{i} \tau\left(\alpha_{i}\right) A^{\prime} x_{i}$ by $A x$. Then for all $x, f \in H_{\mathcal{A}}$, we always have $\Phi\left(\theta_{x, f}\right)=\theta_{A x, C f}$. Especially, we choose $f \in \varepsilon$, and then one can see A is an injective quasi-modular map.

The statement (ii) can be shown by the similar methods and its proof is omitted here.

References

[1] Jinchuan HOU. Rank-preserving linear maps on $B(X)$. Sci. China Ser. A, 1989, 32(8): 929-940.
[2] B. KUZMA. Additive mappings decreasing rank one. Linear Algebra Appl., 2002, 348: 175-187.
[3] M. OMLADIĆ, P. ŠEMRL. Additive mappings preserving operators of rank one. Linear Algebra Appl., 1993, 182: 239-256.
[4] Bin MENG, Maozheng GUO, Xiaohong CAO. Operator-valued free Fisher information and modular frames. Proc. Amer. Math. Soc., 2005, 133(10): 3087-3096.
[5] Bin MENG, Maozheng GUO, Xiaohong CAO. Some applications of free Fisher information on frame theory. J. Math. Anal. Appl., 2005, 311(2): 466-478.
[6] Bin MENG. Rank-preserving module maps. J. Math. Anal. Appl., 2008, 344(1): 1-8.
[7] I. KAPLANSKY. Modules over operator algebras. Amer. J. Math., 1953, 75: 839-858.
[8] E. C. LANCE. Hilbert C^{*}-Modules: A Toolkit for Operator Algebraists. Cambridge University Press, Cambridge, 1995.

[^0]: Received August 28, 2010; Accepted May 26, 2011
 Supported by the National Natural Science Foundation of China (Grant No. 11171151).
 E-mail address: bmengnuaa@gmail.com

