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Abstract In this paper, we prove that every generalized Jordan derivation associate with a
Hochschild 2-cocycle from the algebra of upper triangular matrices to its bimodule is the sum
of a generalized derivation and an antiderivation.

Keywords generalized Jordan derivation; generalized derivation; Hochschild 2-cocycle.

MR(2010) Subject Classification 47B47; 47L35

1. Introduction

Let R be a commutative ring with identity, .A be an algebra over R and M be an A-
bimodule. Let o : A x A — M be an R-bilinear map, that is, an R-linear map on each

component. « is called a Hochschild 2-cocycle if
aa(b, ¢) — a(ab, ¢) + a(a, be) — ala,b)e =0 (1)

for all a,b,c € A. Let A, ¢ and 0 be R-linear maps from A to M. ¢ is called a generalized
derivation if there exists a Hochschild 2-cocycle a such that

p(ab) = p(a)b + ap(b) + ala, b) (2)
for all a,b € A, and A is called a generalized Jordan derivation if
A(a®) = A(a)a + aA(a) + ofa, a) (3)

for all @ € A. We denote them by (p,a) and (A, «), respectively. Moreover, ¢ is called an
antiderivation if

d(ab) = d(b)a + bd(a) (4)
for all a,b € A.

Different types of generalized derivations as well as generalized Jordan derivations have
been introduced by several authors. For instance, Bresar in [1] defined one kind of generalized
derivations in the sense that if ¢ is an R-linear map from A to M and if there exists a derivation
d from A to M such that ¢(ab) = ¢(a)b+ad(b) for all a,b € A, then ¢ is a generalized derivation;
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another kind of generalized derivations was introduced by Nakajima [2] as follows. An R-linear
map ¢ from A to M is called a generalized derivation if there exists an element w € M such that
(ab) = ¢(a)b + ap(db) + awd for all a,b € A. In the case that A has an identity element I, this
is equivalent to that ¢ satisfies p(ab) = p(a)b + ap(b) — ap(I)b for all a,b € A. Nakajima in [3]
defined the type of generalized derivations associate with Hochschild 2-cocycles and pointed out
that this type includes not only the generalized derivations mentioned above, but left multipliers
and (o, 7)-derivations as well. For more details we refer the reader to [3-6] and references therein.

Throughout this paper, by M, (R), n > 2, we denote the algebra of all n x n matrices over
R, by T,(R) its subalgebra of all upper triangular matrices, and by D, (R) its subalgebra of
all diagonal matrices. Benkovié¢ in [7] showed that every Jordan derivation from 7,(R) to its
bimodule is the sum of a derivation and an antiderivation. Ji and Ma [8] extended this result
to generalized Jordan derivations in the usual sense, i.e., if A is a generalized Jordan derivation

from 7,,(R) to its bimodule in the sense
A(a®) = A(a)a + aA(a) — aA(l)a

for all a € 7,(R), then A is the sum of a generalized derivation ¢ and an antiderivation J, where

¢ is such that
p(ab) = ¢(a)b + ap(b) — ap(I)b

for all a,b € 7,(R). In this note we generalize the result above to show that every generalized
Jordan derivation (A, a) associate with Hochschild 2-cocycle « from 7,,(R) to its bimodule is the
sum of a generalized derivation (p,a) and an antiderivation. We shall assume, without further

mention, that all algebras and all modules considered in this paper is 2-torsionfree.

2. Proof of the main result

Let A be an algebra with identity over R and M be an A-bimodule. As usual, we regard
M as an R-bimodule by actions rm = mr = (rI)m = m(rI) for all r € R and m € M, where I
is the identity of A. We begin with the following lemma which is a modification of Lemma 2 in

[3]. For the sake of completeness, we present the proof here.

Lemma 2.1 Let A be an R-linear map from A to its bimodule M and a: A x A — M be a
Hochschild 2-cocycle. Then the following relations are equivalent:

1) (A, a) is a generalized Jordan derivation.
2) For all a,b € A, we have

A(ab+ ba) = A(a)b+ aA(b) + A(b)a + bA(a) + a(a,b) + a(b, a). (5)
3) For all a,b € A, we have
A(aba) = Aa)ba + aA(b)a + abA(a) 4+ aa(b, a) + a(a, ba). (6)

Proof 1)==2). Since A(a?) = A(a)a+ aA(a) + a(a,a) for all a € A, replacing a by a+ b gives
(5)-
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2)==-3). Substituting ab + ba for b in (5) and using the 2-cocycle condition, we have
2A(aba) =A(a(ab + ba) + (ab+ ba)a) — A(a®b + ba?)
=2[A(a)ba + aA(b)a + abA(a)]+
ala(a,b) + a(b,a)] + a(a, adb) + a(a, ba)+
(a,b) + a(b,a)la + a(ab, a) + a(ba, a)—
[a(a, a)b + a(a?,b) + ba(a,a) + a(b, a?)]
=2[A(a)ba + aA(b)a + abA(a)]+
[aa(a,b) — a(a®,b) + ala,ab) — a(a, a)b]—
[ba(a,a) — a(ba,a) + ab,a?®) — a(b,a)a]+

[c

aa(b,a) + a(a,ba) + a(a,b)a + a(ab, a)
=2[A(a)ba + aA(b)a + abA(a)]+
aa(b,a) + a(a,ba) + aa,b)a + a(ab, a).
Since aa(b, a) + a(a, ba) = a(ab, a) + a(a,b)a and M is 2-torsionfree, we have the relation (6).
3)==1). Taking a = b = I in (6) yields A(I) = —«(Z,I). Then putting b = I in (6) gives
(1), since aA(I)a = —aa(I,I)a = —ac(l,a). This completes the proof. O
For any idempotent e € A, (3) gives
Ale) = Ale)e +eAle) + ale,e). (7)
For any a € A satisfying ae = ea = 0, Lemma 2.1 implies 0 = A(ae + ea) = A(a)e + aA(e) +
A(e)a + eA(a) + ala, e) + ale,a). Multiplying e from the right yields
A(a)e + aA(e)e + eA(a)e + a(a,e)e + ale,a)e = 0. ()
By the fact 0 = A(eae) = eA(a)e + ea(a, e) = eA(a)e + ale, a)e, (8) becomes A(a)e + alA(e)e +
afa,e)e = 0. Notice that aA(e) = a[A(e)e + eA(e) + ale, e)] = aA(e)e + aa(e,e) = aA(e)e —

ala,e) + a(a, e)e, and hence we obtain
A(a)e + aA(e) + ala,e) =0 = A(e)a + eA(a) + ale, a) 9)
for any idempotent e, a € A such that ae = ea = 0.
Now we assume that (A, a) is a generalized Jordan derivation from 7, (R) to its bimodule
M. Let e;; be the element in M,,(R) with entries I at the position ¢, j and 0 otherwise for any
1<i,7 <n. By (7) we have
Aleii) = Aleii)ei + eiil(eis) + ales, i) (10)
and
eril(esi)ei; = —epia(eis, €ii)eqj (11)
for all ¢ and k < i < j. From (5) we obtain that
A(eij) = A(e“—eij + eije“-)
= A(esi)ei; + ei(es) + Aleij)es + eigAlei) + e, €ij) + ales, eii) (12)
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whenever 1 < i < j < n. Furthermore, (9) gives that
A(ekj)eii + eij(eii) + a(ekj, eii) =0= A(eii)ekj + eiiA(ekj) + a(eii, ekj) (13)

for all k,j # .
Now define an R-linear map ¢ from 7, (R) to M by

w(ei;) = Alesi)eij + eiA(eij) + alei, e5), 1<i<j<n. (14)
According to (10), we have p(e;;) = A(ey;) for all 1 <i < n.
Lemma 2.2 ¢ is a generalized derivation associate with Hochschild 2-cocycle o.
Proof It is enough to check that
pleijert) = (e )en + eijpen) + aleij, en) (15)
for all i < j and k <. We consider two cases.

Case 1 j # k. Our goal is to show that ¢(e;j)er +eijp(en) + aleij, er) = 0, for p(e;jer) = 0.
By (14) we have
p(eij)en + eijo(en) + aleij, ex)
= [A(eii)eij + €iiA(eij) + aled, eij)]erx+
eij[Alerk)ert + ernAler) + alerr, exr)] + aleij, exr)

= e;iAeij)en + o€, eij)en + eijAlerk)ew + eijalerk, ex) + aleij, ex)- (16)

Since ejja(err, ex) = —aleij, exr)+alei;, exr)ens = —alesj, er)+[eia(e, exrn)— (e, €ij)erk] e,
(16) becomes

eiiA(eij)en + eijAlerr)ern + eia(eij, exk)er. (17)

If ¢ # k, then (13) implies
eii[Aleij ek + eijAlerk) + aleis, exk)]er = 0.
If i = k, then (12) gives
eiiA(eij)ei + eij Alesi)ei + eiiales;, ei:)eir
= e;iA(eij)en + eijA(ei)en + [aleis, eii) + alesi, eij)esi) e
= [eiiA(esj) + eijAles) + alei, eij)]ea + alesj, €ii)eu
= [Alei;) — Alei)ei; — Aleij)en — aleij, e)]ea + ale, ei)eq
= —alei;, e )eq + alei, ei)eiq = 0.
Hence (15) holds true in the first case.

Case 2 j = k. Now we have to show that
p(ea) = pleis)ej + eijplej) + aleij, eji).
Assume i < j < [. Then (14) gives us

pleij)eji + eijplej) + aleij, eji)
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= [A(eis)eij + eisAlei;) + ales, eij)]ej+
eij[Alejz)ej + ejiAle) + alejs, en)] + alei;, e51)
= A(esi)ea + eiA(eij)en + alei, eij)e+
eijAejj)ej + eiAlej) + eijales;, eji) + ale, €ji). (18)
From (11), we have e;;A(ej;)ej; = —eijale;j, e55)e = —eijale;;, e;1), and since a(e;, e;;)ej =
eiic(eij, ej1) — aleij, ej1) + ales, eqr), (18) becomes
Alei)eqa + aleq, i) + einl(eij)ej + eijAle;r) + eisaleis, ejr)
= p(ei) — eiilA(eqa) + eiiAleij)ejr + eijAlej) + eicleis, eji)
(eir) — eii[Alea) — Alei)ejr — e Alesi) — aleij, e51)]
= p(ea) — ei[Aleji)ei; + ejiA(ei;) + aleji, ;)]
(ei) —

eiiA(eji)ei; — eialeji, eij), (19)

= P&

= P&
where the third equality results from the fact that A(e;) = A(esjejr + ejeij) = Aleij)ej +
eijA(eﬂ) + A(ejl)eij +€j[A(€ij) +Oé(6ij, ejl) + a(eﬂ, eij). By (13) we have A(eii)ejl +€iiA(€jl) +
al(eii, ej;) = 0. Multiplying e;; from the right yields e;;A(eji)e; = —aleq, eji)ei; = —eialej, eif),
whence (19) equals p(e;).
Next we assume that ¢ = j < [, then ¢(e;eq) = ¢(e;) and
e(eii)en + eip(eqa) + o€ i)
= Aleii)en + eii[Ales)ea + eil(eq) + aleii, ea)] + aleis, eq)
= A(eii)en + eiAlen) + ales, eq) + eiA(ei)ea + eiiales, eq)
= ¢(eq) + eiiA(eii)en + eiolei, ea) = (ea),
since e A(es;)en = —ega(es, eii)eq = —eza(es, eq). Now, let ¢ < j = 1. We have p(e;je;;) =
v(e;5) and
p(eij)ejj +eijp(es;) + alei, ej;)
= [Aleqi)eij + eiil(ei;) + e eij)lej; +eijAlej;) + aleij, €55)
= Aleii)ei; + ei(eij)ejj + aleis, eij)ej; + eigAles;) + aleij, €55)
= Aleii)eij + alei, eij) + eil(eij)ej; + eijAles;) + eialess, ej5), (20)
where the last equality is due to a(e;;, €;5)ej; = eiales), ej;) — aleij, €j;) + e, €;5). According

o (14), (20) equals

pleis) — eiA(eij) + eilleij)ejj + eijAlej;) + eialeij, ej;)

= pl(eij) — ei[Alei;) — Aleij)ej; — eijAlej;) — aleij, ej5)]

= pleij) — eu[Alejg)eis + ejiAlei) + alejs eij)]

= pleij) — eillejy)ei — enalejs, eij)- (21)
From (13), we have A(ey;)ej; + eiiA(ej;) + ales, e;;) = 0. Multiplying e;; from the right gives

eil(ejj)ei; = —ale, ejj)ei; = —egale);, e;;), whence (21) equals p(e;;). Finally, if i = j =1,



474 Jiankui LI and Qihua SHEN

then (15) follows from (10) and ¢(e;;) = A(e;;). Therefore, (15) holds true in every case and the
proof is completed. [
Now set 6 = A — . Then 6(e;;) = Aleij)ei + eijAles) + aleij,e) forall 1 <i<j<n
and 6(D,(R)) = 0. Since
d(eijer, + exieiz)
= A(eijen + enes) — p(€ijer + epeij)
= Aeij)en + eijAlent) + Alew)eij + ewA(ess) + aleiy, er) + alew eij)—
[p(eij)ent + eijlen) + plew)es + enplei) + aleis, en) + alex, eij)]
= d(eij)ers + eijd(err) + 0(er)esj + erd(esj),

we have that ¢ is a Jordan derivation. Moreover, we have
Lemma 2.3 § is an antiderivation.

Proof Since d = A — ¢, ¢ is a generalized derivation and §(D,,(R)) = 0, it follows that
d(eij) = Aleij)ei + eizAlei) + alei), i)
= [6(eij) + p(eij)]ei + eij[d(ei) + w(ei)] + aleis, €i)

)
0

(eij)ei + @(eij)ei + eijplei) + aleij, ei)
(eij)esi + pleijeis) = 0(eij)ei
if i < j. Note that ¢ is a Jordan derivation, we then have
d(eij) = d(eijes; + ejjeis) = 6(eij)ej; + eijd(es;) + 6(ejj)ei; + ej;0(eqz)
= ej50(eij)

when ¢ < 5. We proved that

d(esj) = d(eiz)es and d(es;) = ej;0(ei;) (22)
whenever ¢ < j. Our goal is to prove that

5(€ij€kl) = 5(€kl)eij + ekl5(eij) (23)
for all i < j and k <[. Again we consider two cases.
Case 1 j # k. We have to show that d(eg;)e;; + exd(e;;) = 0.
If : = k and j = [, this holds true since ¢§ is a Jordan derivation.
If i # k and j # [, it follows from (22) that d(exi)ei; + erd(ei;) = d(en)errei; +erniej;0(eij) = 0.
Next assume that ¢ = k and j # I. If i = [, then from (22) we have 0(e;;)ei; + €;:0(e;5) = 0, since
0 vanishes on diagonal elements. If ¢ # [, then from the fact that § is a Jordan derivation we infer
that 0 = 6(61'161']‘ + eijeil)ejj = 5(61’1)61’]’ + eilé(eij)ejj + 6(61']‘)61'16]‘]‘ + eijé(eil)ejj = 6(61'1)61']‘ =
5(€il)€ij + 61'15(6”).
In the case i # k and j = | we proceed similarly as above. Now we have
5(ekj)eij + ekjd(eij) = ekj5(eij) = ekk(s(ekjeij + eijekj) = ekk5(ekjeij) =0.

Case 2 j = k. The case when i = j = is trivial, since ¢ vanishes on diagonal elements.
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In cases i < j =1l ori=j <l it follows from (22) that
d(eij) = d(ejj)eis + ejid(ez), dleu) = d(eu)es + eud(ei).
Finally, let ¢ < j < I. Then we have d(ej;)ei; + e;id(ei;) = d(eji)ejjei; + ejie;jo(ei;) = 0, while
5(61'1) = 5(€ij€jl + ejleij)
= 0(eiz)es + eijd(en) + 0(eji)eij + end(eq)
= 5(eij)eii€jl + eijellé(ejl) + 5(€jl)ejj€ij + ejlejj5(eij> = 0,
whence (23) holds. This completes the proof. O

Theorem 2.4 Let (A,a) be a generalized Jordan derivation associate with Hochschild 2-
cocycle a from T,(R) to a T,(R)-bimodule M. Then there exists a generalized derivation
(p, ), associate with the same Hochschild 2-cocycle «, and an antiderivation 6 from T,(R) to
M with §(D,,(R)) = 0 such that A = § + ¢. Moreover, (¢, a) and 6 are uniquely determined.

Proof It suffices to prove the uniqueness. Suppose A = 01 + ¢1 = d2 + 2, where 1 and s
are generalized derivations associate with a, while ; and d2 are antiderivations vanishing on
diagonals. Then d = §; — d2 = w2 — ¢ is a derivation and an antiderivation as well. Therefore,
d vanishes on commutators, which implies d(e;;) = d(e;je;; — ejjei;) = 0 for all ¢ < j. On the
other hand, d(D,,(R)) = 61(Dn(R)) — 62(Dn(R)) = 0. It follows that d(7,(R)) = 0 and this
completes the proof. [

Let m > n > 2. We may regard M,,(R) as a 7,(R)-bimodule by the actions AX =
(A Ln—n)X, XA =X(A® L,_y), for all A € T,(R) and X € M,,(R), where I,,_,, is the
identity of M,—,(R). As a corollary to Theorem 2.4, we shall easily derive

Corollary 2.5 Let m > n > 2. Then a generalized Jordan derivation from T,(R) to M.,(R)
is a generalized derivation.

In the case a = 0, we have

Corollary 2.6 ([7]) Let m > n > 2. There are no proper Jordan derivations from T,(R) to
M (R). In particular, there are no proper Jordan derivations from T, (R) to itself.
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