Generalized Jordan Derivations Associate with Hochschild 2-Cocycles on Triangular Matrices

Jiankui LI, Qihua SHEN*

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, P. R. China

Abstract In this paper, we prove that every generalized Jordan derivation associate with a Hochschild 2-cocycle from the algebra of upper triangular matrices to its bimodule is the sum of a generalized derivation and an antiderivation.

Keywords generalized Jordan derivation; generalized derivation; Hochschild 2-cocycle.

MR(2010) Subject Classification 47B47; 47L35

1. Introduction

Let \mathcal{R} be a commutative ring with identity, \mathcal{A} be an algebra over \mathcal{R} and \mathcal{M} be an \mathcal{A} -bimodule. Let $\alpha: \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ be an \mathcal{R} -bilinear map, that is, an \mathcal{R} -linear map on each component. α is called a Hochschild 2-cocycle if

$$a\alpha(b,c) - \alpha(ab,c) + \alpha(a,bc) - \alpha(a,b)c = 0 \tag{1}$$

for all $a, b, c \in \mathcal{A}$. Let Δ , φ and δ be \mathcal{R} -linear maps from \mathcal{A} to \mathcal{M} . φ is called a generalized derivation if there exists a Hochschild 2-cocycle α such that

$$\varphi(ab) = \varphi(a)b + a\varphi(b) + \alpha(a,b) \tag{2}$$

for all $a, b \in \mathcal{A}$, and Δ is called a generalized Jordan derivation if

$$\Delta(a^2) = \Delta(a)a + a\Delta(a) + \alpha(a, a) \tag{3}$$

for all $a \in \mathcal{A}$. We denote them by (φ, α) and (Δ, α) , respectively. Moreover, δ is called an antiderivation if

$$\delta(ab) = \delta(b)a + b\delta(a) \tag{4}$$

for all $a, b \in \mathcal{A}$.

Different types of generalized derivations as well as generalized Jordan derivations have been introduced by several authors. For instance, Brešar in [1] defined one kind of generalized derivations in the sense that if φ is an \mathcal{R} -linear map from \mathcal{A} to \mathcal{M} and if there exists a derivation d from \mathcal{A} to \mathcal{M} such that $\varphi(ab) = \varphi(a)b + ad(b)$ for all $a, b \in \mathcal{A}$, then φ is a generalized derivation;

Received November 10, 2010; Accepted April 18, 2011

Supported by the National Natural Science Foundation of China (Grant No. A010602).

* Corresponding author

E-mail address: jiankuili@yahoo.com (Jiankui LI); qihuashen@yahoo.com.cn (Qihua SHEN)

another kind of generalized derivations was introduced by Nakajima [2] as follows. An \mathcal{R} -linear map φ from \mathcal{A} to \mathcal{M} is called a generalized derivation if there exists an element $\omega \in \mathcal{M}$ such that $\varphi(ab) = \varphi(a)b + a\varphi(b) + a\omega b$ for all $a, b \in \mathcal{A}$. In the case that \mathcal{A} has an identity element I, this is equivalent to that φ satisfies $\varphi(ab) = \varphi(a)b + a\varphi(b) - a\varphi(I)b$ for all $a, b \in \mathcal{A}$. Nakajima in [3] defined the type of generalized derivations associate with Hochschild 2-cocycles and pointed out that this type includes not only the generalized derivations mentioned above, but left multipliers and (σ, τ) -derivations as well. For more details we refer the reader to [3–6] and references therein.

Throughout this paper, by $\mathcal{M}_n(\mathcal{R})$, $n \geq 2$, we denote the algebra of all $n \times n$ matrices over \mathcal{R} , by $\mathcal{T}_n(\mathcal{R})$ its subalgebra of all upper triangular matrices, and by $\mathcal{D}_n(\mathcal{R})$ its subalgebra of all diagonal matrices. Benkovič in [7] showed that every Jordan derivation from $\mathcal{T}_n(\mathcal{R})$ to its bimodule is the sum of a derivation and an antiderivation. Ji and Ma [8] extended this result to generalized Jordan derivations in the usual sense, i.e., if Δ is a generalized Jordan derivation from $\mathcal{T}_n(\mathcal{R})$ to its bimodule in the sense

$$\Delta(a^2) = \Delta(a)a + a\Delta(a) - a\Delta(I)a$$

for all $a \in \mathcal{T}_n(\mathcal{R})$, then Δ is the sum of a generalized derivation φ and an antiderivation δ , where φ is such that

$$\varphi(ab) = \varphi(a)b + a\varphi(b) - a\varphi(I)b$$

for all $a, b \in \mathcal{T}_n(\mathcal{R})$. In this note we generalize the result above to show that every generalized Jordan derivation (Δ, α) associate with Hochschild 2-cocycle α from $\mathcal{T}_n(\mathcal{R})$ to its bimodule is the sum of a generalized derivation (φ, α) and an antiderivation. We shall assume, without further mention, that all algebras and all modules considered in this paper is 2-torsionfree.

2. Proof of the main result

Let \mathcal{A} be an algebra with identity over \mathcal{R} and \mathcal{M} be an \mathcal{A} -bimodule. As usual, we regard \mathcal{M} as an \mathcal{R} -bimodule by actions rm = mr = (rI)m = m(rI) for all $r \in \mathcal{R}$ and $m \in \mathcal{M}$, where I is the identity of \mathcal{A} . We begin with the following lemma which is a modification of Lemma 2 in [3]. For the sake of completeness, we present the proof here.

Lemma 2.1 Let Δ be an \mathcal{R} -linear map from \mathcal{A} to its bimodule \mathcal{M} and α : $\mathcal{A} \times \mathcal{A} \to \mathcal{M}$ be a Hochschild 2-cocycle. Then the following relations are equivalent:

- 1) (Δ, α) is a generalized Jordan derivation.
- 2) For all $a, b \in \mathcal{A}$, we have

$$\Delta(ab + ba) = \Delta(a)b + a\Delta(b) + \Delta(b)a + b\Delta(a) + \alpha(a,b) + \alpha(b,a). \tag{5}$$

3) For all $a, b \in \mathcal{A}$, we have

$$\Delta(aba) = \Delta(a)ba + a\Delta(b)a + ab\Delta(a) + a\alpha(b,a) + \alpha(a,ba). \tag{6}$$

Proof 1) \Longrightarrow 2). Since $\Delta(a^2) = \Delta(a)a + a\Delta(a) + \alpha(a,a)$ for all $a \in \mathcal{A}$, replacing a by a + b gives (5).

2) \Longrightarrow 3). Substituting ab + ba for b in (5) and using the 2-cocycle condition, we have

$$\begin{split} 2\Delta(aba) = & \Delta(a(ab+ba) + (ab+ba)a) - \Delta(a^2b+ba^2) \\ = & 2[\Delta(a)ba + a\Delta(b)a + ab\Delta(a)] + \\ & a[\alpha(a,b) + \alpha(b,a)] + \alpha(a,ab) + \alpha(a,ba) + \\ & [\alpha(a,b) + \alpha(b,a)]a + \alpha(ab,a) + \alpha(ba,a) - \\ & [\alpha(a,a)b + \alpha(a^2,b) + b\alpha(a,a) + \alpha(b,a^2)] \\ = & 2[\Delta(a)ba + a\Delta(b)a + ab\Delta(a)] + \\ & [a\alpha(a,b) - \alpha(a^2,b) + \alpha(a,ab) - \alpha(a,a)b] - \\ & [b\alpha(a,a) - \alpha(ba,a) + \alpha(b,a^2) - \alpha(b,a)a] + \\ & a\alpha(b,a) + \alpha(a,ba) + \alpha(a,b)a + \alpha(ab,a) \\ = & 2[\Delta(a)ba + a\Delta(b)a + ab\Delta(a)] + \\ & a\alpha(b,a) + \alpha(a,ba) + \alpha(a,b)a + \alpha(ab,a). \end{split}$$

Since $a\alpha(b,a) + \alpha(a,ba) = \alpha(ab,a) + \alpha(a,b)a$ and \mathcal{M} is 2-torsionfree, we have the relation (6).

3) \Longrightarrow 1). Taking a = b = I in (6) yields $\Delta(I) = -\alpha(I, I)$. Then putting b = I in (6) gives (1), since $a\Delta(I)a = -a\alpha(I, I)a = -a\alpha(I, a)$. This completes the proof. \square

For any idempotent $e \in \mathcal{A}$, (3) gives

$$\Delta(e) = \Delta(e)e + e\Delta(e) + \alpha(e, e). \tag{7}$$

For any $a \in \mathcal{A}$ satisfying ae = ea = 0, Lemma 2.1 implies $0 = \Delta(ae + ea) = \Delta(a)e + a\Delta(e) + \Delta(e)a + e\Delta(a) + \alpha(a,e) + \alpha(e,a)$. Multiplying e from the right yields

$$\Delta(a)e + a\Delta(e)e + e\Delta(a)e + \alpha(a,e)e + \alpha(e,a)e = 0.$$
(8)

By the fact $0 = \Delta(eae) = e\Delta(a)e + e\alpha(a,e) = e\Delta(a)e + \alpha(e,a)e$, (8) becomes $\Delta(a)e + a\Delta(e)e + \alpha(a,e)e = 0$. Notice that $a\Delta(e) = a[\Delta(e)e + e\Delta(e) + \alpha(e,e)] = a\Delta(e)e + a\alpha(e,e) = a\Delta(e)e - \alpha(a,e) + \alpha(a,e)e$, and hence we obtain

$$\Delta(a)e + a\Delta(e) + \alpha(a, e) = 0 = \Delta(e)a + e\Delta(a) + \alpha(e, a)$$
(9)

for any idempotent $e, a \in \mathcal{A}$ such that ae = ea = 0.

Now we assume that (Δ, α) is a generalized Jordan derivation from $\mathcal{T}_n(\mathcal{R})$ to its bimodule \mathcal{M} . Let e_{ij} be the element in $\mathcal{M}_n(\mathcal{R})$ with entries I at the position i, j and 0 otherwise for any $1 \leq i, j \leq n$. By (7) we have

$$\Delta(e_{ii}) = \Delta(e_{ii})e_{ii} + e_{ii}\Delta(e_{ii}) + \alpha(e_{ii}, e_{ii})$$
(10)

and

$$e_{ki}\Delta(e_{ii})e_{ij} = -e_{ki}\alpha(e_{ii}, e_{ii})e_{ij} \tag{11}$$

for all i and $k \leq i \leq j$. From (5) we obtain that

$$\Delta(e_{ij}) = \Delta(e_{ii}e_{ij} + e_{ij}e_{ii})$$

$$= \Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij}) + \Delta(e_{ij})e_{ii} + e_{ij}\Delta(e_{ii}) + \alpha(e_{ii}, e_{ij}) + \alpha(e_{ij}, e_{ii})$$
(12)

whenever $1 \le i < j \le n$. Furthermore, (9) gives that

$$\Delta(e_{kj})e_{ii} + e_{kj}\Delta(e_{ii}) + \alpha(e_{kj}, e_{ii}) = 0 = \Delta(e_{ii})e_{kj} + e_{ii}\Delta(e_{kj}) + \alpha(e_{ii}, e_{kj})$$
(13)

for all $k, j \neq i$.

Now define an \mathcal{R} -linear map φ from $\mathcal{T}_n(\mathcal{R})$ to \mathcal{M} by

$$\varphi(e_{ij}) = \Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij}) + \alpha(e_{ii}, e_{ij}), \quad 1 \le i \le j \le n.$$

$$\tag{14}$$

According to (10), we have $\varphi(e_{ii}) = \Delta(e_{ii})$ for all $1 \leq i \leq n$.

Lemma 2.2 φ is a generalized derivation associate with Hochschild 2-cocycle α .

Proof It is enough to check that

$$\varphi(e_{ij}e_{kl}) = \varphi(e_{ij})e_{kl} + e_{ij}\varphi(e_{kl}) + \alpha(e_{ij}, e_{kl})$$
(15)

for all $i \leq j$ and $k \leq l$. We consider two cases.

Case 1 $j \neq k$. Our goal is to show that $\varphi(e_{ij})e_{kl} + e_{ij}\varphi(e_{kl}) + \alpha(e_{ij}, e_{kl}) = 0$, for $\varphi(e_{ij}e_{kl}) = 0$. By (14) we have

$$\varphi(e_{ij})e_{kl} + e_{ij}\varphi(e_{kl}) + \alpha(e_{ij}, e_{kl})
= [\Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij}) + \alpha(e_{ii}, e_{ij})]e_{kl} +
e_{ij}[\Delta(e_{kk})e_{kl} + e_{kk}\Delta(e_{kl}) + \alpha(e_{kk}, e_{kl})] + \alpha(e_{ij}, e_{kl})
= e_{ii}\Delta(e_{ij})e_{kl} + \alpha(e_{ii}, e_{ij})e_{kl} + e_{ij}\Delta(e_{kk})e_{kl} + e_{ij}\alpha(e_{kk}, e_{kl}) + \alpha(e_{ij}, e_{kl}).$$
(16)

Since $e_{ij}\alpha(e_{kk}, e_{kl}) = -\alpha(e_{ij}, e_{kl}) + \alpha(e_{ij}, e_{kk})e_{kl} = -\alpha(e_{ij}, e_{kl}) + [e_{ii}\alpha(e_{ij}, e_{kk}) - \alpha(e_{ii}, e_{ij})e_{kk}]e_{kl}$, (16) becomes

$$e_{ii}\Delta(e_{ij})e_{kl} + e_{ij}\Delta(e_{kk})e_{kl} + e_{ii}\alpha(e_{ij}, e_{kk})e_{kl}.$$
(17)

If $i \neq k$, then (13) implies

$$e_{ii}[\Delta(e_{ij})e_{kk} + e_{ij}\Delta(e_{kk}) + \alpha(e_{ij}, e_{kk})]e_{kl} = 0.$$

If i = k, then (12) gives

$$\begin{aligned} e_{ii}\Delta(e_{ij})e_{il} + e_{ij}\Delta(e_{ii})e_{il} + e_{ii}\alpha(e_{ij}, e_{ii})e_{il} \\ &= e_{ii}\Delta(e_{ij})e_{il} + e_{ij}\Delta(e_{ii})e_{il} + [\alpha(e_{ij}, e_{ii}) + \alpha(e_{ii}, e_{ij})e_{ii}]e_{il} \\ &= [e_{ii}\Delta(e_{ij}) + e_{ij}\Delta(e_{ii}) + \alpha(e_{ii}, e_{ij})]e_{il} + \alpha(e_{ij}, e_{ii})e_{il} \\ &= [\Delta(e_{ij}) - \Delta(e_{ii})e_{ij} - \Delta(e_{ij})e_{ii} - \alpha(e_{ij}, e_{ii})]e_{il} + \alpha(e_{ij}, e_{ii})e_{il} \\ &= -\alpha(e_{ii}, e_{ii})e_{il} + \alpha(e_{ij}, e_{ii})e_{il} = 0. \end{aligned}$$

Hence (15) holds true in the first case.

Case 2 j = k. Now we have to show that

$$\varphi(e_{il}) = \varphi(e_{ij})e_{jl} + e_{ij}\varphi(e_{jl}) + \alpha(e_{ij}, e_{jl}).$$

Assume i < j < l. Then (14) gives us

$$\varphi(e_{ij})e_{jl} + e_{ij}\varphi(e_{jl}) + \alpha(e_{ij}, e_{jl})$$

$$= [\Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij}) + \alpha(e_{ii}, e_{ij})]e_{jl} + e_{ij}[\Delta(e_{jj})e_{jl} + e_{jj}\Delta(e_{jl}) + \alpha(e_{jj}, e_{jl})] + \alpha(e_{ij}, e_{jl})$$

$$= \Delta(e_{ii})e_{il} + e_{ii}\Delta(e_{ij})e_{jl} + \alpha(e_{ii}, e_{ij})e_{jl} + e_{ij}\Delta(e_{jj})e_{jl} + e_{ij}\Delta(e_{jj})e_{jl} + e_{ij}\Delta(e_{jl}) + e_{ij}\alpha(e_{jj}, e_{jl}) + \alpha(e_{ij}, e_{jl}).$$
(18)

From (11), we have $e_{ij}\Delta(e_{jj})e_{jl} = -e_{ij}\alpha(e_{jj},e_{jj})e_{jl} = -e_{ij}\alpha(e_{jj},e_{jl})$, and since $\alpha(e_{ii},e_{ij})e_{jl} = e_{ii}\alpha(e_{ij},e_{jl}) - \alpha(e_{ij},e_{jl}) + \alpha(e_{ii},e_{il})$, (18) becomes

$$\Delta(e_{ii})e_{il} + \alpha(e_{ii}, e_{il}) + e_{ii}\Delta(e_{ij})e_{jl} + e_{ij}\Delta(e_{jl}) + e_{ii}\alpha(e_{ij}, e_{jl})$$

$$= \varphi(e_{il}) - e_{ii}\Delta(e_{il}) + e_{ii}\Delta(e_{ij})e_{jl} + e_{ij}\Delta(e_{jl}) + e_{ii}\alpha(e_{ij}, e_{jl})$$

$$= \varphi(e_{il}) - e_{ii}[\Delta(e_{il}) - \Delta(e_{ij})e_{jl} - e_{ij}\Delta(e_{jl}) - \alpha(e_{ij}, e_{jl})]$$

$$= \varphi(e_{il}) - e_{ii}[\Delta(e_{jl})e_{ij} + e_{jl}\Delta(e_{ij}) + \alpha(e_{jl}, e_{ij})]$$

$$= \varphi(e_{il}) - e_{ii}\Delta(e_{jl})e_{ij} - e_{ii}\alpha(e_{jl}, e_{ij}), \tag{19}$$

where the third equality results from the fact that $\Delta(e_{il}) = \Delta(e_{ij}e_{jl} + e_{jl}e_{ij}) = \Delta(e_{ij})e_{jl} + e_{ij}\Delta(e_{jl}) + \Delta(e_{jl})e_{ij} + e_{jl}\Delta(e_{ij}) + \alpha(e_{ij},e_{jl}) + \alpha(e_{jl},e_{ij})$. By (13) we have $\Delta(e_{ii})e_{jl} + e_{ii}\Delta(e_{jl}) + \alpha(e_{ii},e_{jl}) = 0$. Multiplying e_{ij} from the right yields $e_{ii}\Delta(e_{jl})e_{ij} = -\alpha(e_{ii},e_{jl})e_{ij} = -e_{ii}\alpha(e_{jl},e_{ij})$, whence (19) equals $\varphi(e_{il})$.

Next we assume that i = j < l, then $\varphi(e_{ii}e_{il}) = \varphi(e_{il})$ and

$$\varphi(e_{ii})e_{il} + e_{ii}\varphi(e_{il}) + \alpha(e_{ii}, e_{il})
= \Delta(e_{ii})e_{il} + e_{ii}[\Delta(e_{ii})e_{il} + e_{ii}\Delta(e_{il}) + \alpha(e_{ii}, e_{il})] + \alpha(e_{ii}, e_{il})
= \Delta(e_{ii})e_{il} + e_{ii}\Delta(e_{il}) + \alpha(e_{ii}, e_{il}) + e_{ii}\Delta(e_{ii})e_{il} + e_{ii}\alpha(e_{ii}, e_{il})
= \varphi(e_{il}) + e_{ii}\Delta(e_{ii})e_{il} + e_{ii}\alpha(e_{ii}, e_{il}) = \varphi(e_{il}),$$

since $e_{ii}\Delta(e_{ii})e_{il} = -e_{ii}\alpha(e_{ii}, e_{ii})e_{il} = -e_{ii}\alpha(e_{ii}, e_{il})$. Now, let i < j = l. We have $\varphi(e_{ij}e_{jj}) = \varphi(e_{ij})$ and

$$\varphi(e_{ij})e_{jj} + e_{ij}\varphi(e_{jj}) + \alpha(e_{ij}, e_{jj})
= [\Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij}) + \alpha(e_{ii}, e_{ij})]e_{jj} + e_{ij}\Delta(e_{jj}) + \alpha(e_{ij}, e_{jj})
= \Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij})e_{jj} + \alpha(e_{ii}, e_{ij})e_{jj} + e_{ij}\Delta(e_{jj}) + \alpha(e_{ij}, e_{jj})
= \Delta(e_{ii})e_{ij} + \alpha(e_{ii}, e_{ij}) + e_{ii}\Delta(e_{ij})e_{jj} + e_{ij}\Delta(e_{jj}) + e_{ii}\alpha(e_{ij}, e_{jj}),$$
(20)

where the last equality is due to $\alpha(e_{ii}, e_{ij})e_{jj} = e_{ii}\alpha(e_{ij}, e_{jj}) - \alpha(e_{ij}, e_{jj}) + \alpha(e_{ii}, e_{ij})$. According to (14), (20) equals

$$\varphi(e_{ij}) - e_{ii}\Delta(e_{ij}) + e_{ii}\Delta(e_{ij})e_{jj} + e_{ij}\Delta(e_{jj}) + e_{ii}\alpha(e_{ij}, e_{jj})$$

$$= \varphi(e_{ij}) - e_{ii}[\Delta(e_{ij}) - \Delta(e_{ij})e_{jj} - e_{ij}\Delta(e_{jj}) - \alpha(e_{ij}, e_{jj})]$$

$$= \varphi(e_{ij}) - e_{ii}[\Delta(e_{jj})e_{ij} + e_{jj}\Delta(e_{ij}) + \alpha(e_{jj}, e_{ij})]$$

$$= \varphi(e_{ij}) - e_{ii}\Delta(e_{ij})e_{ij} - e_{ii}\alpha(e_{ij}, e_{ij}).$$
(21)

From (13), we have $\Delta(e_{ii})e_{jj} + e_{ii}\Delta(e_{jj}) + \alpha(e_{ii}, e_{jj}) = 0$. Multiplying e_{ij} from the right gives $e_{ii}\Delta(e_{jj})e_{ij} = -\alpha(e_{ii}, e_{jj})e_{ij} = -e_{ii}\alpha(e_{jj}, e_{ij})$, whence (21) equals $\varphi(e_{ij})$. Finally, if i = j = l,

then (15) follows from (10) and $\varphi(e_{ii}) = \Delta(e_{ii})$. Therefore, (15) holds true in every case and the proof is completed. \square

Now set $\delta = \Delta - \varphi$. Then $\delta(e_{ij}) = \Delta(e_{ij})e_{ii} + e_{ij}\Delta(e_{ii}) + \alpha(e_{ij}, e_{ii})$ for all $1 \le i < j \le n$ and $\delta(\mathcal{D}_n(\mathcal{R})) = 0$. Since

$$\begin{split} &\delta(e_{ij}e_{kl} + e_{kl}e_{ij}) \\ &= \Delta(e_{ij}e_{kl} + e_{kl}e_{ij}) - \varphi(e_{ij}e_{kl} + e_{kl}e_{ij}) \\ &= \Delta(e_{ij})e_{kl} + e_{ij}\Delta(e_{kl}) + \Delta(e_{kl})e_{ij} + e_{kl}\Delta(e_{ij}) + \alpha(e_{ij},e_{kl}) + \alpha(e_{kl},e_{ij}) - \\ &[\varphi(e_{ij})e_{kl} + e_{ij}\varphi(e_{kl}) + \varphi(e_{kl})e_{ij} + e_{kl}\varphi(e_{ij}) + \alpha(e_{ij},e_{kl}) + \alpha(e_{kl},e_{ij})] \\ &= \delta(e_{ij})e_{kl} + e_{ij}\delta(e_{kl}) + \delta(e_{kl})e_{ij} + e_{kl}\delta(e_{ij}), \end{split}$$

we have that δ is a Jordan derivation. Moreover, we have

Lemma 2.3 δ is an antiderivation.

Proof Since $\delta = \Delta - \varphi$, φ is a generalized derivation and $\delta(\mathcal{D}_n(\mathcal{R})) = 0$, it follows that

$$\delta(e_{ij}) = \Delta(e_{ij})e_{ii} + e_{ij}\Delta(e_{ii}) + \alpha(e_{ij}, e_{ii})$$

$$= [\delta(e_{ij}) + \varphi(e_{ij})]e_{ii} + e_{ij}[\delta(e_{ii}) + \varphi(e_{ii})] + \alpha(e_{ij}, e_{ii})$$

$$= \delta(e_{ij})e_{ii} + \varphi(e_{ij})e_{ii} + e_{ij}\varphi(e_{ii}) + \alpha(e_{ij}, e_{ii})$$

$$= \delta(e_{ij})e_{ii} + \varphi(e_{ij}e_{ii}) = \delta(e_{ij})e_{ii}$$

if i < j. Note that δ is a Jordan derivation, we then have

$$\delta(e_{ij}) = \delta(e_{ij}e_{jj} + e_{jj}e_{ij}) = \delta(e_{ij})e_{jj} + e_{ij}\delta(e_{jj}) + \delta(e_{jj})e_{ij} + e_{jj}\delta(e_{ij})$$

= $e_{jj}\delta(e_{ij})$

when i < j. We proved that

$$\delta(e_{ij}) = \delta(e_{ij})e_{ii} \text{ and } \delta(e_{ij}) = e_{jj}\delta(e_{ij})$$
 (22)

whenever i < j. Our goal is to prove that

$$\delta(e_{ij}e_{kl}) = \delta(e_{kl})e_{ij} + e_{kl}\delta(e_{ij}) \tag{23}$$

for all $i \leq j$ and $k \leq l$. Again we consider two cases.

Case 1 $j \neq k$. We have to show that $\delta(e_{kl})e_{ij} + e_{kl}\delta(e_{ij}) = 0$.

If i = k and j = l, this holds true since δ is a Jordan derivation.

If $i \neq k$ and $j \neq l$, it follows from (22) that $\delta(e_{kl})e_{ij} + e_{kl}\delta(e_{ij}) = \delta(e_{kl})e_{kk}e_{ij} + e_{kl}e_{jj}\delta(e_{ij}) = 0$. Next assume that i = k and $j \neq l$. If i = l, then from (22) we have $\delta(e_{ii})e_{ij} + e_{ii}\delta(e_{ij}) = 0$, since δ vanishes on diagonal elements. If $i \neq l$, then from the fact that δ is a Jordan derivation we infer that $0 = \delta(e_{il}e_{ij} + e_{ij}e_{il})e_{jj} = \delta(e_{il})e_{ij} + e_{il}\delta(e_{ij})e_{jj} + \delta(e_{ij})e_{il}e_{jj} + e_{ij}\delta(e_{il})e_{jj} = \delta(e_{il})e_{ij} = \delta(e_{il})e_{ij} + e_{il}\delta(e_{ij})$.

In the case $i \neq k$ and j = l we proceed similarly as above. Now we have

$$\delta(e_{kj})e_{ij} + e_{kj}\delta(e_{ij}) = e_{kj}\delta(e_{ij}) = e_{kk}\delta(e_{kj}e_{ij} + e_{ij}e_{kj}) = e_{kk}\delta(e_{kj}e_{ij}) = 0.$$

Case 2 j = k. The case when i = j = l is trivial, since δ vanishes on diagonal elements.

In cases i < j = l or i = j < l, it follows from (22) that

$$\delta(e_{ij}) = \delta(e_{ij})e_{ij} + e_{ij}\delta(e_{ij}), \quad \delta(e_{il}) = \delta(e_{il})e_{ii} + e_{il}\delta(e_{ii}).$$

Finally, let i < j < l. Then we have $\delta(e_{jl})e_{ij} + e_{jl}\delta(e_{ij}) = \delta(e_{jl})e_{jj}e_{ij} + e_{jl}e_{jj}\delta(e_{ij}) = 0$, while

$$\begin{split} \delta(e_{il}) &= \delta(e_{ij}e_{jl} + e_{jl}e_{ij}) \\ &= \delta(e_{ij})e_{jl} + e_{ij}\delta(e_{jl}) + \delta(e_{jl})e_{ij} + e_{jl}\delta(e_{ij}) \\ &= \delta(e_{ij})e_{ii}e_{jl} + e_{ij}e_{ll}\delta(e_{il}) + \delta(e_{jl})e_{ij}e_{ij} + e_{il}e_{ij}\delta(e_{ij}) = 0, \end{split}$$

whence (23) holds. This completes the proof. \Box

Theorem 2.4 Let (Δ, α) be a generalized Jordan derivation associate with Hochschild 2-cocycle α from $\mathcal{T}_n(\mathcal{R})$ to a $\mathcal{T}_n(\mathcal{R})$ -bimodule \mathcal{M} . Then there exists a generalized derivation (φ, α) , associate with the same Hochschild 2-cocycle α , and an antiderivation δ from $\mathcal{T}_n(\mathcal{R})$ to \mathcal{M} with $\delta(\mathcal{D}_n(\mathcal{R})) = 0$ such that $\Delta = \delta + \varphi$. Moreover, (φ, α) and δ are uniquely determined.

Proof It suffices to prove the uniqueness. Suppose $\Delta = \delta_1 + \varphi_1 = \delta_2 + \varphi_2$, where φ_1 and φ_2 are generalized derivations associate with α , while δ_1 and δ_2 are antiderivations vanishing on diagonals. Then $d = \delta_1 - \delta_2 = \varphi_2 - \varphi_1$ is a derivation and an antiderivation as well. Therefore, d vanishes on commutators, which implies $d(e_{ij}) = d(e_{ij}e_{jj} - e_{jj}e_{ij}) = 0$ for all i < j. On the other hand, $d(\mathcal{D}_n(\mathcal{R})) = \delta_1(\mathcal{D}_n(\mathcal{R})) - \delta_2(\mathcal{D}_n(\mathcal{R})) = 0$. It follows that $d(\mathcal{T}_n(\mathcal{R})) = 0$ and this completes the proof. \square

Let $m \geq n \geq 2$. We may regard $\mathcal{M}_m(\mathcal{R})$ as a $\mathcal{T}_n(\mathcal{R})$ -bimodule by the actions $AX = (A \oplus I_{m-n})X$, $XA = X(A \oplus I_{m-n})$, for all $A \in \mathcal{T}_n(\mathcal{R})$ and $X \in \mathcal{M}_m(\mathcal{R})$, where I_{m-n} is the identity of $\mathcal{M}_{m-n}(\mathcal{R})$. As a corollary to Theorem 2.4, we shall easily derive

Corollary 2.5 Let $m \ge n \ge 2$. Then a generalized Jordan derivation from $\mathcal{T}_n(\mathcal{R})$ to $\mathcal{M}_m(\mathcal{R})$ is a generalized derivation.

In the case $\alpha = 0$, we have

Corollary 2.6 ([7]) Let $m \geq n \geq 2$. There are no proper Jordan derivations from $\mathcal{T}_n(\mathcal{R})$ to $\mathcal{M}_m(\mathcal{R})$. In particular, there are no proper Jordan derivations from $\mathcal{T}_n(\mathcal{R})$ to itself.

References

- M. BREŠAR. On the distance of the compositions of two derivations to the generalized derivations. Glasgow Math. J., 1991, 33(1): 80-93.
- [2] A. NAKAJIMA. On categorical properties of generalized derivations. Sci. Math., 1999, 2(3): 345-352.
- [3] A. NAKAJIMA. Note on generalized Jordan derivations associate with Hochschild 2-cocycles of rings. Turkish J. Math., 2006, 30(4): 403–411.
- [4] M. ASHRAF, N. UR-REHMAN. On Jordan generalized derivations in rings. Math. J. Okayama Univ., 2000, 42: 7-9.
- [5] B. E. JOHNSON. Symmetric amenability and the nonexistence of Lie and Jordan derivations. Math. Proc. Cambridge Philos. Soc., 1996, 120(3): 455–473.
- [6] A. NAKAJIMA. Generalized Jordan Derivations. Birkhäuser Boston, Boston, MA, 2001.
- [7] D. BENKOVIČ. Jordan derivations and antiderivations on triangular matrices. Linear Algebra Appl., 2005, 397: 235–244.
- [8] Fei MA, Guoxing JI. Generalized Jordan derivations on triangular matrix algebras. Linear Multilinear Algebra, 2007, 55(4): 355–363.