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Abstract In this paper, the asymptotic behavior of a non-local hyperbolic problem modelling

Ohmic heating is studied. It is found that the behavior of the solution of the hyperbolic problem

only has three cases: the solution is globally bounded and the unique steady state is globally

asymptotically stable; the solution is infinite when t → ∞; the solution blows up. If the solution

blows up, the blow-up is uniform on any compact subsets of (0, 1] and the blow-up rate is

limt→T∗
− u(x, t)(T ∗

− t)
1

α+βp−1 = (α+βp−1

1−α
)

1
1−α−βp , where T ∗ is the blow-up time.
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1. Introduction

In this paper, the asymptotic behavior of the following non-local hyperbolic problem is studied

ut + ux = λuα
/(

∫ 1

0

(u + 1)−βdx
)p

, 0 < x < 1, t > 0;

u(0, t) = 0, t > 0;

u(x, 0) = u0(x) ≥ 0, 0 < x < 1,

(1)

where 0 ≤ α < 1, β > 0, p > 0, λ > 0, u0 = O(x
1

1−α ) as x → 0.

The problem comes from one method for sterilizing food. This method is to heat the food

rapidly electrically. The food is passed through a conduit, part of which lies between two elec-

trodes. A high electric current flowing between the electrodes results in Ohmic heating of the

food which quickly gets hot. The problem was considered by Please, Schwendeman and Hagen

[1] who observed the stability of models allowing for different types of flow. Both homogeneous

and inhomogeneous cases were discussed. In [1] it was found that heat convection dominates heat

conduction, which brought about the form of the left hand side of the equation (1). Concerning

the source term of this equation, see [2], and the references therein. In the paper we consider
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the basic one-dimensional, non-local, hyperbolic model for the simplest case of a plug flow of a

homogeneous material.

Lacey has originally studied the problem with source term of the form λf(u)

(
∫

1
0

f(u)dx)2
, f,−f ′ > 0

(see [3–5]). Tzanetis et al. also obtained many good results towards this direction [6–11]. This

paper applies the comparison principle to studying the asymptotical behavior of the solution of

the problem for any p > 0.

We describe our main results as follows (assume u is the solution of problem (1)):

1) 0 < p < 1. u is globally bounded and the unique steady state is globally asymptotically

stable.

2) p = 1. (i) α + β > 1. If 0 < λ < C1 = 1
1−α

∫ ∞

0
(s

1
1−α + 1)−βds, u is globally bounded and

the unique steady state is globally asymptotically stable; if λ ≥ C1 = 1
1−α

∫ ∞

0 (s
1

1−α + 1)−βds,

u is infinite as t → ∞, (ii) If α + β ≤ 1, u is globally bounded and the unique steady state is

globally asymptotically stable.

3) p > 1. If α+β > 1, there is a λ∗ such that when 0 < λ ≤ λ∗, u blows up when u0 is large

enough, and when λ > λ∗, u blows up for any initial condition; if α + β ≤ 1, there are three

cases: (i) α + βp < 1. There is a unique steady state which is globally asymptotically stable,

(ii) α + βp = 1. When 0 < λ < C2 = 1
1−α

(

p
p−1

)p

, (M is the maximum of solution of stationary

problem (3) which is introduced in Section 3) there is a unique steady state which is globally

asymptotically stable; when λ ≥ C2 = 1
1−α

( p
p−1 )p, then u → ∞ as t → ∞, (iii) α + βp > 1.

There is a λ∗ such that when 0 < λ ≤ λ∗, u blows up for u0 large enough and when λ > λ∗, u

blows up for any initial condition.

4) If u blows up, the blow-up is uniformly on any compact subsets of (0, 1]. We have the

result

lim
t→T∗−

u1−α(t, x)

G(t)
= lim

t→T∗−

|u1−α(t, x)|∞
G(t)

= 1,

where T ∗ is the blow-up time, G(t) =
∫ t

0
g(t)dt and g(t) = λ/(

∫ 1

0
(u + 1)−βdx)p.

5) Applying the character of uniform blow-up, we obtain the uniform rate of the solution of

problem (1)

lim
t→T∗−

u(x, t)(T ∗ − t)
1

α+βp−1 =
(α + βp − 1

1 − α

)
1

1−α−βp

.

This paper is organized as follows: the next three sections are preliminaries. Section 5

concerns the asymptotical behavior and blow-up of the solutions. In the last section the blow-up

rate of solution of the problem (1) is given.

2. Local existence and a comparison principle

At first we set v = u1−α, then (1) changes into

vt + vx = λ(1 − α)
/(

∫ 1

0

(v
1

1−α + 1)−βdx
)p

, 0 < x < 1, t > 0;

v(0, t) = 0, t > 0;

v(x, 0) = u1−α
0 (x), 0 < x < 1.

(2)
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It is obvious that the character of problem (1) can be gotten from problem (2). Next we study

the character of problem (2).

The local existence of a unique solution of (2) follows from employing standard methods, such

as Picard iteration [3, 4]. Non-existence can only come from blow-up with v becoming infinite

after finite time T ∗.

Next a comparison lemma is given, which will be used in the following sections.

Lemma 2.1 If v is the lower solution of (2) and v is the upper solution of (2), then v ≤ v ≤ v.

For the proof, see [3]. This comparison lemma is the main tool of this paper.

3. Steady states of (2)

The steady state of the problem (2) plays an important role in the description of the asymp-

totic behavior of the solution of (2) and the construction of the lower and upper solutions, so we

first consider the stationary problem of (2).

The stationary problem of (2) is

w′(x) = λ(1 − α)
/(

∫ 1

0

(w
1

1−α + 1)−βdx
)p

, 0 < x < 1,

w(0) = 0.

(3)

Set

µ = λ(1 − α)
/(

∫ 1

0

(w
1

1−α + 1)−βdx
)p

,

then problem (3) turns into

w′(x) = µ, 0 < x < 1, w(0) = 0. (4)

Denote its solution by w(x; µ). Integrating on (0, x), we have

w(x; µ) = µx.

For wx > 0, set M = max0<x≤1 w(x) = µ. The following relation between λ and M can be

obtained

λ =
1

1 − α
M

(

∫ 1

0

((Mx)
1

1−α + 1)−βdx
)p

= Λ(M). (5)

Set s = Mx, then

(1 − α)
1
p λ

1
p = M

1−p

p

∫ M

0

(s
1

1−α + 1)−βds. (6)

It is clear λ = 0 as M = 0. But when M → ∞, the situations are more complicated. Next we

discuss them.

1) 0 < p < 1. λ → ∞ as M → ∞ (see Figure 1(a)).

2) p = 1. If α + β > 1, λ → C1 = 1
1−α

∫ ∞

0 (s
1

1−α + 1)−βds as M → ∞ (see Figure 1(b)); if

α + β ≤ 1, λ → ∞ as M → ∞ (see Figure 1(a)).

3) p > 1. If α+β > 1, λ → 0 as M → ∞ (see Figure 1(c)); if α+β ≤ 1, there are three cases:

(i) α + βp < 1, λ → ∞ as M → ∞ (see Figure 1(a)), (ii) α + βp = 1, λ → C2 = 1
1−α

( p
p−1 )p as
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M → ∞ (see Figure 1(b)), (iii) α + βp > 1, λ → 0 as M → ∞ (see Figure 1(c)). Here C1 > 0,

C2 > 0 and they are all constants.

In 1), the result is obvious. In 2), if α + β > 1,
∫ M

0 (s
1

1−α + 1)−βds < ∞, so λ → C1 =
1

1−α

∫ ∞

0
(s

1
1−α + 1)−βds as M → ∞; if α + β ≤ 1,

∫ M

0
(s

1
1−α + 1)−βds → ∞, so λ → ∞ as

M → ∞. In 3), if α + β > 1, it is obvious that λ → 0 as M → ∞; if α + β ≤ 1, M
1−p

p → ∞ and
∫ M

0
(s

1
1−α + 1)−βds → ∞ as M → ∞, next we discuss this case.

From (6), we have

(1 − α)
1
p λ

1
p =

∫ M

0 (s
1

1−α + 1)−βds

M
p−1

p

.

Applying L’Hospital’s rule,

(1 − α)
1
p λ

1
p =

(M
1

1−α + 1)−β

p−1
p

M
−1
p

,

(1 − α)
1
p λ

1
p = lim

M→∞

p

p − 1
(M

1
1−α + 1)−βM

1
p .

Finally for M ≫ 1, we have

(1 − α)
1
p λ

1
p ∼

p

p − 1
M

1−α−βp

(1−α)p .

Therefore, if α + β ≥ 1, there are three cases for α + βp < 1, α + βp = 1 and α + βp > 1.

Figure 1 Bars joined with hinges

Now we examine the number of turning points that exist.

In 1) and 2), it is obvious that λ is increasing with respect to M . So there are no turning

points in these two cases. In 3), from (5) we know

λ =
1

1 − α
M

1−α−βp

1−α

(

∫ 1

0

(x
1

1−α +
1

M
)−βdx

)p

.

Then λ is increasing with respect to M . So we deduce that there are no turning points in 3 (i)

and (ii).

Next we study the case where there is only one turning point in 3 (iii) (λ → 0 as M → ∞).

Using (6), we have

(1 − α)
1
p (λ

1
p )′ = M

1−p

p (M
1

1−α + 1)−β +
1 − p

p
M

1−2p

p

∫ M

0

(s
1

1−α + 1)−βds.

We set

L(M) = M(M
1

1−α + 1)−β +
1 − p

p

∫ M

0

(s
1

1−α + 1)−βds.



480 Xianchao WANG and Chengshun JIANG

Differentiating with respect to M gives

L′(M) = (M
1

1−α + 1)−β−1((
1

p
−

1

(1 − α)β
)M

1
1−α +

1

p
).

L′(M) = 0 has one positive solution at most, which implies that L(M) = 0 has two positive

solutions at most. So we can see there is only one turning point in 3) (iii).

According to the above analysis, we have relations between λ and M (see Fig. 1). From

relations between λ and M , the existence theorem of the steady state of (3) is given.

Theorem 3.1 The existence of the steady state of (3) for fixed λ > 0:

1) 0 < p < 1 (see Fig. 1(a)). There exists a unique steady state for any λ.

2) p = 1. (i) If α + β > 1 (see Fig. 1(b)), there exists a steady state when λ < C1; no steady

state exists when λ ≥ C1; (ii) if α + β ≤ 1 (see Fig. 1(a)), there exists a unique steady state for

any λ.

3) p > 1. If α+β > 1 (see Fig. 1(c)), there exist two steady states when λ ≤ λ∗; there exists

a unique steady state when λ = λ∗; no steady state exists when λ > λ∗; if α + β ≤ 1, there are

three cases: (i) α + βp < 1 (see Fig. 1(a)), there exists a unique steady state, (ii) α + βp = 1

(see Fig. 1(b)), there exists a steady state when λ < C2; no steady state exists when λ ≥ C2,

(iii) α + βp > 1 (see Fig. 1(c)), there exist two steady states when λ < λ∗; there exists a unique

steady state when λ = λ∗; no steady state exists when λ > λ∗.

4. Construction of the lower and upper solutions

In (4), let µ be a function of t. Following [3, 4, 12], we find the conditions on µ(t) for w(x; µ(t))

to be a lower or an upper solution of (2).

Denote k(x, t) ≡ w(x; µ(t)). From (4), we have kx = µ(t). Integrating (4) from 0 to x, we

get

k(x, t) = µ(t)x.

Differentiating with respect to t gives

kt = µ′(t)x.

So k(x, t) satisfies

kt + kx −
λ(1 − α)

(
∫ 1

0
(k

1
1−α + 1)−βdx)p

= µ̇(t)x + µ(t) −
λ(1 − α)

(
∫ 1

0
((µ(t)x)

1
1−α + 1)−βdx)p

.

Let µ(t) be the solution of

µ̇ =
λ(1 − α)

(
∫ 1

0
((µx)

1
1−α + 1)−βdx)p

− µ, µ(0) = µ0. (7)

If there exists µ0 such that

λ ≤ µ
1

1 − α

(

∫ 1

0

((µx)
1

1−α + 1)−βdx
)p

and w(x; µ0) ≥ v0(x),
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then µ(t) is decreasing, therefore k(x, t) is decreasing and satisfies

kt + kx −
λ(1 − α)

(
∫ 1

0
(k

1
1−α + 1)−βdx)p

≥ 0.

So k(x, t) is a decreasing upper solution.

If there exists µ0 such that

λ ≥ µ
1

1 − α

(

∫ 1

0

((µx)
1

1−α + 1)−βdx
)p

and w(x; µ0) ≤ v0(x),

then µ(t) is increasing, therefore k(x, t) is increasing and satisfies

kt + kx −
λ(1 − α)

(
∫ 1

0 (k
1

1−α + 1)−βdx)p
≤ 0.

So k(x, t) is an increasing lower solution.

5. Asymptotic behavior of problem (1)

With preparations of the above two sections in hand, we can discuss the asymptotical behavior

and blow-up properties of the solution of (1). At first we discuss the asymptotical behavior of (2),

then the asymptotical behavior of (1) is obvious because v(x, t) = u1−α(x, t). Next we discuss

the asymptotical behavior of (2) for three cases: 0 < p < 1, p = 1, p > 1.

Theorem 5.1 If 0 < p < 1, then the solution of (2) is bounded and the unique steady state is

globally asymptotically stable.

Proof From Theorem 3.1, for fixed λ, (3) has a unique steady state w(x; µ1) where µ1 is the

solution of the equation (5).

λ =
1

1 − α
µ
(

∫ 1

0

((µx)
1

1−α + 1)−βdx
)p

= Λ(µ). (8)

Take µ(t) satisfying (7) with µ(0) = µ0. For any initial data v0(x) > 0, since

Λ(µ) → ∞, as µ → ∞,

we can select µ0 sufficiently large such that

λ ≤ Λ(µ0) and w(x; µ0) ≥ v0(x).

For u0 = O(x
1

1−α ) as x → 0, µ0 must exist. Thus µ(t) is decreasing and µ(t) → µ1+ as t → ∞.

So k(x, t) = w(x; µ(t)) is a decreasing upper solution of the problem and

k(x, t) → w(x, µ1)+, as t → +∞.

On the other hand, take µ(t) satisfying (7) with µ(0) = µ
0
. Since

Λ(µ) → 0, as µ → 0,

we can select µ
0

sufficiently small such that

λ ≥ Λ(µ
0
) and w(x; µ

0
) ≤ v0(x).
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For u0 = O(x
1

1−α ) as x → 0, µ
0

must exist. Thus µ(t) is increasing and µ(t) → µ1− as t → ∞.

So k(x, t) = w(x; µ(t)) is an increasing lower solution of the problem and

k(x, t) → w(x, µ1)−, as t → +∞.

Applying Lemma 2.1, we deduce that

v(x, t) → w(x, µ1), as t → +∞.

The proof is completed. �

Theorem 5.2 When p = 1, there are two cases:

1) α + β > 1. If 0 < λ < C1, the solution of (2) is globally bounded and the unique steady

state is globally asymptotically stable; if λ ≥ C1, the solution of (2) is infinite as t → ∞.

2) α+β ≤ 1. The solution of (2) is globally bounded and the unique steady state is globally

asymptotically stable.

Proof 1) By Theorem 3.1, if 0 < λ < C1, the proof is the same as that of Theorem 5.1; if

λ ≥ C1, we can construct an increasing lower solution k(x, t) like the construction in Section 4.

From (7) we know

µ̇ =
λ(1 − α)

∫ 1

0
((µx)

1
1−α + 1)−βdx

− µ,

then

µ̇

∫ 1

0

((µx)
1

1−α + 1)−βdx = (1 − α)(λ −
1

1 − α
µ

∫ 1

0

((µx)
1

1−α + 1)−βdx).

So
µ̇

µ

∫ µ

0

(s
1

1−α + 1)−βds = (1 − α)(λ −
1

1 − α
µ

∫ 1

0

((µx)
1

1−α + 1)−βdx).

For α + β > 1, k(x, t) → ∞ as t → ∞. Applying Lemma 2.1, we get the result that the solution

of problem (2) is infinite as t → ∞.

2) The proof is the same as that of Theorem 5.1. The proof is completed. �

Theorem 5.3 For p > 1, there are two cases:

1) α + β > 1. There are two cases:

(i) If 0 < λ ≤ λ∗, the solution of (2) is globally bounded and the unique steady state is

globally asymptotically stable when v0 is small enough; the solution of (2) blows up when v0 is

large enough.

(ii) If λ > λ∗, the solution of (2) blows up for any initial condition.

2) α + β ≤ 1. There are three cases:

(i) α+βp < 1. The solution of (2) is globally bounded and the unique steady state is globally

asymptotically stable.

(ii) α + βp = 1. When 0 < λ < C2, the solution of (2) is globally bounded and the unique

steady state is globally asymptotically stable; when λ ≥ C2, the solution of (2) is infinite as

t → ∞.
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(iii) α + βp > 1. If 0 < λ ≤ λ∗, the solution of (2) is globally bounded and the unique

steady state is globally asymptotically stable when v0 is small enough; the solution of (2) blows

up when v0 is large enough; if λ > λ∗, the solution of (2) blows up for any initial condition.

Proof 1) From Theorem 3.1 (see Fig. 1(c)) we know that if 0 < λ ≤ λ∗, there are two solutions

for equation (8). Suppose that the solutions are µ1 and µ2 with µ1 < µ2.

When v0 = u1−α
0 ≤ w(x; µ2), the solution of (2) has a unique steady state which is globally

asymptotically stable. The method is similar to that of Theorem 5.1. When v0 = u1−α
0 >

w(x; µ2), the problem only has an increasing lower solution of the types considered in Section 4.

Applying equation (7), we have

µ̇
(

∫ 1

0

((µx)
1

1−α + 1)−βdx
)p

= (1 − α)
(

λ −
1

1 − α
µ
(

∫ 1

0

((µx)
1

1−α + 1)−βdx
)p)

,

then

µ̇
(

∫ µ

0

(s
1

1−α + 1)−βds
)p

= (1 − α)
(

λ −
1

1 − α
µ
(

∫ 1

0

((µx)
1

1−α + 1)−βdx
)p)

.

For α + β > 1 and p > 1, it is obvious that the solution of (2) blows up. When λ > λ∗, the

problem only has an increasing lower solution. Proceeding with the same arguments as above,

we can deduce the solution of (2) blows up.

2) The proof is similar to that of Theorem 5.1. �

6. The blow-up rate of the solution of (1)

If the solution of (2) blows up, the blow-up is uniform on any compact subsets of (0, 1], and

then we have the following lemma [12, 13].

Lemma 6.1 Let v be the solution of (2) and assume that T ∗ < ∞. Then we have

lim
t→T∗−

v(t, x)

G(t)
= lim

t→T∗−

|v(t, x)|∞
G(t)

= 1,

where T ∗ is the blow-up time, G(t) =
∫ t

0 g(t)dt and g(t) = λ/(
∫ 1

0 (v
1

1−α + 1)−βdx)p.

For v(x, t) = u1−α(x, t) we obtain Corollary 6.2.

Corollary 6.2 Let u be the solution of (1) and assume that T ∗ < ∞. Then we have

lim
t→T∗−

u1−α(t, x)

G(t)
= lim

t→T∗−

|u1−α(t, x)|∞
G(t)

= 1,

where T ∗ is the blow-up time, G(t) =
∫ t

0 g(t)dt and g(t) = λ/(
∫ 1

0 (u + 1)−βdx)p.

At last, applying the result of Corollary 6.2 gives the uniform blow-up rate of the solution of

(1).

Theorem 6.3 Let u be the solution of (1) and assume that T ∗ < ∞. We have

lim
t→T∗−

u(x, t)(T ∗ − t)
1

α+βp−1 = (
α + βp − 1

1 − α
)

1
1−α−βp .
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Proof From (2), we know

vt + vx = λ(1 − α)
/(

∫ 1

0

(v
1

1−α + 1)−βdx
)p

.

Applying Corollary 6.2, when t → T ∗ we have

G′(t) ∼ λ(1 − α)(G(t)
1

1−α + 1)βp,

then
G′(t)

(G(t)
1

1−α + 1)βp
∼ λ(1 − α), 0 < T ∗ − t ≪ 1.

Integrating from t to T ∗ yields
∫ ∞

G(t)

ds

(s
1

1−α + 1)βp
∼

∫ ∞

G(t)

ds

s
βp

1−α

∼ λ(1 − α)(T ∗ − t).

Thus
1 − α

α + βp − 1
v

1−α−βp

1−α ∼ λ(1 − α)(T ∗ − t).

Since v = u1−α, we deduce that

u(x, t)(T ∗ − t)
1

α+βp−1 ∼ (
α + βp − 1

1 − α
)

1
1−α−βp .

The proof is completed. �
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