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Abstract In this paper, we study a class of subalgebras of the Lie algebra of vector fields
on n-dimensional torus, which are called the Triangular derivation Lie algebra. We give the
structure and the central extension of Triangular derivation Lie algebra.
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1. Introduction

In recent years a new area in Lie theory has emerged - the theory of constructs and bounded
modules for infinite-dimensional Lie algebras with a dense Z"-grading [1-8]. The classical case
n = 1 includes Kac-Moody algebra and the Virasoro algebra. Moreover, one of the most natural
Lie algebras with a dense Z2-grading is the Lie algebra of the derivations on a 2-dimensional
torus:

D = DerC [tlﬂ,tfl} ,

which is also called the Lie algebra of vector fields on 2-dimensional torus. There is an interesting
subalgebra of D, which is called the Triangular derivation Lie algebra. We will introduce this
algebra in the following text. In this paper, we want to study the structure and the central
extension of triangular derivation Lie algebra.

Denote by C the field of complex numbers. Suppose that A = C [tlil, e ,tdﬂ] is a ring of
Laurent polynomials with d commutative indeterminate elements, that is, commutative torus.
Denote by DerA the Lie algebra which is constructed by all derivations of torus A, called full
derivation Lie algebra of torus A. Let e1,es,...,eq denote the column vectors of the identity
matrix Iy, and let (-, -) be the normal inner product on C¢, i.e., (e;,e;) = 5, Vi, j = 1,...,d. Let
I'=7Ze @---&®Zeq be the lattice over C%. For n = nieq +---+ngeq € I, denote t* = et
Let D; = tiditi, i=1,...,d. Then D; € DerA is a degree derivation, that is, D;(¢") = n;t". For
u=mue;+ - +ugeq € Cand r = rie; +- - +rqeq € I', denote D(u,r) = tTEleuiDi. Clearly,
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D(u,r) € DerA, and we have

Proposition 1.1 ([2]) DerA is a I'-graded Lie algebra, and DerA = @®,cr(DerA),, where
(DerA),, = {D(u,n) : u € C?,n € T'} with the Lie structure over DerA as follows:

[D(u,r),D(v,s)] = D(w,r +5), u,veC% rsel, (1)
where w = (u, s)v — (v, r)u.

By Proposition 1.1, we know that DerA = span {D(u, r):ueClre I‘}.

If d = 1, DerA is called Witt algebra. The universal central extension of Witt algebra is
called Virasoro algebra. Virasoro algebra plays important roles in affine Lie algebras, vertex
operator algebras and many other fields. Further research has been carried on Virasoro algebra,
including the promotion of Virasoro algebra in a variety of ways. The most natural opinion is
to promote d = 1 into d > 1. But if d > 2, DerA has no non-trivial central extension. In other
words, this kind of idea which is the most natural one cannot be achieved. We try to seek out
the subalgebra of DerA which has non-trivial central extension and make it be a new form of
promotion of Virasoro algebra. In view of the importance of Der A-module and the significance
of promotion of Virasoro algebra, we recall the Triangular derivation Lie algebra for d > 2 as

follows.

Definition 1.2 The subset
g=span{D(u,r):u € C*% r €T satisfying if i < j,u;r; = 0}

of DerA is called the d-dimensional triangular derivation Lie algebra.
In the next section we will prove that g is a subalgebra of DerA indeed. Then we study its

structure and the central extension.

2. The structure of triangular derivation Lie algebra

Set
CFr=Ce1® - - ®Ce, Iy =CFNT, k=1,...,d.

For 1 <i,k < d, G <Z is an addition subgroup of Z. We define the subspace of DerA:
Si(G) := D(Cey, Ge;) := span {D(ex, gei) : g € G} .
Sk :=span{D(ex,r) : v € T }.
Lemma 2.1 Let1 < i,k < d,G < Z be an addition subgroup of Z. Then S},(G) is the subalgebra
of DerA. In addition we have that if i # k, Si(G) is Abelian; and if G # 0, S¥(G) is perfect.
Proof Take any D(ey,ae;), D(eg,be;) € Si(G), we have
[D(ekv aei)v D(ekv bel)] = D(((ekv bei)ek - (ekv aei)ek)a (a + b)el)
= (ex, (b—a)ei)D(ex, (a + b)e;)
= (b—a)dk:D(ex, (a+b)e;) € Si(G).
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So S} (G) is a subalgebra since operation is closed in DerA . When i # k, 8y ; = 0, thus Si(G) is
Abelian. If G # 0, then G has infinitely many elements. For any but fixed D(eg, gex) € SE(G),
makeaeG\{Qilg}, b=g—a, then b—a=g—2a# 0. Thus

D(ex, ger) = D(ey, (a + b)ex)

= (b—a)"'D(ey, (a +b)ey)

= (g - 2(1)71 [D(Ek, aek)v D(ekv bEk)] € [Slﬁ(G)a SE(G)] ;
which gives that SF(G) = [SF(G), SF(G)]. O
Lemma 2.2 Let 1 < k < d. Then &y, is a perfect subalgebra of DerA and

&1 = (0k1S51(2)
Proof For any r,s € 'y, & 04—, since
[D(ekv T)v D(ekv S)] = D(((ekv S)ek - (eka T)ek)a r+ S)
= (ex,s —r)D(eg,r + s) € B,

&y, is perfect subalgebra of DerA.
For any D(ex,p) € Sk, make r = p1e; + -+ + prp_1€k—1, +rrer, where ri € Z\ {2_1pk},
s=p—r, then (s —rg) = pr — 2rx # 0 and

D(ex,p) = D(eg,r+8) = (rp — sx) "' [D(ex,r), D(ex, s)] € [Sk, ] .

Thus we have & = [&, G], so that, &y is perfect.

Let r =rie1 + -+ - + rgex € I'y. We have the following

Assertion: If 7, # 0, then D(ex, 1) € (85, 5i(Z)).

Note that D(ex, riex) € Si(Z). Suppose that D(ey,rji1ej41 + - rrex) € (B, SL(Z)),
V1 < j < k. Then we have

D(eg,rje; + -+ rrex) = r,:l [D(ek,rj€e;), D(eg,Tjt1€j41 + - - Thex)]
e (eh,5LD)).
So D(eg,r1e1+ -+ rreg) € <@f:15’]i(Z)>, which proves the above assertion.

Also since
D(eg,r1e1+ - +rp_1€6p-1) = 2717",;1 [D(ex, —rrer), D(ex,7)] € <®§:1Si(Z)> ,
we have &), C (®F_,5!(Z)), while (®F_,S{(Z)) C & is obvious. The proof is completed. [J
2.1. The characterization of triangular derivation Lie algebra
For 1 < k < d, we denote
Tk := span {D(u,r) cu e Ck r eIy, satisfying if i < j, ury = 0} .

Lemma 2.3 For1<i<j<d, we have [6;,5,] C &;,.
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Proof Let r €I';, s € I';. Note that

[D(e;,r),D(ej, s)] = (e, 8)D(ej,r +s) € &;.
Thus the lemma is obtained. [

Lemma 2.4 Let 1 < k < d. Then ¥ is a prefect subalgebra of DerA. We have also &, is an
ideal of Ty, and
T =0k 6,

Proof By the definition, it is obvious that ®% &, C T;. We only need to prove that T) C
D141 6;.

It is clear that ¥; = &;. Suppose k1 = EBf;llC‘Si.

Let D(u,r) € Tk, where u = uje; + -+ - + ugeg, r = rie; + -+ - + rgeg. Without loss of
generality, we can assume that uy, r; are not all zero.

If ri # 0, we have by u;r,, = 0, i < k, that u = ugeg. Thus D(u,r) € &y.

Next, we only need to consider the case of uy # 0,7, = 0. Since r;, = 0, it follows
D(urer + -+ + up—1e5-1,7) € Tyo1 = D' &,

Since
D(ureg,r) € Gy,

we see that
D(u,r) = D(uje; + -+ + ug—1€p—-1,7) + D(ugeg,r) € @f:16i.
By induction, we prove that T C @le S, and so Ty = @f:16i.
By Lemma 2.3 [6,,6;] C &; C T, V1 < i < j <k, so Ty is a subalgebra. And & is an
ideal. Note that &;, 1 < i < k is perfect. We show that ¥}, is perfect. [J

Theorem 2.5 The Triangular derivation Lie algebra g of d-dimensional commutative torus is

a Z%-graded perfect algebra. Moreover, g has ZF-graded perfect subalgebras Ty, such that
O<Sl<---<$d_1<g,
where Ty,_1 Is an ideal of Ty, and Ty /T—1 ~ S. Specially we have,

g=8L,6r =B, <@§:1SZ(Z)> .

3. The central extension of triangular derivation Lie algebra

Let £ be a perfect Lie algebra. The central extension of £ is a Lie algebra £ and a surjective
homomorphism 7 : £ — £ satisfying ker 7 is included in the center of £. If £ is still perfect, then
we call £ a covering central extension of £. Let (£,7) be a covering central extension of £, if for
the central extension of any £, there exists unique Lie algebra homomorphism ¢ : £ — £ such
that wp = 7, then we call (£, 7) the universal central extension of £. Every perfect Lie algebra

has a universal central extension, moreover, it is unique in the sense of isomorphism.
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A bilinear function ¢ on Lie algebra £, satisfying the following conditions:
Y(x,x) =0, Vx e L,
U(z, [y, 2]) = d([z,y], 2) = ¥([w, 2] y), Vo,y,2€L

is called a 2-cocycle on £. A 2-cocycle can uniquely determine a one-dimensional central exten-

sion: given a 2-cocycle ¥ on £, we can define a central extension £ @ Cc of £ as follows:
[z + Ae,y + pcy = [z, y] + Y(z,y)e, Va,y € £\ eC,

where [-, -] is the Lie operation on £, [-, -], is the Lie operation on £@ Cc. Every one-dimensional
central extension of £ can be obtained in this way.

If a 2-cocycle 1 is induced by a linear function f on £, that is, ¢ = ay, where

ar(z,y) = f([z,9]), Vz,ye€ L,
then v is called trivial, while the corresponding central extension is called trivial central exten-

sion. Two 2-cocycle ¢ and v are called equivalent if ¢ — ¢ is trivial.

3.1. The 2-cocycle of triangular derivation Lie algebra
For any chosen 1 < k < d, we have by D(eg,r) € & and from (1) that
D(ey,r) =" [D(ex,0), D(ex,7)], 71 #0, (2)

and
D(ep,r) =27 [D(ex, —er), D(eg,r +ex)], m =0. (3)

Let 9 be a 2-cocycle of T; . We define a linear function fy : €4 — C as

. (D(ex,0), D(ex, 7)) rr#0
271¢(D(eka_ek)7D(ek7T+6k)) Tk =0

Then ¢ = ¢ — ay,, is a 2-cocycle on T4, which is equivalent to 1.

f¢(D(6kﬂ"))—{ ,D(e,7) € 6,1 <k <d.

Lemma 3.1 Let1<4,j <d. Then ¢(D(e;,0),D(e;,0)) =0.

Proof If i = j, then it is clear that ¢(D(e;,0), D(e;,0)) = 0.
If j # i, then
¢(D(ei7 O)a D(ejv O)) :(b(D(elv O) 271 [D(ejv _ej) (ejv e])])
=2" 1¢([ (617 )7D(€j7_ej)] (ejvej))
2- ¢([ (617 )7D(ej7€j)] (ejv_ ))
:271¢(05 D(Ej, ej)) - 271921)(05 D(Ej, _ej)) =0.
The proof is completed. [
Lemma 3.2 Let 1 <k <d, D(eg,r) € Si. Then

¢(D(ek70)7D(ek7T)) =0, (4)
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and if rp, = 0, we still have

¢(D(€k, —ex), D(eg,r+ex)) =0, (5)

and
o(D(eg,er), D(ex,r —ex)) = 0. (6)

Proof If r;, # 0, by the definition of ¢, we can obtain (4).
If r, = 0, by Lemma 3.1, we can assume without loss of generality that » # 0. Then for
1 < j < k such that r; # 0, we have
¢(D(ek7 0)5 D(eka T)) :d)(D(ekv 0)5 T_j_l [D(eja 0)7 D(eka T)])
:T_;l(b([D(ekv )a ( )]7 (ekv ))_
T;1¢([D(ek7 )7 ( )]7D(6J7 ))
zrj_qu(O,D(ek,T)) T 10, D(e;,0)) = 0.
That is, (4) is obtained. By the definition of ¢, we can obtain (5). Since

o(D(ek,er), D(ek,r — ex))
= ¢(D(ex, ex), [D(ex, —ex), D(ex, 7))
_(b([ (ekvek)vD(ekv )] D(ekv ))
o([D(ex, ex), D(ex,r)], D(ex, —ex))
= _2¢( (ekv )aD(eva)) (D(ek7T+ek)aD(eka_ek))v
finally, we can obtain (6) by (4) and (5). O
Lemma 3.3 Let 1< j, k<d, D(eg,r) € S. Then
#(D(e;,0), D(ex,r)) =0.
Proof If r; # 0, it follows from (4) that
¢(D(€j7 O)a D(ekv T)) :(b(D(ejv 0)’ lel [D(ekv O)a D(ekv )])
:T;1¢([D(ej7 0)7 D(eka 0)] ) D( 7T))
Tk 1¢([D(ej7 0)7 D(eka T)] ) D( ks 0))
=0 — rk_lrj(b(D(ek, r), D(eg,0)) =
If r, = 0, we have by (5) that
¢(D(eja 0)7 D(ekv T)) :¢(D(ej’ O) 271 [D(eka _ek)v D(ekv T+ ek)]
=2" 1¢([ (6]7 )7 D(eka _ek)] 7D(eku r+ ek

27'¢([D(e;,0), D(ex,  + ex)], D(ex, —ex
=0 =27 r;p(D(ex, r + ex), D(ey, —ex)) = 0.

)
)=
)

The proof is completed. [J
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Lemma 3.4 Let D(eg,r), D(ek,s) € Sy satisfying r + s # 0. Then
o(D(ex,r), D(ek,s)) = 0.
Proof Since 7+ s # 0, there exists 1 < j < k such that r; +s; # 0. This tells us that r;, s; are
not all zero. Without loss of generality, we assume s; # 0. Noting that
¢(D(ek7 T)v D(ekv S)) :¢(D(ek7 r), S;1 [D(ejv 0)7 D(ekv 5)])
=s; ¢([D(ex,7), D(ej,0)], D(ex, )~
S;1¢([D(ekvr)v (eka )]7 (ejv ))
== Tjs_;lgb(D(eka T)a D(ekv S))_
s; " (sk — re)¢(D(er,r + s), D(e;,0))
=— rjsj_1¢(D(ek, r), D(eg,s)) — 0,
one has
(1+ Tjsj_l)gb(D(ek, r), D(eg,s)) = 0.
If rj +s; # 0, we have 1 + ;s 1 2£0. Thus
o(D(eg,r), D(eg, s)) = 0.
This completes the proof. O
Lemma 3.5 Let 1 <i<j<d, D(e;,r) € &;,D(e;,s) € S,;. Then
¢(D(ei7 T)v D(ej7 S)) =0.
Proof Case 1. r + s #0.
If there exists s # 0 such that r + s; # 0, then
¢(D(ei7 T‘), D(ej7 S)) :¢(D(ei7 T‘) 1 [D(ekv )7 D(ejv 5)])
:S]:1¢([D(ei7 T)v D(eka )] 7D(6J7 S))
Slzld)([D(eivT)v (eJaS)] 7D(ek70))
:_Tkslzl(b(D(eu )7 (6]7 ))
s si¢(D(ej,r+ 5), D(ex, ))
:_Tkslzl(b(D(eia )a (637 ))
Thus ¢(D(e;, ), D(e;,s)) = 0.
If there exists s = 0 such that ri + sx # 0, then rx # 0. So we have
¢(D(ei7 T)v D(eja S)) = - d)(D(e j 5 S)a D(eia T))
= ¢( (ejv )7 7“1;1 [D(ekv 0)7 D(eivr)])
:T]Z Sk(b( (eia T)a D(Ej, S)) =0.

Case 2. r+s=0.
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Since ¢ < j, r; = 0. Applying (6) gives
¢(D(ei7 _T)v D(€j7 T)) :¢(D(ei7 _T)v 27! [D(ejv _ej)7 D(ejv T+ 6])])
:271¢([D(ei7 _T)a D(Ej, _ej)] ) D(eJa r+ eJ))
2_1(]5([D(6i,—T),D(€j,’I”+Ej)] (ejv_ej))

:2_1¢(0,D(€j,7‘+6j)) T1¢( (ejvej)vD(ejv_ ))
=0.

The proof is completed. [J
Lemma 3.6 Let D(ey,r) € &y. If there exists 1 < j < k such that r; = 0, then
¢(D(eka _T)v D(ekv T)) =0.

Proof By Lemma 3.5, we know

o(D(ex, —r), D(ex, 1)) =¢(D(ex, =), [D(e;, —€;), D(ex, r + €;)])
=¢([D(ex, —r), D(e;, —€;)], D(ex, T + €;))—
o([D(ex; —7), D(e,r + ;)] , D(ej, —€;))

=¢(0, D(ex, 7 + €5)) — 2rip(D(er, €5), D(ej, —e;))

=0-0=0. O
Lemma 3.7 Let 3 <k <d, D(eg,r) € &. If 1, =0, then
¢(D(eka _T)v D(ekv T)) =0.

Proof If r # 0, we can take 1 < i < k such that r; # 0. Since k > 3, it follows by Lemma 3.6
that

o(D(eg,—rie;), D(ex, rie;)) = 0.
Thus
o(D(eg,—r), D(eg,r)) =p(D(ex, —r), 7“[1 [D(e;,r —1iei), D(ek, ri€;)])
=r; ' ¢([D(ex, =), D(es,r — rie;)], D(e, rie;))—
ri ' o([D(ex, —1), D(ex, rie)], D(ei,r — 1i€;))
=r; '¢(riD(ey, —rie;), D(ex, mie;))—
_1¢(O,D(ei,r —1ri€;))
=¢(D(ek, —1i€;), D(ek,rie;)) = 0. O
Lemma 3.8 Let 3 <k <d,D(ex,r) € &. Then
o(D(eg,—r),D(ex,r)) = 0.

Proof By Lemma 3.7, without loss of generality, we assume 7 # 0. We have

o(D(ex, —rje;), D(ex,rje;)) = 0.
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By Lemma 3.6 we know
o(D(ex, —r +rjej), D(eg,r —rje;)) = 0.
Thus,
¢(D(ex, =), D(ex,r)) =¢(D(ex, —r), 7.t [Dex, rje;), Dler, r = rj¢5)])
=ry ¢([D(ex, —7),
e o([D(ex, =),
=¢(D(ey, —r +1je;), D(ex,r —1j€5))—
2¢(D(ex, —1j€;5), D(eg,rj€;))
=0. O

D(eg,rje;)], D(eg,r —rje;))—
D(eg,r —rje;)], D(ek,rje;))

Lemma 3.9 We have the following equation:

¢(D(e2, —rie1), D(e2,m1€1)) = r1¢(D(e2, —e1), D(ez, €1)).
Proof It follows from the following equation.
¢(D(e2, —r1e1), D(ea,m1e1)) =¢(D(ez, —r1e1), [D(
=¢([D(ez, —r1€1), D(eq, (r
¢([D(e2, —r1e1), D(
=r1¢(D(e2, —e1), D(ez, €1 )) (0, (e1,(r1 — L)er))
=r1¢(D(e2, —e1), D(e2, e1)).
Lemma 3.10 Let D(eq,r) € Gq satisfy ro # 0. Then

¢(D(ea,—r), D(ea, 1)) = —2r1¢(D(e2, —e1), D(ea, €1)).

—1)e1), D(ez, e1)])
—1)e1)], D(ez,e1))—

€1,

Proof It follows from the equation:

¢(D(e2, 1), D(ez, 1)) =p(D(ea, =),y " [D(ez,r1e1), D(ea,r2€2)])

=ry '¢([D(e2, —7), D(e2,r1€1)], D(ea, m2€2))—
ry ' ¢([D(e2, —1), D(ea, m2€2)], D(ea,m1€1))
=¢(D(ea, —r2e2), D(e2,r2€2)) —

2¢(D(e2, —r1€1), D(e2,r1e1))
= —2¢(D(ez, —r1e1), D(ez,r1€1))
:_2T1¢(D(625_61)7D(62761))' O

Lemma 3.11 Let D(ej,me1) € &1. Then

’I“% — T
6

Proof By Lemmas 3.1 and 3.2, we know the lemma holds if r; = 0,1. Obviously, if r; = 2, the

¢(D(61, —’1”161), D(el, Tlel)) = ¢(D(61, —261), D(el, 261)).

lemma is identity. Let 71 > 3. Then

¢(D(ex, —r1e1), D(e1,r1e1)) =¢(D(e1, —rie1), (r1 —2)~ " [D(ex, 1), D(ex, (r1 — 1)e1)])
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=(r1 = 2)7'¢([D(er, —r1e1), D(e1, e1)], D(e, (11 — 1)er))—
(r1 — 2)_1 [D(e1, —rie1), D(e1, (r1 — 1)e1)], D(e1, e1))
:(Tl — 2)71(’[”1 =+ 1)¢(D(61, —(Tl — 1)61), D(el, (’I”l — 1)61))

o(
(

1 —1 1 4
Ti i 2 E:i - 2§ - 1 7¢(Dler, —2e1), Dler, 2e1))

:%¢(D(€l, —261)7 D(e17 261))
:T?%¢(D(€1, —261)7 D(e17 261)),

The proof is completed. [J

By the above several lemmas, we can easily prove the following main result.

Theorem 3.12 The one-dimensional central extension of the triangular derivation Lie algebra

g is g® Ce:

d
D(aye, r(k) ) + Ac, ZD bkek,s(k)) —I—,uc]

M-

k=1 k=1
d d
= [ZD aieg, ’I”(k) ,ZD bkek,s(k))}—k
k=1 k=1
(¢(D(ayeq, T(l)),D(b e1 5(1))) +¢(D(ageg,r(2)),D(bgeg,3(2))))0
d d
= [ZD aKg€r, ’F Z bkek,s(k))}—k
k=1 k=1
(s ( ))3 s @)

(a1b15T(1)+5(1)10 C1 — 2@2b26r(2)+s(2)70(1 — 5@2) O)Sl Co+

6

(2)
a2b25T<2>+S(2) 70(‘57_;2)7081 CQ)C,

where D(ayer, ™), D(brer,s™)) € Gy, 1 <k < d; ¢, co are given constants.
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