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Abstract The existence of positive solutions to a boundary value problem of second-order
impulsive singular integro-differential equation with integral boundary conditions in a Banach
space is obtained by means of fixed point theory. Moreover, an application is also given to
illustrate the main result.
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1. Introduction

The theory of impulsive differential equations has been emerging as an important area
of investigation in recent years [1-3]. Processes which experience a sudden change of their
state at certain moments arise naturally and often, especially in phenomena studied in physics,
chemical technology, population dynamics, biotechnology and economics. They can be described
by impulsive differential equations in R™ and cannot be described using classical differential
equations. But the corresponding theory for impulsive integro-differential equations in Banach
spaces has yet to be fully developed. Due to the difficulties brought by singularities, there are
few results for differential equations with singularities in Banach spaces [4-9]. In recent papers
[4,5], Guo obtained the existence of positive solutions for some nth-order nonlinear impulsive
singular integro-differential equations in Banach spaces by using Schauder fixed point theorem.

Moreover, the boundary value problem with integral boundary conditions has been the
subject of investigations along the line with impulsive differential equations because of their
wide applicability in various fields such as heat conduction, chemical engineering, underground
water flow, thermo-elasticity, and plasma physics. For boundary value problems with integral
boundary conditions and comments on their importance, we refer the reader to the papers [10-13]

and the references therein. For more information about the general theory of integral equations
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and their relation with boundary value problems we refer to the book of Corduneanu [14] and
Agarwal and O’Regan [15].
n [16], Boucherif investigated the existence of positive solutions to the following boundary

value problem
y"(t) = f(t y(t)), 0<t<l,

y(0) —ay'( fo go(s
( - by fo gl
in the scalar space, where f : [0,1]x R — R is continuous, go, ¢1 : [0 1] — [0, 400) are continuous

and positive, a and b are nonnegative real parameters.

In [17], when nonlinearity f is continuous, by means of the fixed point index theory of strict
set contraction operators, Lv et al studied the existence of multiple positive solutions of the
following second-order impulsive differential equations with integral boundary conditions in a

real Banach space F

" = f(t,x,a', Tx,Sx), te€J, t+#t,
Axli=t, = —I(x(ty), 2’ (tr)), k=1,2,...,m,
Ax 1=y, = I (z ( k), (tr)), k=1,2,...,m
z(0) — az’(0) =
x(1) — ba'(1) fo
wherea+1>b>1,J=10,1], J = J\{t4,..., m},0<t1 <<t < - <ty < 1, 0 denotes
the zero element of Banach space E.

To the author’s knowledge, few papers are available for the existence of positive solutions
to impulsive singular integro-differential equation with integral boundary conditions in Banach
spaces. Motivated by papers [4,5,16,17], in this paper, we are concerned with the existence
of positive solution for the following second-order impulsive integro-differential equations with

integral boundary conditions in a real Banach space F

2"(t) = [t x(t), 2'(t), (Tx)(t), (Sz)(1)), te€Ji,
Ax|i—y, = —Top(z(tr), o' (t)), k=1,2,...,m

AL 1=y, = Lip(z(tr), 2 (te)), k=1,2,...,m, (1)
x(0) — ax’(O) = 2o,
z(1) — ba'( fo

where a+1>b> 1, J = [0,1], JJr = (0,1), er = J+\{t1,...,tm}, O<ti <<t <--- <
tm < 1, f may be singular at ¢t = 0,1 and z = 6 or 2’ = 0, I;; (i = 0,1) may be singular at
z =0 or 2’ = 60, 6 denotes the zero element of Banach space E. By singularity, we mean that
Il f (¢, 20, 1, T2, 23)|| = 00 ast — 0F (17) or z; — 6 (i =0,1). T and S are the linear operators

defined as follows

(Tz)(t) = /0 k(t,s)z(s)ds, (Sz)(t) = /0 h(t, s)x(s)ds,
in which k € C[D,R4], h € C[Dg,R+], D ={(t,s) € I x J:t > s}, Do ={(t,s) e I x J:0<

t,s <1}, Ry = [0, +00), Az|;—ys, denotes the jump of x(t) at t = t, i.e., Az|i—y, = x(t])—x(t}),
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where z(t;), (t; ) represent the right and left limits of () at ¢t = 4, respectively.

2. Preliminaries and several lemmas

Let PC[J,E] = {x : x is a map from J into E such that z(¢) is continuous at t # ¢, left
continuous at ¢ = tj, and z(t]) exists for k = 1,2,3,...,m} and PC'[J,E] = {z € PC[J,E] :
' (t) is continuous at t # ty, and 2/ (), 2/(t;,) exist for k = 1,2,3,...,m}. Clearly, PC[J, E]
is a Banach space with the norm ||z| pc = sup,c; [|z(¢)|| and PC'[J, E] is also a Banach space
with the norm ||z|| pcr = max{||z| pc, ||2'||pc}-

Let P be a normal cone in E with normal constant N which defines a partial ordering in £
by x <y. If x <yand z # y, we write x < y. Let Py = P\{0}. So, z € Py if and only if x > 6.
For details on cone theory, we refer to [18].

In what follows, we always assume that zo € —P\{0}, —x¢ > z*, 2* € Py. Let Pyy = {z €
Pz > Ax*}(A > 0). Obviously, Pp» C P; for any A > 0. By a positive solution of BVP (1),
we mean a map x € PCL[J, E] N C?[J!, E] such that z((t) > 6 (i = 0,1) for t € J and ()
satisfies (1).

Let a,apct be the Kuratowski measure of non-compactness in £ and PC[J, E], respec-
tively. For details on the definition and properties of the measure of noncompactness, the
reader is referred to [19]. We set J; = [0,t1], Jr = (tp—1,tx] (kK = 2,3,...,m), Ry = [0,+00),
Rt =(0,+00), u = fol (a+ s)g(s)ds. For notational simplicity, denote

1
b—1 b—1
PR (i ES L
0

at+1—-b—u a—l—l—bT a+1-0b
1 ! b—1+7 1
Dj=—— . ——d —— N =min{Dy, D1 }.
R /Og(T)a—i-l—b 7’—i_a—l—l—b’ min{Do, D1}

Throughout this paper, we make the following assumptions.

(Ho) g € L[0,1] is nonnegative, and u € [0,a + 1 — b);

(Hy) f € ClJs x Pyx x Pogx X P x P, P] for any A > 0 and there exist a,b,c € L[J, R]
and h € C[R* x R™ x Ry x Ry, R,] such that

|‘f(t7$07x17x27x3)” < a(t) + b(t)h(HiUOHa Hlev ”‘TQHv ||‘T3||)7 Vite J+,.CL'Q,.’L‘1 € Por-, 22,3 € P,
and

|| f(t, zo, 1, 2, x3)]]
lzoll + [z ]| + [zl + ll=3]])

— 0 as xg,x1 € Por+,x2,23 € P,

c(®)(

lzoll + |21l + [|z2| + [Jz3]| — oo,

uniformly for ¢ € J, and

1 1 1
/ a(t)dt = a™ < oo, / b(t)dt = b* < o0, / c(t)dt = ¢* < 0.
0 0 0

(Hz) ILjx € C[Pox X Pox, P] for any A > 0 (¢ = 0,1;k = 1,2,...,m) and there exist
F; € C|[RT x R™, R,] and constants n, v (i =0,1;k=1,2,...,m) such that

| Lik (o, z1)|| < nirFi([|zoll, |1]]), Yo, z1 € Poxx,
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and
| 1ik (z0, z1) |
Y (lzo |l + 21 1])

— 0 as zg,21 € Pox«, ||zo| + ||z1|| = o0
uniformly for k =1,2,...,m (i = 0,1). We write

m m
ZZW@, ﬁZZ%k-

k=1 k=1

(H3) Foranyt € Jy, R > 0 and countable bounded sets V; C C[J, Pj\. 5] (i =0,1), V5, V3
C|J, Pf), there exist L;(t) € L[J,R4] (¢ = 0,1,2,3) and positive numbers dix; (i,j = 0,1;k =
1,2,...,m) such that

N

3
Oé(f(t, VO(t)avl( ) ‘/2 S Z

a(Iik (Vo(t), Vi(f))) < dikoa(%(t)) + dikla(Vl (f), i=0,1;k=1,2,...,m

where Pfy.q = {z € P i ¢ > Ma,|al < R} and Py = {z € P : |lof < R}, di =
m 1
Dkt Zj:o dikj-
Hereafter, we write Q = {x € PC[J, P] : 2V (t) > \*z*,Vt € J,i = 0,1}. Evidently, Q is a
closed convex set in PC[J, E].

Lemma 1 Let (H;) and (Hy) hold. Then x € PC'[J, E] N C?[J'., E] is a solution to (1) if and
only if z € PC*[J, E] N C?[J,, E] is a solution to the following impulsive integral equation:

2(t) :/0 Hy(t,s)f(s,x(s), 2/ (s), (Tx)(s), (Sz)(s))ds + > Hy(t,te) Ik (2(tr), ' (tx))+

k=1

m i ) )
> Haft i) ol (t). /(1) - (s - | o pdrs

P a+1—-b—u at+1—-0b

b—1+t

_ 2
a+1—b%m (2)

where

a-+t
Hl(t,S)—Gl(t,S)-‘r l—b—u/ Gl TS

Hy(t,s) = Ga(t, s) + at? / Gao(r,8)g(r)dT,

a+1—-b—u J,

(a+t)(b+s—1), t<s,

Cilt,s) = “i‘b
S — b+t—1 <t
a+1_b(a+5)(+ ), s<t,
t
P
G2(t75)_ b—l—t—l
s <t.

a+1-0b’
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Proof Necessity. Suppose that € PC'[J, E] N C?[J/, E] is a solution to problem (1). For
t € J, integrating (1) from 0 to ¢, we have

x’(t)—x'(0)+/0 fls,a(s),a'(s), (T)(s), (Sz)(s))ds + D Tl(t), ' (t))-

0<tp <t
Integrating again, we can get
z(t) =2(0) + t2'(0) + /0 (t —8)f(s,z(s),2'(s), (Tx)(s), (Sz)(s))ds+
D (=t hk(a(tn), ' () — D Tok(w(ts), @' (1)) (3)
0<ty<t 0<ty<t
In particular,
(1) = 2'(0) + / f(s,x(s),2'(s), (Ta)(s), (Sz)(s))ds + > D (tr), 2 (tr)),
0 0<tp<1

and
1

(1) =z(0) +2'(0) +/ (1= s)f(s,2(s),2'(s), (Tz)(s), (Sx)(s))ds+

0

Z (1 =) Lk (x(tr), 2’ (tr)) — Z Tow (x(tr), 2 (k).

o<t <1 o<t <1

This, together with the boundary condition that (0) = ax’(0) + zo, yields

:ﬁ (/O (b+s—1)f(s,x(s),2'(s), (Tx)(s), (Sx)(s))ds+

> 0+t — Dhp(a(te), o' (te) + Y Tor(z(te), 2 (t)+

<ty <1 0<t,<1

[ stereteias ),

2'(0)

which implies that

761]7_“ ' S — S, TS xl S T)\S TS S
x(t)—a+1_b(/()(b+ 1) f(s,2(s), 2" (s), (Tx)(s), (Sz)(s))ds+
S o+t — Dhi(a(te),2'(te) + Y Tor(z(te), 2 (t))+
<ty <1 0<ty<1

1 ¢
[ ate1et)ds =) 4+ [ 6= 816,505, (T)o), (50) 6D+
0 0

Z (t = ti) Tk (z(tn), @' (tr)) — Z Tow (x(tr), 2 (t))

0<tr <t 0<tp<t

:ﬁ /Ot(a +8)(b+t—1)f(s,x(s),2'(s), (Tz)(s), (Sx)(s))ds+
ﬁ /t (a+t)(b+s—1)f(s,2(s),2'(s), (Tx)(s), (Sz)(s))ds+
1

P o<;<t(a +te)(b+t — V) Ik (x(te), 2 (L)) +
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. 2 (e 00+t = Dln(altn). o )+
a—|—1 —b ng:q (b+t = DIok(x(tr), «' (tx))+
T&_b Z (a+ t) ok (x(tk), = (tk))"l‘%/o g(s)z(s)ds—
b—1+4t k
at1-0"
Thus,
/0 Gt w(s), 2/ (s), (Tx)(s), (Sx)(s))ds + Y Gr(t, te) Tuk(w(tr), 2 (th))+

k=1

m PR b—1+t
Ga(t, tr) "t ai/ ds —
]; 2(t, ti) Lok (z )x(’“))+a+1—b Og(s)x(s)s at1_pro

By (Hy), it is easy to see that the integral fol G1(t,8)f(s,z(s),2'(s), (Tz)(s), (Sz)(s))ds is con-
vergent. On the other hand,

1 1 1
| a0 = [ a0 [ Gt 9s6000.20). ). (S2)()as+

z:: G (b t) Tk (), 2 (1)) — %xo—k

ZGQ (t, ti) Tox(x(t), 2’ (tr)) + %/{) g(s)x(s)ds)dt,
1 1

/0 ; g(t)G1 (¢, x(s),2'(s), (Tz)(s), (Sx)(s))dsdt+

1

a+1

(ZGQ (t, te) ok (2 (ty), x/(tk)))dH/o %g(t)dt/o g(t)z(t)dt.
k=1

S—
s

“ ! b—1+t
(ZGl t tk Ilk ) x/(tk)))dt — / g(t) . 7—’—[)(115 - To+
k=1 0 -

1

S—
s

Therefore,

1
/0 g(s)z(s)ds = fl ai’{sbg / / G1(1,8)g ,x(s), z'(s), (Tx)(s), (Sz)(s))ds+
! —147
/ )3 Galr ) e a0) /(1)) / e
0 pat 0

a+1-0b
1 m
/ 9(1)(Y_ Galr tu) Tow (a(ti), @' (81)))dr ).
0 k=1
Consequently, we have

() = [ Gat.9)(5.2(5).2'(5). (Ta) (o). (Sa) o))+



Integro-differential equation with integral conditions in Banach spaces 605

Z Gt te) k(2 (th), 2 (b)) + > Galt, ti) Tok((tr), 2 (t))+

k=1

at? / / Gi(r, 8)g ,w(s),2'(s), (Tz)(s), (Sz)(s))ds+

a—|—1—b—u

/g(T)(ZGl(T,tk)Ilk(:v(tk),;v(tk)))dT—i—/ 9(r) (32 Gl ) ok (1), ' (11)) ) -
0 k=1 0 k=1

= [ Hi(t,s)f(s,z(s),2'(s), (Tx)(s), (Sx)(s))ds + Z Hy(t, ty) I (2 (ty), o' () —

0 k=1

a+t Lob—147 b—1+t -
_ d Hy(t, 1)1 t "(tr)).
(a—i—l—b—u /Og(T)a—i—l—b T+a+1—b)x0+; 2(t te) or (@ (te), 2" ()

It is easy to see by (H;) that the integral fol Hy(t,s)f(s,x(s),2'(s), (Tx)(s), (Sx)(s))ds is con-
vergent.

Sufficiency. If z € PC'[J, E] N C?[J’, E] is a solution of (2), then a direct differentiation of
(2) yields, for t € Jj;, and t # t;,

2 (t) :/0 I i—;i bf(s, x(s),2'(s), (Tz)(s), (Sx)(s))ds+

\/1; mf(s, f(S)v .I/(S), (TCC)(S), (SI)(S))dS+

a+1-b
a+t bt —1
> STkt )+ DD T (el )+
0<trp<t t<tp<l

1 o 1
_ I t (¢ -
a—i—l—b; ok (@(tk), 2 (t)) + o

/ / Gi(r, 8)g(T dT)f(S,{E(S),JJ/(S), (Tx)(s), (Sz)(s))ds+
/ i (7, t) Ton (e (ta), 2 (1)) dr+

/ Z (7, ti) Lok (x(tr), ;v’(tk)))dT)_
K

( /1 ()b—l—i-rd n 1 )
a—l—l—b—u a—i—l—bT a+1-0 o

Thus,

(t) :/ Hi(t,5)f (s,2(5), &' (s), (T)(s), (Sz)(s))ds+

Z Hi(t, t) T (@ (t), 2/ (1)) + Y Ha(t, t) Tow (w(tr), @' (tr))—
k=1

k=1
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( 1 /1 ()b—1+Td+ 1 )
. T
a+1—b—u OgTa—i—l—bT at+1—b/)""

where
Hi(t,5) = Gi(t,9) + —|—1—b—u/ ar.
Hi(t,s) = L + / dr
2 T A+ 1-0b a+1—b— ’
b —1
%, t<s,
Gi(t,s)=¢ “T -
a-+s
AT s<
a+1-0

Differentiating above, we see

2’ (t) = f(t,z(t), 2’ (t), (Tx)(t), (Sx)(t)).
Clearly,
Azli=t, = —Top(2(tr), 2’ (tr)), AZ|i=t, = Lir(x(tr), 2" (tk)),

x(0) — az’(0) =z, x(1) —ba'(1) = /0 g(s)z(s)ds.

The proof is completed. [

Lemma 2 ([17]) Fort,s € [0, 1], we have

a(b—1) (a+1)b
—_ < Nt T
at1—b Gilt:s) < at1—0b
b—1 a+1
- - < - -
a+1—b_G2( ) +1-0’
b—1 a+1
— <Gt .
ar1p =S oy

Lemma 3 ([17]) Fort,s € [0, 1], there exist positive constants m;,m; (i = 1,2,3,4) such that
a(b—1) n a?(b—1)uy (a+1)b  (a+1)%buy

ml:a+1_b U2 S Hts) < a+1—b+ Us = mg,
mg:a‘l:'_ll—b+a(b;21)u < Hifts) < aj—?ib—’_(a—i_ulg)bm:mzb
m3:a+1—b+(b_ui)ulSHé(t,s)gaJri_bJr(aZj)“l:m,

where L
U1=/ g(s)ds, uz=(a+1—-b—u)(a+1-0).
0

We shall reduce BVP (1) to an impulsive integral equation in E. To this end, we first consider

operator A defined by

_ /0 Hy (2, 5)f (s, 2(5),2 (5), (T)(s), (S2)())ds + 3 Hi (8, t) i ((t4), @' (1)) +

k=1



Integro-differential equation with integral conditions in Banach spaces 607

m ) - ]
ZH2(t,tk)IOk(fE(tk),x/(tk)) — (ai"_t /0 g(r)bidﬂ-

Pt a—i—l—b—u' a+1-—0b
b—1+t
a+1—b)x0' (4)

Lemma 4 If conditions (Hy)—(Hz) are satisfied, then operator A defined by (4) is a continuous

operator from @ into Q.

Proof Let ) )
= 1 5
=0 mm{4m2c*(2+k*+h*)’4m4c*(2+k*+h*)}’ (5)
where
k* = max{k(t,s) : (t,s) € D}, h* = max{h(t,s): (¢,s) € Do},
and
Al
=——>0. 6
r N (6)

By virtue of condition (Hj), there exists an R > r such that
1f (8 w0, w1, o, w3)[[[| < coc(t)([[zoll + [lea]l + 2]l + [[zs]),

Vi€ Jp,mo, w1 € Poxe, 2, w3 € P, |[wo + |21l + [l22ll + ll2sll > R,

and
| f(t, 2o, 1, T2, 23)|| < a(t) + Mb(t),
VteJy,xg,x1 € Poar, 22,23 € P, ||zol| + ||| + ||z2]] + [|z3]| < R,
where
M = max{h(zg,x1,22,23) : 7 <2; <R (i=0,1),0 <22 <R, 0<z3 <R}
Hence

1f(t, 0, 1, w2, 23) || < €oc(t)([lzoll + o]l + (@2l + [[2s]l) + alt) + Mb(2),
Vite i, xg,x1 € Porx,x2,x3 € P. (7)

On the other hand, let

1 1 1
}, €1 = min{

go = min{

16%270* ’ 16m4’}/0* 16m2'}/1* ’ 16m471* }

We see that, by condition (Hy), there exists an R; > r such that

1k (w0, 21) || <Esvir(|xoll + [|21]]), ¥ zo, 21 € Pox-,
lzoll + [|z1]| > Ry (i =0,1), k=1,2,...,m,

and

| Lik (0, 21)|| < M1,V xo,x1 € Pox=,

‘LL‘QH-FH,TlH <R (iZO,l), k=1,2,...,m,

where
M1 = max{Fi(:vo,;vl) r S o, X1 S Rl,i = O, 1}
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I Zik (o, z1)]| < Evir (2ol + llz1l]) + mie M1, Yao,21 € Poxx, i =0,1;k=1,2,....,m.  (9)
Let z € Q. We have by (7)
L (6 (8), 2/ (8), (T2) (), (SO < coelt)(2 + K + )zl pes +a(t) + Mb(e), ¥t € Ty, (10)

which together with (5), (H;) and Lemma 3 implies that

/0 VH (1, 8) 1 (5, 2(5), 2 (8), (T)(s), (Sx)(s)) s

1
1
< mz/ 1 (s, x(s), ' (s), (T)(s), (Sz)(s))llds < 2l per + @™ + Mb*. (11)
0
On the other hand, by (8), (9) and Lemma 3, we have
- 1
DI te) D (i) 2 (8| < gllellper +mani M, (12)
k=1
< 1
Z [ Ha(t, ti) Lok (2(te), o' (tk)]] < gllellpcr +mang M. (13)

It follows from (4), (11) (13) that

1 « . 1 — s
I(Az)ONl <7 llzllpcr + a” + Mb —Hxllp(ﬂ +many My + 2|zl per + mang Mi+
a+1 ! b—1+r71 b
(55— [ o dr + ——) ol
0

a+1l—-b—u a+1—-0b a+1
1
||$HP01 +a* + Mb* 4+ maon My + Tgng M1+

(Ll_ [ L LR P -,

at+l—-b—u a+1—-0b a+1

Differentiating (4), we get
1
:/O Hi(t, s)f(s,x(s),2'(s), (Tz)(s), (Sz)(s))ds+
D H{(t te) T (x(te), @ (b)) + > Hy(t, ti) To (x(tr), 2 (t)) —
k=1

k=1

(;./Olg(T)b_Hwar ! )wo, (15)

a+1—-b—u at+1—-0b a+1—-0b

which implies that

| (Az)" ()| SZH‘T”PCl +a" + Mb* + §H35||Pc1 + myny My + §H35||Pc1 + mang M+

( 1 /1 it T, 1 )” |
. x
a+1-b—-u OgTa—i—l—bT a+1—p/""

1 * * * — %
=§H9C||Pcl+a + Mb* + many My + mang M+

1 Lob—147 1
- d ) . 16
(a—l—l—b—u /Og(T)cH—l—b T+ o) Il (16)




Integro-differential equation with integral conditions in Banach spaces
By (14) and (16), we obtain that Az € PC'[J, P] and
1
[Az|[pcr < §||1?|\Pcl +7,
where

v =a" + Mb* 4 (my + ma)n; My + (Mg + Ta)no M1+

( a+1 /1 it Ty, bl )” |
B ——— :Z:‘ .
a+1—-b—-u OgTa—i—l—b g at+1—0p)""

On the other hand, (4) and (15) imply that

1
a b—1+7' b_l
Az)(t) > = (————— d
(A2)(t) 2 ~ (=5 L;Mﬂa+1—bT+a+l—b%b

>Nz, Vte J,

and

| \/

1
b—1+71 1
: d )
(a—l—l—b—u /0 g<T)a—|—1—b T+a—|—1—b o

>N'z*, Vte
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(17)

(19)

So, by (18) and (19) we see that Az € Q). Thus, we have proved that A maps @ into @ and (17)

holds.

Finally, we show that A is continuous. Let z,,Z € Q, |z, — Z||pcr — 0 (n — o0). Then

r =sup,, ||Zn|lpct < 0o and ||Z||pcr < 7. Tt is easy to get, by (4) and (15) that

1
[Azn — AZ| pcr <(mg + m4)/ 1f (s, 2n(5), 27, (5), (Tzn)(s), (Szn)(5))—
f(s,2(s),7'(s), (TZ)(s), (Sz)(s)) | ds+

~

<m+mmium%wmwm—mmmwwmﬁ
772+ 710) (32 Mok (01,24 0)) — o (20, 7 ).
It is clear, .
£t (). (0, (Twa) (1), (Swa) () = F(,3(0),7 (1), (T, (S2)(1)
asn—oo, Vite g,
and, by (10),

1t 2n (1), 27, (1), (Txn ) (2), (Swp)(1) = f(t,2(2), 7 (1), (TT)(t), (ST)(1))]|
< 2e0c(t)(2 + K + h*)r + 2a(t) + 2Mb(t) = o(t) € L[J4, Ry).

It follows from (21) and (22) and the dominated convergence theorem that

n—oo

lim A 1f (s, 2n(5), 27, (), (Tan)(s), (Szn)(5)) = f (5, 2(s), 2'(5), (TT)(s), (SZ)(5)) | ds = 0.

(20)
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It is clear,
L (xn(tr), 2, (tk)) — Lix(Z(tr), @ (tx)) asn — 00, i =0,1; k=1,2,...,m.

So,

lim (Znnk T (ti), 2, (00)) = Lo (2(te), 7' (0))]) = 0. (24)

n—oo

It follows from (20), (23) and (24) that || Az, — AZ||pc1 — 0 as n — oo, and the continuity of A
is proved. [J

Lemma 5 If W C PC!|[J, E] is bounded and the elements of W' are equicontinuous on each
Je (k=1,2,...,m). Then apcr (W) = max{sup,c ; (W (t)),sup,c; a(W’(t))}.

Lemma 6 Let H be a countable set of strongly measurable function x : J — E such that there
exists an M € L[J, Ry] such that ||z|| < M(t) a.e., t € J for allx € H. Then a(H(t)) € L[J, Ry]

and
a({/Jac(t)dt tx € H}) < 2/Ja(H(t))dt.

3. Main result

Theorem 1 If conditions (Hy)—(Hs) are satisfied, and

291/ (ZL )+ La(s)k™ + Ls( h*)ds+g Z (diko + dik1) + g5 Z (doro + dor1) < 1, (25)
k=1 k=1

in which g7 = max{mg, m4}, g5 = max{mMs,M4}. Then BVP(1) has a positive solution T €
PC'J,E) N C?[J', E] satistying (2)®(t) > \*z* fort € J (i = 0,1).

Proof By Lemma 4, operator A defined by (4) is a continuous operator from @ into @, and,
by Lemma 1, we need only to show that A has a fixed point Z in Q. Choose R > 2v, and let
Q1 ={r€Q:|z||pc: < R}. Obviously, Q; is a bounded closed convex set in space PC![J, E].
It is easy to see that Q; is not empty since w(t) = —(;H— fo Z+11+71;d + 2+}+’;)xo € Q.
It follows from (17) that z € Q1 implies Az € @1, i.e., A maps @ into Q1. Now, we are in a

position to show that A(Q1) is relatively compact. Let V = {x, : n =1,2,...} C Q; satisfying
V C eof{{zo} U (AV)} for some g € Q1. Then ||z,||pcr < R (n=1,2,3,...). We have, by (15),

(Az)'( / H (1, 5)F (5, 2n(5), 2 (5), (T )(5), (S (s))ds+

zm: H(t t) Tk (@ (tr), 20, (t)) + Y Ho(t, ti) Tox (n (t), 20, (t)) —

k=1 k=1

( 1 /1()b—1+rd L1 )
. T
a+1—b—u OgTa—i—l—bT at+1-—05/)""

Vteld, n=1,23,..., (26)
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and so, by virtue of (10) and Lemma 3, we get that

[(Azn)'(t2) — (Azn)' (1)

= / ﬁf (5,2(s),2'(s), (Tz)(s), (S)(s))ds+

/t O a(s), 2/ (s), (Tx) (), (S)(s))ds+

, a+1-=b
Hlﬁ | /t lt ( /O e $)9(1)ar) (s, 2(5), #'(5), (T2)(s), (S2)(5))ds)
(S e e o)

(50(2 +E +h9R / ’ o(s)ds + / ” (als) + Mb(s))ds),

t1 t1
Viti,to € Jg,to >t1,k=1,2,....mn=1,2,3,...,

which implies that {(Az,) (t)} (n = 1,2,3,...) is equicontinuous on each J; (k =1,2,...,m).
It is clear, {Az,} (n =1,2,3,...) C Q1 C PC'[J, E] is bounded. By Lemma 5, we have

apci(AV) = max{itelga((AV)(i) (t)):i=0,1}, (27)

where AV = {Az,, :n =1,2,...}, and (AV)®(t) = {(Az,)D(t) :n =1,2,...}. By (2), we have

(Azp)( / Hy(t (s,20(8), 20, (), (Txn)(s), (Swp)(s))ds—

( a+t /1 ()b—1+7d +b—1+t) N
. X
a+1-b—-u OgTa—i—l—bT a+1-0/)"°

m

> Hi(t t) T (@n (1), 20, (t)) + Y Ha(t, te) Tor (@ (t), 21, (t))- (28)

k=1 k=1

It follows from (26), (28), Lemmas 3 and 6 that

a((AV)(1)) [2m2/ (ZL )+ Lo(s)k* + La(s )h*)ds—i—mgzdmo-i-dlkl)

k=1
s Y (doko + dor) | - apes (V), Vi€ J, (29)
k=1
1 1 m
a((AVY(1) < [2m4/0 (Z Li(s) + La(s)k* + Lg(s)h*)ds +ma Y (diro + diea)+
1=0 k=1
M4 Z(dom + dokl)] ~apei(V), Vte (30)
k=1

Therefore,

1 1 m
apci(AV) SPQT/O (ZLz(S) + La(s)k™ + L3(s )dS + 97 Z (diko + dig1)+
k=1

=0
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92 Z (doko + dok1) } apci(V). (31)
k=1

On the other hand, apc1(V) < @o{{zo} U (AV)} = apci(AV). Then (25) and (31) imply
apci(AV) = 0, i.e., V is relatively compact in PC![J, E]. Hence, Ménch fixed point theorem
guarantees that A has a fixed point T in @1 and the proof is completed. [J

4. An example

Example 1 Consider the infinite system of scalar second-order impulsive singular integro-
differential equation

1 N 1 ) 3 N
2n2x,(t)  8ndaxh, (1)
1

\/%1(/0 (1 +ts)xn+2(s)ds) 1+ m
(/ e %% sin?(t — s)xn(s)ds) s ! In(1 4+ xz,(t)), t € J,t #t1,
0

xh(t) =

n

(3 + 2 (t) + 2, (1) +

Bl

: 60e2t
1 1 1 3
Azalyoy = =5 (earn(5) + - (;)) , (32)
n\2

1 1 1 3

Azl |, —1 = ( n\gy ) )
xn|t1_§ g \" (12)+I/2n(%)

£ (0) — 2}, (0) =

1
xn(1) — 220 (1) :/0 stp(s)ds, n=1,2,3,....

Conclusion Infinite system (32) has a positive solution {x,(t)} satisfying z,,(t) > =, z/ (t) >
S forte0,1] (n=1,2,3,...).

Proof Let E = ¢y = {z = (v1,...,Zn,...) : n, — 0} with the norm ||z|| = sup,, |z,| and P =
{z=(z1,...,&n,...) Eco: @y > 0,mn=1,2,3,...}. Then P is a normal cone in E and infinite
system (32) can be regarded as a BVP of the form (1). In this situation, z = (z1,...,Zn,...),
Y= W1, Yny--) 2= (21, s Zn,---), W= (W1,...,Wy,...), g(s) =8, a=4,b=2m=1,
k(t,s) = (1 +ts), h(t,s) = e 2*sin’(t — ), zo = (—1,—%, . .,—%, s f=01,- fn,-..) and
I = Ty ooy Lo,y ) (d :0,1), in which

Inls 229, 2,0) = (3+xn()+y3n(t)+ L )+

nQ\/_ 2n2x,(t)  8ndysn(t)
1, 1. 1
By ey S N ; (1 + 2y, 33
TV all) + s 0+ g L ), (33)
and . N
3
IOkn(xay) = E (xn-i-l + y_n) ; (34)
1 1 \3
Ilgm(ac,y)—ﬁ(acn—i-m—n) . (35)

Let 2* = —xg. Then Poy = {& = (21,...,Zn,...) : Tp > %,n =1,2,...} for A > 0. By
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direct computation, we have u = %, Uy = %, U = 2, k* < 2, h* =1, mg = %, Ty = %7
25 — 19 3 3 95 95 :
mg =, My =15, Do =2, Dy = 3, \" = 3,91 = %, 95 = 15 It is clear, (Hp) holds for

u=1¢€[0,a+1-b)=[0,3). Obviously, f € C[J; x Pox X Pyx X Px P, P}, Ij; € C[Pox x Pox, P
for any A > 0 (i = 0,1;k = 1). Noticing that e?* >/t (t > 0), fort € Jy, z,y € Pox+, z,w € P,
we have, by (33),

12 (,2 1 1
150,000 < 2 (2 + el + ) Pamtleh}. G0
So, (Hy) is satisfied for a(t) = 0, b(t) = c(t) = 12 and

NG
25 Yok bud
h(uo, w1, uz, uz) = (F +uo+u1)‘ +ud +ud +1In(1+ uo).

On the other hand, for x € Pyx+, y € Pyx~, we have, by (34) and (35) that

1 8 1
+llzl)2, ez, )l < (5 + [z])3,

4
Mok, 9)] < (5 -

3
which imply that condition (Hs) is satisfied for

wl=

4 8
Fo(uo,u1) = (3 +uo)?, Fi(ug,up) = (g

+ uo)
and nox = Mk = Yor = Y1k = 1.
Next, we check condition (Hs). Let f1 = {f{, fa,...,fL ...}, f2={f2, f3,...,f% ...},

where

1 1
1
fn(taxayvsz) 2\/_(3+$n+y3n+m+m)3+
1
Zn + Wnp,, 37
T e Y 0
1

Let t € J; and R > 0 be given and {2(™)} be any sequence in f!(t, P r> Posery» Ph Pr), where
2(m) = (zim), 2 .). By (37), we have

12 1,25
0<Z(m)< { +2R)* + VR+ VR|, nom=1,2,3,.... 39
7l Ge +2m’ )

So, {z,(Lm)} is bounded and by the diagonal method together with the method of constructing

subsequence, we can choose a subsequence {m;} C {m} such that

{z0M} 7, asi—o0, n=1,23,..., (40)
which implies by (39)
0<z 12 [(25+2R) +\4/}_%+\5/}_%} n=123 (41)
n_\/_ , n=12.3,....

Hence Z = (Z1,...,%n,...) € co. It is easy to see from (39)—(41) that

27 = 2| = sup |2™) — 2] — 0 as i — ox.
n

Thus, we have proved that f!(¢, Py« g, Pis- gy Phs Pry) is relatively compact in cp. Similarly, by
(34) and (35), we can show that Ly (P« g, Pi-g) (¢ = 0,1) are relatively compact in ¢o. For
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any t € J.,R>0,2,T € D C Pj,.p, we have by (38)
1
|f3(t=$7y727w) - f72z(t757yazum)| = m| 111(1 + xn) - ln(l +En)|

1 |zn — T

< —_ 42
< G0 11E, (42)

where &, is between z,, and T,,. By (42), we get
||f2(t7$7y, Z,U)) - f2(tvfayasz)” < WH‘I _EH’ z, TE D. (43)
Thus, we have shown that (Hs) holds for Lo(t) = gozr, Li(t) = 0 (i = 1,2,3), dir; = 0 (i,j =
0,1;k = 2). It is not difficult to see that (25) is also satisfied. Hence, our conclusion follows

from Theorem 1. O
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