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1. Introduction

In this paper, we are concerned only with undirected simple graphs (loops and multiple

edges are not allowed). All notions on graphs that are not defined here can be found in [4]. For

a graph G = (V (G), E(G)), let n(G) = n, m(G), ℓ(G) and A = A(G) be respectively the order,

size, line graph and adjacency matrix of G. For some vertex vi ∈ V (G), let di = d(vi) stand

for the degree of vi. We denote the characteristic polynomial det(λI − A) of G by φ(G, λ) or

simply φ(G). The adjacency spectrum of G, denoted by Spec(G), is the multiset of eigenvalues of

A(G). Since A(G) is symmetric, its eigenvalues are real and we set λ1(G) ≥ λ2(G) ≥ · · ·λn(G).

The maximum eigenvalue λ1(G) of G is called the spectral radius (or index) of G and it is often

denoted by ρ(G).

Two graphs G and H are said to be A-cospectral if the corresponding adjacency spectra are

the same. A graph is said to be determined by the A-spectrum (or simply a DAS-graph) if there

is no other non-isomorphic graph A-cospectral to it, i.e., φ(G) = φ(H) implies G ∼= H . The

background of the question “which graphs are determined by their spectrum? ” originates from

Chemistry (in 1956, Günthadr and Primas [15] raised this question in the context of Hückel’s

theory). For additional remarks on the topic we refer the readers to [11, 12].

Some other notations and terminology are also needed. Let ∆(G) be the maximum degree

of a graph G. Let G1 ∪G2 denote the disjoint union of graphs G1 and G2, and kG1 the disjoint
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union of k copies of G1. The join (or complete product) G1∇G2 is the graph obtained from

G1 ∪ G2 by joining every vertex of G1 with every vertex of G2. As usual, let Pn, Cn, Kn and

Ka1,a2,...,ak
(a1 + a2 + · · · + ak = n) denote the path, the cycle, the complete graph and the

complete k-multipartite graph of order n, respectively.

Cvetković, Doob, Simić [5] defined a generalized cocktail-party graph, denoted by GCP , as

a complete graph with some independent edges removed. A special case of this graph is the well-

known cocktail-party graph CP (k) obtained from K2k by removing k disjoint edges. Hoffman [16]

introduced the generalized line graph as follows: for any graph H with n vertices v1, v2, . . . , vn

and any non-negative integers a1, a2, . . . , an, then the generalized line graph L(H ; a1, a2, . . . , an)

is the graph consisting of disjoint copies of ℓ(H) and CP (ai) together with additional edges

joining a vertex in ℓ(H) with a vertex in CP (ai) if the vertex in ℓ(H) corresponding to an edge

in H has vi as an end-vertex (i = 1, 2, . . . , n). It is well-known that the generalized line graphs

are related to the following famous and important theorem:

Theorem 1.1 ([2]) Let G be a connected graph with least eigenvalue at least −2, Then either

G is a generalized line graph or G can be represented by vectors in the root system E8.

Graphs with least eigenvalue at least −2 have been studied since the very beginnings of the

theory of graphs spectra. Much information on this field can be found in the books [1, 3, 10, 14].

It is an interesting problem to find which graphs with least eigenvalue at least −2 are

A-cospectral graphs or DAS-graphs. Here we mention some known results. An exceptional

graph is a connected graph with least eigenvalue at least −2 which is not a generalized line

graph. Cvetković and Lepović [6, 7] studied the phenomenon of A-cospectrality in generalized

line graphs and in exceptional graphs. For the regular DAS-graphs with least eigenvalue at least

−2, van Dam and Haemers [11] gave an almost complete answer (see their Theorem 8). Further

results on A-cospectral graphs may be found in Section 4.2 of [10]. However, for the non-regular

case, van Dam and Haemers [11] stated that the following question remains open.

Problem 1.1 Which non-regular graphs with least eigenvalue at least −2 are DAS-graphs?

The rest of the paper is organized as follows: In Section 2 we cite some results of graphs

with least eigenvalue at least −2 and define an important graph invariant which will be helpful in

proving our main results. In Section 3 we investigate the spectral characterization of generalized

cocktail-party graph.

2. Basic results and an invariant of graphs with least eigenvalue at least

−2

Lemma 2.1 ([4]) Let Gi be an ri-regular graph of order ni (i = 1, 2). Then

φ(G1∇G2, λ) =
φ(G1, λ)φ(G2, λ)

(λ − r1)(λ − r2)
[(λ − r1)(λ − r2) − n1n2].

Doob and Cvetković [13] characterized all connected graphs with the least eigenvalue greater

than −2 in the theorem below:
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Theorem 2.1 ([13]) Let G be a connected graph with λn(G) > −2. Then

(i) G ∈ G1 = {ℓ(T )|T is a tree};
(ii) G ∈ G2 = {L(T ; 1, 0, . . . , 0)|T is a tree};
(iii) G ∈ G3 = {ℓ(H)|H is an odd-unicyclic graph};
(iv) G ∈ G4 = {20 graphs with order 6 that are represented in E6};
(v) G ∈ G5 = {110 graphs with order 7 that are represented in E7};
(vi) G ∈ G6 = {443 graphs with order 8 that are represented in E8}.
For convenience, set L = {G|G is a connected graph and λn(G) ≥ −2}, L + = {G|G is

a connected graph and λn(G) >−2} and L 0 = {G|G is a connected graph and λn(G) = −2}.
Clearly, L = L + ∪ L 0 and L + = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6. A graph in L (L + or L 0) is

called an L -graph (L +-graph or L 0-graph). For the L +-graphs we have the following:

Theorem 2.2 ([1]) Let G be a L +-graph with order n. Then

det(2I + A(G)) =







































n + 1, if G ∈ G1;

4, if G ∈ G2 ∪ G3;

3, if G ∈ G4;

2, if G ∈ G5;

1, if G ∈ G6.

The following contents of this section first appeared in [19, 20]. In order to the fullness of

this paper, we will state it again. Cvetković and Lepović [8] adopted the nomenclature from

lattice theory and defined

dG = (−1)nφ(G,−2)

as the discriminant of an L -graph G. Additionally, for an L -graph G they obtained an important

graph invariant named star value and showed that its formula is

S =
(−1)n

(n − k)!
φ(n−k)(G, λ − 2) = (−1)nΠG(0) =

k
∏

i=1

(λi + 2),

where φ(p)(x) denotes the p-th derivative function of φ(x), ΠG(λ) =
∏k

i=1(λ−(λi+2)) (it is called

the principal polynomial of G (see [8])) and λ1, λ2, . . . , λk are the eigenvalues greater than −2

of G. For the discriminant and the star value of G, we have the following conclusion. If G is an

L 0-graph, then dG = 0 < S. On the other hand, it is easy to see that φ(G, λ− 2) = λn−kΠG(λ)

and then dG = S if G is an L +-graph.

Now we synthesize the above facts into the following definition and give a visualized notation

to the star value:

Definition 2.1 Let G be an L -graph of order n and ΠG(λ) the principal polynomial of G.

Then the star value of G is defined as

⋆(G) =







(−1)nΠG(0), if G ∈ L 0;

(−1)nφ(G,−2), if G ∈ L
+.
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The following corollary is an immediate consequence of Definition 2.1:

Corollary 2.1 Let G = ∪k
i=1Gi and H be two L -graphs. Then

(i) ⋆(G) =
⋃k

i=1 ⋆(Gi);

(ii) if G and H are A-cospectral, then ⋆(G) = ⋆(H).

Corollary 2.1(ii) indicates that the star value of a graph is a graph invariant determined by

the spectrum. The readers will see that it will play an important role in studying the spectral

characterization of graphs with least eigenvalue at least −2.

Note that φ(G,−2) = det(−2I −A(G)) = (−1)n det(2I + A(G)), where n is the order of G.

Hence, det(2I + A(G)) = (−1)nφ(G,−2) and so the following corollary follows from Theorem

2.2 and Definition 2.1:

Corollary 2.2 Let G be an L +-graph with order n. Then

⋆(G) =







































n + 1, if G ∈ G1;

4, if G ∈ G2 ∪ G3;

3, if G ∈ G4;

2, if G ∈ G5;

1, if G ∈ G6.

3. Spectral characterization of generalized cocktail-party graphs

In what follows we will directly use a well-known fact that if G and H are A-cospectral

graphs, then they respectively share the same numbers of order, size and closed walks of any

length.

Note that any vertex in GCP is of degree n − 1 or n − 2. The following lemma indicates

the reason that we adopt the notation GCP (n, k) instead of GCP .

Lemma 3.1 A graph G with order n is a GCP iff G = Kn−2k∇CP (k), where k ≥ 1.

Proof The sufficiency follows from the fact that CP (k) is a (2k − 2)-regular graph. For the

necessity, by the definition of GCP we know that G is a bidegreed graph with vertex degree n−1

or n− 2. Suppose that G has n− t vertices of degree n− 1. Clearly, t ≥ 2. Thus, G = Kn−t∇H ,

where H is a (t−2)-regular graph. Since the size m(H) = t(t−2)/2 is an integer, then t is even.

Set t = 2k. Note that the order n(H) = t and H is (t − 2)-regular. Therefore, H is obtained

from Kt by removing t pairwise disjoint edges. So, H = CP (k).

From Lemma 3.1 it is easy to see GCP = GCP (n, k) = L(K1,n−2k; k, 0, . . . , 0) which is

a generalized line graph. Next we give some details for its index and least eigenvalue. Let

ρn,k = ρ(GCP (n, k)) and λn,k = λn(GCP (n, k)). The following lemma is needed.

Lemma 3.2 ([4]) Let G be an r-regular graph with order n and G its complement. Then

φ(G, λ) = (−1)n λ − n + r + 1

λ + r + 1
φ(G,−λ − 1).
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Lemma 3.3 Let k ≥ 1. Then

(i) GCP (n, k) has exactly one positive eigenvalue ρn,k.

(ii) ρn,k =
n−3+

√
(n−3)2+8(n−k−1))

2 ≥ n − 2 with equality if and only if n = 2k.

(iii) λn,k ≥ −2 with equality if and only if k > 1.

Proof By Lemma 3.2 we get

φ(CP (k)) = λk(λ + 2)k−1(λ − 2k + 2).

From Lemma 2.1 it follows that

φ(GCP (n, k)) = φ(Kn−2k∇CP (k))

=
φ(Kn−2k)φ(CP (k))

(λ − n + 2k + 1)(λ − 2k + 2)
[(λ − n + 2k + 1)(λ − 2k + 2) − 2k(n − 2k)]

= λk(λ + 1)n−2k−1(λ + 2)k−1[λ2 − (n − 3)λ − 2(n − k − 1)]

which shows that (iii) obviously holds. Let h1(λ) denote the above quadratic factor. It is easy

to see that ρn,k is the largest root of h1(λ) = 0. Thus, ρn,k =
n−3+

√
(n−3)2+8(n−k−1))

2 . Since

n − 2k ≥ 0, we have 8(n − k − 1) ≥ 4n − 8 and so ρn,k ≥ n−3+
√

(n−3)2+4n−8

2 = n − 2 with

equality if and only if n = 2k. Thus, (ii) holds. Let λ be another root of h1(λ) = 0. Then

λ · ρn,k = −2(n− k − 1) and thus λ is negative and (i) follows.

Remark 3.1 For n = 2k, then G = CP (k) which has been shown to be a DAS-graph [11].

Thus, we always set n − 2k > 0 in this subsection and so ρn,k > n − 2.

Lemma 3.4 ([17]) A graph has exactly one positive eigenvalue if and only if its non-isolated

vertices form a complete multipartite graph.

Note that from Lemma 3.3(i) and Lemma 3.4 we know GCP (n, k) is also a complete (n−k)-

multipartite graph. Actually, GCP (n, k) = K1n−2k,2k , where ab means that b is the number of

parts of cardinality a. The following observation follows readily from Lemma 3.4:

Lemma 3.5 Let G be a graph A-cospectral with GCP (n, k). Then G is the union of some

isolated vertices and a complete multipartite graph.

Lemma 3.6 No two non-isomorphic generalized cocktail-party graphs are A-cospectral.

Proof Assume by way of contradiction that GCP (n′, k′) and GCP (n, k) are A-cospectral. Then

n′ = n and ρn′,k′ = ρn,k′ = ρn,k. From Lemma 3.3(i) it follows that

n − 3 +
√

(n − 3)2 + 8(n − k′ − 1))

2
= ρn,k′ = ρn,k =

n − 3 +
√

(n − 3)2 + 8(n − k − 1))

2
,

which leads to k′ = k and thus GCP (n′, k′) ∼= GCP (n, k).

To prove the following theorem, we need the notion of a maximal exceptional graph: every

exceptional graph is a subgraph of (a least) one such graph.

Theorem 3.1 For n ≥ 23, GCP (n, k) is a DAS-graph.
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Proof If k = 0, then GCP (n, 0) = Kn which has been proved to be a DAS-graph [11]. Now

set k ≥ 1. Let G be any graph A-cospectral to GCP (n, k). Then n(G) = n, ρ(G) = ρn,k

and λn(G) = λn,k. From the known fact that ∆(G) ≥ ρ(G), we obtain by Lemma 3.3(i) that

∆(G) > n − 2, and so ∆(G) = n − 1. Hence, G is a connected graph and therefore G is a

multipartite graph by Lemma 3.5. From Lemma 3.3(iii) it follows that λn(G) = λn,k ≥ −2.

Consequently, G is one of the graphs described in Theorem 1.1.

Claim 3.1 G cannot be represented by vectors in the root system E8.

Proof Assume by contradiction that G is such a graph. In order to show the claim, we need

an important result due to Cvetković, Lepović, Rowlinson and Simić [9], which is that all the

maximal exceptional graphs are determined. Such a graph has order 22, 28, 29, 30, 31, 32, 33, 34

or 36. Denote by ρn the maximal index of a maximal exceptional graph of order n. So ρ(G) ≤ ρn.

From Table 1 [9] we get the following table:

n

ρn 14

22

17

28

19

29

18.9282

30

19

31

19.2111

32

19.5498

33

20

34

21

36

Table 1 The index of maximal exceptional graphs

It follows that an exceptional graph has index at most 21. By Remark 3.1 we have ρn,k >

n − 2. Hence, for n ≥ 23 we get ρn,k > 21 ≥ ρn ≥ ρ(G), a contradiction.

So, Claim 3.1 shows that G is a generalized line graph. Without loss of generality, set

G = L(H ; a1, a2, . . . , an) and V (G) = V (ℓ(H)) ∪ V (CP (a1)) ∪ · · · ∪ V (CP (an)). From the

definition of generalized line graph it follows that V (ℓ(H)) ∩ V (CP (ai)) = ∅ (1 ≤ i ≤ n) and

V (CP (ai)) ∩ V (CP (aj)) = ∅ (1 ≤ i 6= j ≤ n). Since G is a complete multipartite graph and

CP (ai) = K2ai (1 ≤ i ≤ n), V (CP (ai)) can be partitioned into Ci1 ∪Ci2 ∪Ciai
, where each cell

Cij contains exactly two vertices (1 ≤ j ≤ ai and 1 ≤ i ≤ n).

Claim 3.2 At most one of a1, a2, . . . , an is not equal to 0.

Proof Assume that ai 6= 0 and aj 6= 0 (1 ≤ i 6= j ≤ n). Let u ∈ Cik ⊂ V (CP (ai)) (1 ≤ k ≤ ai)

and v ∈ Cjl ⊂ V (CP (aj)) (1 ≤ l ≤ aj). Since V (CP (ai))∩V (CP (aj)) = ∅, we have Cik∩Cjl = ∅
and so uv 6∈ E(G). On the other hand, since u and v belong to different cells, u must be adjacent

to v, a contradiction.

From Claim 3.2, without loss of generality, we can set a2 = · · · an = 0.

Claim 3.3 The A-cospectral graph G is equal to GCP (n, a1) = Kn−2a1
∇CP (a1).

Proof Since G is a multipartite graph and V (ℓ(H)) ∩ V (CP (a1)) = ∅, every vertex of ℓ(H)

must be adjacent to each one of CP (a1), which shows that all vertices ei (1 ≤ i ≤ n(ℓ(H))) of

ℓ(H) must be such that all edges ei (1 ≤ i ≤ m(H)) have a common vertex, say v1, in the graph
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H . Hence, H is a star and so ℓ(H) is a clique denoted by Kt. Since n(G) = t+2a1 = n, we have

t = n − 2a1 and thus G = GCP (n, a1).

From Claim 3.3 and Lemma 3.6, we obtain that G ∼= GCP (n, k) and we are done.
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