# Global Weakly Discontinuous Solutions for Inhomogeneous Quasilinear Hyperbolic Systems with Characteristics with Constant Multiplicity 

Fei GUO<br>School of Mathematical Sciences and Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Jiangsu 210023, P. R. China


#### Abstract

This paper considers the Cauchy problem with a kind of non-smooth initial data for general inhomogeneous quasilinear hyperbolic systems with characteristics with constant multiplicity. Under the matching condition, based on the refined fomulas on the decomposition of waves, we obtain a necessary and sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution to the Cauchy problem.


Keywords inhomogeneous quasilinear hyperbolic system; characteristic with constant multiplicity; Cauchy problem; global weakly discontinuous solution; weak linear degeneracy; matching condition.

MR(2010) Subject Classification 35L45; 35L60

## 1. Introduction and main results

Consider the following first order inhomogeneous quasilinear hyperbolic system

$$
\begin{equation*}
\frac{\partial u}{\partial t}+A(u) \frac{\partial u}{\partial x}=B(u) \tag{1.1}
\end{equation*}
$$

where $u=\left(u_{1}, \ldots, u_{n}\right)^{\mathrm{T}}$ is the unknown vector function of $(t, x), A(u)$ is an $n \times n$ matrix with suitably smooth entries $a_{i j}(u)(i, j=1, \ldots, n)$, and $B(u)$ is a vector function with suitably smooth elements $b_{i}(u)(i=1, \ldots, n)$.

By hyperbolicity, for any given $u$ on the domain under consideration, $A(u)$ has $n$ real eigenvalues $\lambda_{1}(u), \ldots, \lambda_{n}(u)$ and a complete set of left (resp., right) eigenvectors. For $i=1, \ldots, n$, let $l_{i}(u)=\left(l_{i 1}(u), \ldots, l_{i n}(u)\right)$ (resp., $r_{i}(u)=\left(r_{i 1}(u), \ldots, r_{i n}(u)\right)^{\mathrm{T}}$ ) be a left (resp., right) eigenvector corresponding to $\lambda_{i}(u)$ :

$$
\begin{equation*}
l_{i}(u) A(u)=\lambda_{i}(u) l_{i}(u) \quad\left(\text { resp. } A(u) r_{i}(u)=\lambda_{i}(u) r_{i}(u)\right) \tag{1.2}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left.\operatorname{det}\left|l_{i j}(u)\right| \neq 0 \quad \text { (equivalently, } \operatorname{det}\left|r_{i j}(u)\right| \neq 0\right) \tag{1.3}
\end{equation*}
$$

[^0]Without loss of generality, we assume that

$$
\begin{equation*}
l_{i}(u) r_{j}(u) \equiv \delta_{i j} \quad(i, j=1, \ldots, n) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i}(u)^{T} r_{i}(u) \equiv 1 \quad(i=1, \ldots, n) \tag{1.5}
\end{equation*}
$$

where $\delta_{i j}$ denotes the Kronecker's symbol.
If $B(u) \equiv 0$, for the initial data

$$
\begin{equation*}
t=0: u=\phi(x) \quad(-\infty<x<+\infty) \tag{1.6}
\end{equation*}
$$

where $\phi(x)$ is a $C^{1}$ vector function with bounded $C^{1}$ norm and satisfies certain small and decaying property, it was proved that Cauchy problem (1.1) and (1.6) admits a unique global $C^{1}$ solution $u=u(t, x)$ with small $C^{1}$ norm for all $t \in \mathbb{R}$, if and only if system (1.1) is weakly linearly degenerate (for strictly hyperbolic system [4,5,11,12]; for the non-strictly hyperbolic system with characteristics with constant multiplicity $[7,14]$. Also see [8]).

Recently, Li and Wang [9] studied the Cauchy problem of homogenous quasilinear strictly hyperbolic system (1.1) (i.e., $B(u) \equiv 0$ ) with a kind of non-smooth initial data

$$
t=0: u= \begin{cases}u_{l}(x), & x \leq 0  \tag{1.7}\\ u_{r}(x), & x \geq 0\end{cases}
$$

where $u_{l}(x)$ and $u_{r}(x)$ are $C^{1}$ vector functions on $x \leq 0$ and $x \geq 0$, respectively, with

$$
\begin{equation*}
u_{l}(0)=u_{r}(0) \text { and } u_{l}^{\prime}(0) \neq u_{r}^{\prime}(0) \tag{1.8}
\end{equation*}
$$

and satisfy the following small and decaying property

$$
\begin{equation*}
\theta \triangleq \sup _{x \leq 0}\left\{(1-x)^{1+\mu}\left(\left|u_{l}(x)\right|+\left|u_{l}^{\prime}(x)\right|\right)\right\}+\sup _{x \geq 0}\left\{(1+x)^{1+\mu}\left(\left|u_{r}(x)\right|+\left|u_{r}^{\prime}(x)\right|\right)\right\} \ll 1 \tag{1.9}
\end{equation*}
$$

where $\mu>0$ is a constant. They proved that Cauchy problem (1.1) and (1.7) admits a unique global weakly discontinuous solution $u=u(t, x)$ for all $t \in \mathbb{R}$ if and only if system (1.1) is weakly linearly degenerate. If $B(u)$ satisfies the matching condition, we have generalized their result to the inhomogeneous case [1]. However, in case of $B(u) \equiv 0$, if system (1.1) possesses characteristics with constant multiplicity, under the assumption that normalized coordinates exist, a necessary and sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solutions has been obtained in [2].

In this paper, we will investigate the inhomogeneous global weakly discontinuous solution to the quasilinear hyperbolic system (1.1) with characteristics with constant multiplicity.

For hyperbolic system (1.1) with characteristics with constant multiplicity, all $\lambda_{i}(u), l_{i j}(u)$ and $r_{i j}(u)(i, j=1, \ldots, n)$ have the same regularity as $a_{i j}(u)(i, j=1, \ldots, n)$.

Without loss of generality, we suppose that, in a neighbourhood of $u=0$,

$$
\begin{equation*}
\lambda(u) \triangleq \lambda_{1}(u) \equiv \cdots \equiv \lambda_{p}(u)<\lambda_{p+1}(u)<\cdots<\lambda_{n}(u)(p \geq 1) \tag{1.10}
\end{equation*}
$$

where $1 \leq p \leq n$. As $p=1$, system (1.1) is strictly hyperbolic; as $p>1$, system (1.1) is a non-strictly hyperbolic systems with characteristics with constant multiplicity. Here we will deal with the latter.

The main difficulty we face is how to deal with the propagation of hyperbolic waves in the inhomogeneous term $B(u)$. For this purpose, we introduce the concept of matching condition (Def. 1.1) and present a more refined formula on the decomposition of waves.

To state our result precisely, we first give the following three definition: the matching condition, normalized coordinates and weak linear degeneracy.

Definition 1.1 $B(u)$ satisfies the matching condition if there exists normalized transformation and in normalized coordinates

$$
\begin{equation*}
B\left(\sum_{h=1}^{p} u_{h} e_{h}\right) \equiv 0, \forall\left|u_{h}\right| \text { small }(h=1, \ldots, p) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
B\left(u_{j} e_{j}\right) \equiv 0, \forall\left|u_{j}\right| \text { small }(j=p+1, \ldots, n) \tag{1.12}
\end{equation*}
$$

Definition 1.2 ([7]) If there exists an invertible smooth transformation $u=u(\tilde{u})(u(0)=0)$ such that in $\tilde{u}$-space

$$
\begin{equation*}
\tilde{r}_{i}\left(\sum_{h=1}^{p} \tilde{u}_{h} e_{h}\right) \equiv e_{i}, \forall\left|\tilde{u}_{h}\right| \text { small }(i, h=1, \ldots, p) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{r}_{j}\left(\tilde{u}_{j} e_{j}\right) \equiv e_{j}, \forall\left|\tilde{u}_{j}\right| \text { small }(j=p+1, \ldots, n) \tag{1.14}
\end{equation*}
$$

in which for $k=1, \ldots, n$,

$$
\begin{equation*}
e_{k}=(0, \ldots, 0, \stackrel{(k)}{1}, 0, \ldots, 0)^{\mathrm{T}} \tag{1.15}
\end{equation*}
$$

then the transformation is called a normalized transformation, and the corresponding unknown variables $\tilde{u}=\left(\tilde{u}_{1}, \ldots, \tilde{u}_{n}\right)^{\mathrm{T}}$ are called normalized variables or normalized coordinates.

Definition 1.3 ([7]) The $i$-th characteristic $\lambda_{i}(u)$ is weakly linearly degenerate, if there exists a normalized transformation and in normalized coordinates

$$
\begin{gather*}
\lambda_{i}\left(\sum_{h=1}^{p} \tilde{u}_{h} e_{h}\right) \equiv \lambda(0), \forall\left|\tilde{u}_{h}\right| \text { small }(h=1, \ldots, p), \text { when } i \in\{1, \ldots, p\} ;  \tag{1.16}\\
\lambda_{i}\left(\tilde{u}_{i} e_{i}\right) \equiv \lambda_{i}(0), \quad \forall\left|\tilde{u}_{i}\right| \text { small, when } i \in\{p+1, \ldots, n\} \tag{1.17}
\end{gather*}
$$

When all characteristics $\lambda_{i}(u)(i=1, \ldots, n)$ are weakly linearly degenerate, system (1.1) is weakly linearly degenerate.

Our main result is as follows
Theorem 1.1 Suppose that in a neighbourhood of $u=0, A(u), B(u) \in C^{2}$ and the matching condition is satisfied. Furthermore, assume that there exist normalized coordinates. Then there exists $\theta_{0}>0$ so small that for any given initial data satisfying (1.8)-(1.9) with $\theta \in\left(0, \theta_{0}\right]$, Cauchy problem (1.1) and (1.7) admits a unique global weakly discontinuous solution $u=u(t, x)$ containing $n-p+1$ weak discontinuities $x=x_{k}(t)(k=p, \ldots, n)$, where $x=x_{k}(t)\left(x_{k}(0)=0\right)$ denotes a $k$-th weak discontinuity passing through the origin $(0,0)$, if and only if system (1.1)
is weakly linearly degenerate. Precisely speaking, the solution $u=u(t, x)$ has the following structure:

$$
u=u(t, x)=\left\{\begin{array}{l}
u^{(p-1)}(t, x),(t, x) \in R_{p-1}  \tag{1.18}\\
u^{(l)}(t, x),(t, x) \in R_{l} \quad(l=p, \ldots, n-1), \\
u^{(n)}(t, x),(t, x) \in R_{n}
\end{array}\right.
$$

in which $u^{(l)}(t, x) \in C^{1}$ satisfies system (1.1) in the classical sense on $R_{l}(l=p-1, \ldots, n)$ with

$$
R_{l}=\left\{\begin{array}{l}
\left\{(t, x) \mid t \geq 0, x \leq x_{p}(t)\right\} \quad(l=p-1)  \tag{1.19}\\
\left\{(t, x) \mid t \geq 0, x_{l}(t) \leq x \leq x_{l+1}(t)\right\} \quad(l=p, \ldots, n-1) \\
\left\{(t, x) \mid t \geq 0, x \geq x_{n}(t)\right\} \quad(l=n)
\end{array}\right.
$$

Moreover, for $k=p, \ldots, n$,

$$
\begin{gather*}
u^{(k-1)}\left(t, x_{k}(t)\right)=u^{(k)}\left(t, x_{k}(t)\right)  \tag{1.20}\\
\frac{\mathrm{d} x_{k}(t)}{\mathrm{d} t}=\lambda_{k}\left(u^{(k-1)}\left(t, x_{k}(t)\right)\right)=\lambda_{k}\left(u^{(k)}\left(t, x_{k}(t)\right)\right) \tag{1.21}
\end{gather*}
$$

Remark 1.1 In Theorem 1.1 some weak discontinuities may degenerate.

## 2. Decomposition of waves

In this section, we will derive a more refined formula on decomposition of waves. To our knowledge, the decomposition of waves is due to Liu [13] to study the formation of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations.

For $i=1, \ldots, n$, let

$$
\begin{equation*}
w_{i}=l_{i}(u) u_{x} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{i}(u)=l_{i}(u) B(u) . \tag{2.2}
\end{equation*}
$$

By (1.4), it is easy to get

$$
\begin{equation*}
u_{x}=\sum_{k=1}^{n} w_{k} r_{k}(u) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
B(u)=\sum_{k=1}^{n} \beta_{k}(u) r_{k}(u) . \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{i} t}=\frac{\partial}{\partial t}+\lambda_{i}(u) \frac{\partial}{\partial x}(i=1, \ldots, n) \tag{2.5}
\end{equation*}
$$

denote the directional derivative with respect to $t$ along the $i$-th characteristic $\frac{\mathrm{d} x}{\mathrm{~d} t}=\lambda_{i}(u)$. We have

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d}_{i} t}=\sum_{k \neq i}\left(\lambda_{i}(u)-\lambda_{k}(u)\right) w_{k} r_{k}(u)+B(u) \tag{2.6}
\end{equation*}
$$

Then, in normalized coordinates (if any!), it is easy to get

$$
\begin{equation*}
\frac{\mathrm{d} u_{i}}{\mathrm{~d}_{i} t}=\sum_{j, k=1}^{n} \rho_{i j k}(u) u_{j} w_{k}+\sum_{j=1}^{n}\left(\sum_{k=1}^{n} \bar{\rho}_{i j k}(u) \beta_{k}(u)\right) u_{j}+r_{i i}(u) \beta_{i}(u) \tag{2.7}
\end{equation*}
$$

where

$$
\rho_{i j k}(u)= \begin{cases}l l \rho_{i j k}^{(1)}(u), & \text { when } i=1, \ldots, p,  \tag{2.8}\\ \rho_{i j k}^{(1)}(u)+\rho_{i j k}^{(2)}(u), & \text { when } i=p+1, \ldots, n\end{cases}
$$

with

$$
\rho_{i j k}^{(1)}(u)=\left\{\begin{array}{l}
\left(\lambda_{i}(u)-\lambda_{k}(u)\right) \int_{0}^{1} \frac{\partial r_{k i}}{\partial u_{j}}\left(\tau u_{1}, \ldots, \tau u_{k-1}, u_{k}, \tau u_{k+1}, \ldots, \tau u_{n}\right) \mathrm{d} \tau  \tag{2.9}\\
\quad j=1, \ldots, n, k=p+1, \ldots, n \text { and } j \neq k \\
0, \quad \text { otherwise }
\end{array}\right.
$$

and

$$
\rho_{i j k}^{(2)}(u)=\left\{\begin{array}{l}
\left(\lambda_{i}(u)-\lambda_{k}(u)\right) \int_{0}^{1} \frac{\partial r_{k i}}{\partial u_{j}}\left(u_{1}, \ldots, u_{p}, \tau u_{p+1}, \ldots, \ldots, \tau u_{n}\right) \mathrm{d} \tau  \tag{2.10}\\
\quad j=p+1, \ldots, n \text { and } k=1, \ldots, p, \\
0, \quad \text { otherwise }
\end{array}\right.
$$

$$
\bar{\rho}_{i j k}(u)= \begin{cases}\rho_{i j k}^{(3)}(u), & \text { when } i=1, \ldots, p  \tag{2.11}\\ \rho_{i j k}^{(4)}(u), & \text { when } i=p+1, \ldots, n\end{cases}
$$

with

$$
\rho_{i j k}^{(3)}(u)=\left\{\begin{array}{c}
\int_{0}^{1} \frac{\partial r_{k i}}{\partial u_{j}}\left(u_{1}, \ldots, u_{p}, \tau u_{p+1}, \ldots, \tau u_{n}\right) \mathrm{d} \tau,  \tag{2.12}\\
j=p+1, \ldots, n, k=1, \ldots, p \text { and } k \neq i, \\
\int_{0}^{1} \frac{\partial r_{k i}}{\partial u_{j}}\left(\tau u_{1}, \ldots, \tau u_{k-1}, u_{k}, \tau u_{k+1}, \ldots, \tau u_{n}\right) \mathrm{d} \tau, \\
j=1, \ldots, n, k=p+1, \ldots, n \text { and } j \neq k, \\
0, \quad \begin{array}{l}
\text { otherwise }
\end{array}
\end{array}\right.
$$

and

$$
\rho_{i j k}^{(4)}(u)=\left\{\begin{array}{l}
\int_{0}^{1} \frac{\partial r_{k i}}{\partial u_{j}}\left(u_{1}, \ldots, u_{p}, \tau u_{p+1}, \ldots, \tau u_{n}\right) \mathrm{d} \tau  \tag{2.13}\\
j=p+1, \ldots, n, k=1, \ldots, p, \\
\int_{0}^{1} \frac{\partial r_{k i}}{\partial u_{j}}\left(\tau u_{1}, \ldots, \tau u_{k-1}, u_{k}, \tau u_{k+1}, \ldots, \tau u_{n}\right) \mathrm{d} \tau \\
j=1, \ldots, n, k=p+1, \ldots, n, k \neq i \text { and } j \neq k, \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Obviously,

$$
\begin{gather*}
\rho_{i j i}(u) \equiv 0, \quad \forall i, j,  \tag{2.14}\\
\rho_{i j k}(u) \equiv 0, \forall i, \forall j, k \in\{1, \ldots, p\} \tag{2.15}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{\rho}_{i j j}(u) \equiv 0, \quad \forall i, j \tag{2.16}
\end{equation*}
$$

Noting (2.3) and (2.7), we have

$$
\begin{equation*}
d\left[u_{i}\left(\mathrm{~d} x-\lambda_{i}(u) \mathrm{d} t\right)\right]=\left[\sum_{j, k=1}^{n} F_{i j k}(u) u_{j} w_{k}+\sum_{j=1}^{n}\left(\sum_{k=1}^{n} \bar{\rho}_{i j k}(u) \beta_{k}(u)\right) u_{j}+r_{i i}(u) \beta_{i}(u)\right] \mathrm{d} t \wedge \mathrm{~d} x \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{i j k}(u)=\rho_{i j k}(u)+\nabla \lambda_{j}(u) r_{k}(u) \delta_{i j} \tag{2.18}
\end{equation*}
$$

By (2.14), we have

$$
\begin{equation*}
F_{i j j}(u) \equiv 0, \quad \forall j \neq i \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{i i i}(u)=\nabla \lambda_{i}(u) r_{i}(u), \quad \forall i \tag{2.20}
\end{equation*}
$$

By (2.15), we get

$$
\begin{equation*}
F_{i j k}(u)=\nabla \lambda_{i}(u) r_{k}(u) \delta_{i j}, \quad \forall i, \forall j, k \in\{1, \ldots, p\} . \tag{2.21}
\end{equation*}
$$

Hence, when $\lambda_{i}(u)$ is weakly linearly degenerate, in normalized coordinates, from (1.13), (1.14), (1.16) and (1.17) it follows that

$$
\begin{gather*}
F_{i j k}\left(\sum_{h=1}^{p} u_{h} e_{h}\right)=\nabla \lambda\left(\sum_{h=1}^{p} u_{h} e_{h}\right) r_{k}\left(\sum_{h=1}^{p} u_{h} e_{h}\right) \delta_{i j} \equiv 0  \tag{2.22}\\
\forall i, j, k \in\{1, \ldots, p\}, \quad \forall\left|u_{h}\right| \text { small }(h=1, \ldots, p)
\end{gather*}
$$

and

$$
\begin{equation*}
F_{i i i}\left(u_{i} e_{i}\right)=\nabla \lambda_{i}\left(u_{i} e_{i}\right) r_{i}\left(u_{i} e_{i}\right) \equiv 0, \quad \forall\left|u_{i}\right| \text { small }(i=p+1, \ldots, n) \tag{2.23}
\end{equation*}
$$

On the other hand, we have $[1,15]$

$$
\begin{equation*}
\frac{\mathrm{d} w_{i}}{\mathrm{~d}_{i} t}=\sum_{j, k=1}^{n} \gamma_{i j k}(u) w_{j} w_{k}+\sum_{j=1}^{n}\left(\sum_{k=1}^{n} B_{i j k}(u) \beta_{k}(u)+\nu_{i j}(u)\right) w_{j} \tag{2.24}
\end{equation*}
$$

where

$$
\begin{gather*}
\gamma_{i j k}(u)=\frac{1}{2}\left\{\left(\lambda_{j}(u)-\lambda_{k}(u)\right) l_{i}(u) \nabla r_{k}(u) r_{j}(u)-\nabla \lambda_{k}(u) r_{j}(u) \delta_{i k}+(j \mid k)\right\}  \tag{2.25}\\
B_{i j k}(u)=-l_{i}(u) \nabla r_{j}(u) r_{k}(u) \tag{2.26}
\end{gather*}
$$

and

$$
\begin{equation*}
\nu_{i j}(u)=l_{i}(u) \nabla B(u) r_{j}(u) \tag{2.27}
\end{equation*}
$$

in which $(j \mid k)$ stands for all terms obtained by changing $j$ and $k$ in the previous terms. Hence

$$
\begin{equation*}
\gamma_{i j j}(u) \equiv 0, \quad \forall j \neq i \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{i i i}(u)=-\nabla \lambda_{i}(u) r_{i}(u), \quad \forall i \tag{2.29}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\gamma_{i j k}(u) \equiv 0, \quad \forall i \in\{p+1, \ldots, n\}, \forall j, k \in\{1, \ldots, p\} \tag{2.30}
\end{equation*}
$$

Furthermore, when $\lambda_{i}(u)$ is weakly linearly degenerate, in normalized coordinates it follows from (1.13), (1.14), (1.16) and (1.17) that

$$
\begin{equation*}
\gamma_{i j k}\left(\sum_{h=1}^{p} u_{h} e_{h}\right) \equiv 0, \quad \forall i, j, k \in\{1, \ldots, p\}, \forall\left|u_{h}\right| \text { small }(h=1, \ldots, p) \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{i i i}\left(u_{i} e_{i}\right) \equiv 0, \quad \forall\left|u_{i}\right| \text { small }(i=p+1, \ldots, n) \tag{2.32}
\end{equation*}
$$

Noting (2.3), by (2.24) we have

$$
\begin{equation*}
d\left[w_{i}\left(\mathrm{~d} x-\lambda_{i}(u) \mathrm{d} t\right)\right]=\left[\sum_{j, k=1}^{n} \Gamma_{i j k}(u) w_{j} w_{k}+\sum_{j=1}^{n}\left(\sum_{k=1}^{n} B_{i j k}(u) \beta_{k}(u)+\nu_{i j}(u)\right) w_{j}\right] \mathrm{d} t \wedge \mathrm{~d} x \tag{2.33}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{i j k}(u)=\frac{1}{2}\left(\lambda_{j}(u)-\lambda_{k}(u)\right) l_{i}(u)\left[\nabla r_{k}(u) r_{j}(u)-\nabla r_{j}(u) r_{k}(u)\right] \tag{2.34}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
\Gamma_{i j j}(u) \equiv 0, \quad \forall i, j \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{i j k}(u) \equiv 0, \quad \forall i, \forall j, k \in\{1, \ldots, p\} \tag{2.36}
\end{equation*}
$$

To simplify $(2.7),(2.17),(2.24)$ and $(2.33)$, similarly to the proof of Lemma 2.1 in [1], we can prove the following lemma, which plays an important role in the proof of Lemma 3.2.

Lemma 2.1 Suppose that in a neighbourhood of $u=0, A(u) \in C^{2}, B(u) \in C^{2}$ satisfies the matching condition. Then, in normalized coordinates, $\forall|u|$ small, $\forall i$, we have

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\sum_{k=1}^{n} \bar{\rho}_{i j k}(u) \beta_{k}(u)\right) u_{j}+r_{i i}(u) \beta_{i}(u)=\sum_{j, k=1}^{n} P_{i j k}(u) u_{j} u_{k} \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\sum_{k=1}^{n} B_{i j k}(u) \beta_{k}(u)+\nu_{i j}(u)\right) w_{j}=\sum_{j, k=1}^{n} Q_{i j k}(u) u_{k} w_{j} \tag{2.38}
\end{equation*}
$$

where $P_{i j k}(u)$ and $Q_{i j k}(u)$ are continuous functions of $u$ in a neighbourhood of $u=0$. Moreover, for $i=1, \ldots, p$, we have

$$
\begin{equation*}
P_{i j k}(u) \equiv 0, \quad \forall|u| \text { small }, \quad \forall j, k \in\{1, \ldots, p\} \tag{2.39}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{i j k}(u) \equiv 0, \quad \forall|u| \text { small }, \quad \forall j, k \in\{1, \ldots, p\} \tag{2.40}
\end{equation*}
$$

while for $i=1, \ldots, n$, there hold

$$
\begin{equation*}
P_{i j j}(u) \equiv 0, \quad \forall|u| \text { small }, \quad \forall j \in\{1, \ldots, n\} \tag{2.41}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{i j j}(u) \equiv 0, \quad \forall|u| \text { small }, \quad \forall j \in\{1, \ldots, n\} \tag{2.42}
\end{equation*}
$$

## 3. Proof of Theorem 1.1

The main result in this paper can be proved in a way similar to the proof of Theorem 1.1 in [1]. Here we point out only the essentially different part.

Noting (1.10), there exist positive constants $\delta$ and $\delta_{0}$ so small that

$$
\begin{equation*}
\lambda_{i+1}(u)-\lambda_{i}\left(u^{\prime}\right) \geq 2 \delta_{0}, \quad \forall|u|,\left|u^{\prime}\right| \leq \delta \quad(i=p, \ldots, n-1) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda_{i}(u)-\lambda_{i}\left(u^{\prime}\right)\right| \leq \frac{\delta_{0}}{2}, \quad \forall|u|,\left|u^{\prime}\right| \leq \delta \quad(i=1, \ldots, n) \tag{3.2}
\end{equation*}
$$

Without loss of generality, we may assume that

$$
\begin{equation*}
\lambda_{i}(0)>\delta_{0} \quad(i=1, \ldots, n) \tag{3.3}
\end{equation*}
$$

For the time being we assume that on any given existence domain $R(T)=\{(t, x) \mid 0 \leq t \leq$ $T,-\infty<x<\infty\}$ of the weakly discontinuous solution $u=u(t, x)$ to Cauchy problem (1.1) and (1.7), we have

$$
\begin{equation*}
|u(t, x)| \leq \delta, \quad \forall(t, x) \in R(T) \tag{3.4}
\end{equation*}
$$

In the proof of Theorem 1.1, we will explain that this hypothesis is reasonable.
Let

$$
R_{l}(T)=\left\{\begin{array}{l}
\left\{(t, x) \mid 0 \leq t \leq T, x \leq x_{p}(t)\right\} \quad(l=p-1) \\
\left\{(t, x) \mid 0 \leq t \leq T, x_{l}(t) \leq x \leq x_{l+1}(t)\right\} \quad(l=p, \ldots, n-1) \\
\left\{(t, x) \mid 0 \leq t \leq T, x \geq x_{n}(t)\right\} \quad(l=n)
\end{array}\right.
$$

and

$$
D_{i}^{T}=\left\{\begin{array}{l}
\left\{(t, x) \mid 0 \leq t \leq T, x \leq\left(\lambda(0)+\delta_{0}\right) t\right\} \quad(i=1, \ldots, p) \\
\left\{(t, x) \mid 0 \leq t \leq T,\left(\lambda_{i}(0)-\delta_{0}\right) t \leq x \leq\left(\lambda_{i}(0)+\delta_{0}\right) t\right\} \quad(i=p+1, \ldots, n-1) \\
\left\{(t, x) \mid 0 \leq t \leq T, x \geq\left(\lambda_{n}(0)-\delta_{0}\right) t\right\} \quad(i=n)
\end{array}\right.
$$

Obviously,

$$
D_{1}^{\mathrm{T}}=\cdots=D_{p}^{\mathrm{T}}
$$

and

$$
\bigcup_{i=1}^{n} D_{i}^{\mathrm{T}} \subset R(T)
$$

Let

$$
w^{(l)}=\left(w_{1}^{(l)}, \ldots, w_{n}^{(l)}\right) \quad(l=p-1, \ldots, n)
$$

with

$$
\begin{gathered}
w_{i}^{(l)}=l_{i}\left(u^{(l)}\right) u_{x}^{(l)} \quad(i=1, \ldots, n), \\
W_{\infty}^{c}(T)=\max \left\{\max _{i=1, \ldots, p} \max _{l=p, \ldots, n} \sup _{(t, x) \in R_{l}(T) \backslash D_{i}^{T}}\left\{\left(1+\left|x-\lambda_{i}(0) t\right|\right)^{1+\mu}\left|w_{i}^{(l)}(t, x)\right|\right\},\right. \\
\left.\max _{i=p+1, \ldots, n} \max _{l=p-1, \ldots, n} \sup _{(t, x) \in R_{l}(T) \backslash D_{i}^{\mathrm{T}}}\left\{\left(1+\left|x-\lambda_{i}(0) t\right|\right)^{1+\mu}\left|w_{i}^{(l)}(t, x)\right|\right\}\right\}, \\
\widetilde{W}_{1}(T)=\max \left\{\max _{i=1, \ldots, p} \max _{j=p+1, \ldots, n}\left\{\sup _{c_{j}} \int_{c_{j} \cap R_{p-1}(T)}\left|w_{i}^{(p-1)}(t, x)\right| \mathrm{d} t+\sup _{c_{j}} \int_{c_{j} \cap R_{p}(T)}\left|w_{i}^{(p)}(t, x)\right| \mathrm{d} t\right\},\right. \\
\left.\max _{i=p+1, \ldots, n} \max _{j \neq i}\left\{\sup _{c_{j}} \int_{c_{j} \cap R_{i-1}(T)}\left|w_{i}^{(i-1)}(t, x)\right| \mathrm{d} t+\sup _{c_{j}} \int_{c_{j} \cap R_{i}(T)}\left|w_{i}^{(i)}(t, x)\right| \mathrm{d} t\right\}\right\},
\end{gathered}
$$

where $c_{j}$ denotes any given $j$-th characteristic on $D_{i}^{\mathrm{T}}$,

$$
\begin{gathered}
W_{1}(T)= \\
\max \left\{\max _{i=1, \ldots, p} \sup _{0 \leq t \leq T}\left\{\int_{a(t)}^{x_{p}(t)}\left|w_{i}^{(p-1)}(t, x)\right| \mathrm{d} x+\int_{x_{p}(t)}^{b(t)}\left|w_{i}^{(p)}(t, x)\right| \mathrm{d} x\right\},\right. \\
\left.\max _{i=p+1, \ldots, n} \sup _{0 \leq t \leq T}\left\{\int_{a(t)}^{x_{i}(t)}\left|w_{i}^{(i-1)}(t, x)\right| \mathrm{d} x+\int_{x_{i}(t)}^{b(t)}\left|w_{i}^{(i)}(t, x)\right| \mathrm{d} x\right\}\right\},
\end{gathered}
$$

where

$$
\begin{aligned}
& a(t)=\left\{\begin{array}{l}
-\infty, \text { if } i=1, \ldots, p \\
\left(\lambda_{i}(0)-\delta_{0}\right) t, \text { if } i=p+1, \ldots, n
\end{array}\right. \\
& b(t)=\left\{\begin{array}{l}
\left(\lambda_{i}(0)+\delta_{0}\right) t, \text { if } i=1, \ldots, n-1 \\
+\infty, \text { if } i=n
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{gathered}
U_{\infty}(T)=\|u(t, x)\|_{L^{\infty}(R(T))}, \\
W_{\infty}(T)=\sum_{l=p-1}^{n}\left\|w^{(l)}(t, x)\right\|_{L^{\infty}\left(R_{l}(T)\right)} .
\end{gathered}
$$

Similarly, we can define $U_{\infty}^{c}(T), \widetilde{U}_{1}(T)$ and $U_{1}(T)$.
Lemma 3.1 ([9]) On the $p$-th weak discontinuity $x=x_{p}(t)$, we have

$$
\begin{equation*}
w_{i}^{(p-1)}=w_{i}^{(p)}(i=p+1, \ldots, n) \tag{3.5}
\end{equation*}
$$

while on the $k$-th weak discontinuity $x=x_{k}(t)(k=p+1, \ldots, n)$, we have

$$
\begin{equation*}
w_{i}^{(k-1)}=w_{i}^{(k)}(i=1, \ldots, k-1, k+1, \ldots, n) \tag{3.6}
\end{equation*}
$$

Lemma 3.2 Suppose that in a neighbourhood of $u=0, A(u) \in C^{2}$, system (1.1) is weakly linearly degenerate, and $B(u) \in C^{2}$ satisfies the matching condition. Suppose furthermore that the initial data satisfy (1.9). Suppose finally that there exist normalized coordinates. Then, in normalized coordinates there exists $\theta_{0}>0$ so small that for any given $\theta \in\left(0, \theta_{0}\right]$, we have the following uniform a priori estimates on $R(T)$ :

$$
\begin{gather*}
W_{\infty}^{c}(T) \leq \kappa_{1} \theta  \tag{3.7}\\
\widetilde{W}_{1}(T), W_{1}(T) \leq \kappa_{2} \theta,  \tag{3.8}\\
U_{\infty}^{c}(T) \leq \kappa_{3} \theta \tag{3.9}
\end{gather*}
$$

and

$$
\begin{equation*}
\widetilde{U}_{1}(T), U_{1}(T) \leq \kappa_{4} \theta \tag{3.10}
\end{equation*}
$$

where $\kappa_{i}(i=1,2,3,4)$ are positive constants independent of $\theta$ and $T$.
Proof For simplicity and without loss of generality, in the sequel we assume $u=\left(u_{1}, \ldots, u_{n}\right)^{\mathrm{T}}$ are normalized variables.

We first estimate $W_{\infty}^{c}(T)$.

For any given $i \in\{1, \ldots, n\}$, passing through any fixed point $A(t, x) \in R(T) \backslash D_{i}^{\mathrm{T}}$, we draw the $i$-th characteristic $c_{i}: \xi=\xi(\tau)(\tau \leq t)$ which intersects the $x$-axis at a point $\left(0, x_{i 0}\right)$. When $A \in R_{l}(T) \backslash D_{i}^{\mathrm{T}}(i \in\{1, \ldots, p\}, l \in\{p, \ldots, n-1\})$, by (2.38), integrating (2.24) along $c_{i}$ from 0 to $t$ and noting (2.28) and (3.6) gives

$$
\begin{equation*}
w_{i}^{(l)}(t, x)=I_{1}^{c}+I_{2}^{c} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{align*}
I_{1}^{c}= & w_{i}^{(n)}\left(0, x_{i 0}\right)+\int_{0}^{t_{i n}} \sum_{j, k=1}^{n} \gamma_{i j k}\left(u^{(n)}\right) w_{j}^{(n)} w_{k}^{(n)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \sum_{m=l+2}^{n} \int_{t_{i m}}^{t_{i, m-1}} \sum_{j, k=1}^{n} \gamma_{i j k}\left(u^{(m-1)}\right) w_{j}^{(m-1)} w_{k}^{(m-1)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{t_{i, l+1}}^{t} \sum_{j, k=1}^{n} \gamma_{i j k}\left(u^{(l)}\right) w_{j}^{(l)} w_{k}^{(l)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.12}
\end{align*}
$$

and

$$
\begin{align*}
I_{2}^{c}= & \int_{0}^{t_{i n}} \sum_{j, k=1}^{n} Q_{i j k}\left(u^{(n)}\right) w_{j}^{(n)} u_{k}^{(n)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \sum_{m=l+2}^{n} \int_{t_{i m}}^{t_{i, m-1}} \sum_{j, k=1}^{n} Q_{i j m}\left(u^{(m-1)}\right) w_{j}^{(m-1)} u_{k}^{(m-1)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{t_{i, l+1}}^{t} \sum_{j, k=1}^{n} Q_{i j k}\left(u^{(l)}\right) w_{j}^{(l)} u_{k}^{(l)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.13}
\end{align*}
$$

while when $A \in R_{n}(T) \backslash D_{i}^{\mathrm{T}}(i \in\{1, \ldots, p\})$, we have

$$
\begin{align*}
w_{i}^{(n)}(t, x)= & w_{i}^{(n)}\left(0, x_{i 0}\right)+\int_{0}^{t} \sum_{j, k=1}^{n} \gamma_{i j k}\left(u^{(n)}\right) w_{j}^{(n)} w_{k}^{(n)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{0}^{t} \sum_{j, k=1}^{n} Q_{i j k}\left(u^{(n)}\right) w_{j}^{(n)} u_{k}^{(n)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.14}
\end{align*}
$$

here and hereafter, $\left(t_{i m}, x_{m}\left(t_{i m}\right)\right)$ denotes the intersection point of $c_{i}$ with the $m$-th weak discontinuity $x=x_{m}(t)(m=p, \ldots, n)$. Then noting (2.40), (2.42), (3.4) and $\left|\xi_{i}(\tau)-\lambda_{j}(0) \tau\right| \geq \delta_{0} \tau$ when $(\tau, \xi(\tau)) \bar{\in} D_{j}^{T}$, by using Lemma 3.2 in [9] and the estimate of $I_{1}^{c}$ in [2] we find

$$
\begin{align*}
\left(1+\left|x-\lambda_{i}(0) t\right|\right)^{1+\mu}\left|w_{i}^{(l)}(t, x)\right| \leq & C\left\{\theta+W_{\infty}^{c}(T) \widetilde{W}_{1}(T)+\left(W_{\infty}^{c}(T)\right)^{2}+\right. \\
& \left.\widetilde{U}_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) \widetilde{W}_{1}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)\right\} \tag{3.15}
\end{align*}
$$

here and henceforth, $C$ denotes a different positive constant independent of $\theta$ and $T$.
On the other hand, when $A \in R_{l}(T) \backslash D_{i}^{T}(i \in\{p+1, \ldots, n\}, p \leq l<i)$, noting (3.5), (3.6) and integrating (2.24) from 0 to $t$ yields

$$
\begin{equation*}
w_{i}^{(l)}(t, x)=\tilde{I}_{1}^{c}+\tilde{I}_{2}^{c} \tag{3.16}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{I}_{1}^{c}= & w_{i}^{(p-1)}\left(0, x_{i 0}\right)+\int_{0}^{t_{i p}} \sum_{j, k=1}^{n} \gamma_{i j k}\left(u^{(p-1)}\right) w_{j}^{(p-1)} w_{k}^{(p-1)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \sum_{m=p}^{l-1} \int_{t_{i m}}^{t_{i, m+1}} \sum_{j, k=1}^{n} \gamma_{i j k}\left(u^{(m)}\right) w_{j}^{(m)} w_{k}^{(m)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{t_{i l}}^{t} \sum_{j, k=1}^{n} \gamma_{i j k}\left(u^{(l)}\right) w_{j}^{(l)} w_{k}^{(l)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.17}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{I}_{2}^{c}= & \int_{0}^{t_{i p}} \sum_{j, k=1}^{n} Q_{i j k}\left(u^{(p-1)}\right) w_{j}^{(p-1)} u_{m}^{(p-1)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \sum_{m=p}^{l-1} \int_{t_{i m}}^{t_{i, m+1}} \sum_{j, k=1}^{n} Q_{i j m}\left(u^{(m)}\right) w_{j}^{(m)} u_{k}^{(m)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{t_{i l}}^{t} \sum_{j, k=1}^{n} Q_{i j k}\left(u^{(l)}\right) w_{j}^{(l)} u_{k}^{(l)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.18}
\end{align*}
$$

when $A \in R_{p-1}(T) \backslash D_{i}^{T}(i \in\{p+1, \ldots, n\})$, we obtain

$$
\begin{align*}
w_{i}^{(p-1)}(t, x)= & w_{i}^{(p-1)}\left(0, x_{i 0}\right)+\int_{0}^{t} \sum_{j, k=1}^{n} \gamma_{i j k}\left(u^{(p-1)}\right) w_{j}^{(p-1)} w_{k}^{(p-1)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{0}^{t} \sum_{j, k=1}^{n} Q_{i j k}\left(u^{(p-1)}\right) w_{j}^{(p-1)} u_{k}^{(p-1)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.19}
\end{align*}
$$

In these two cases, noting (2.28), (2.30) and (2.42), we can get (3.15) similarly.
While when $A \in R_{l}(T) \backslash D_{i}^{\mathrm{T}}(i \in\{p+1, \ldots, n\}, l \geq i)$, noting (2.28) and (3.6), (3.11) still holds. Note when $i=n$, by the definition of $D_{n}^{\mathrm{T}},(3.11)$ disappears. In this case, we deduce (3.15) similarly.

Thus, we have

$$
\begin{align*}
W_{\infty}^{c}(T) \leq & C\left\{\theta+W_{\infty}^{c}(T) \widetilde{W}_{1}(T)+\left(W_{\infty}^{c}(T)\right)^{2}+\right. \\
& \left.\widetilde{U}_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) \widetilde{W}_{1}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)\right\} \tag{3.20}
\end{align*}
$$

We now estimate $\widetilde{W}_{1}(T)$.
For $i=1, \ldots, p$, passing through any given point $A(t, x) \in D_{i}^{T} \bigcap R_{p}(T)$, we draw the $j$ th characteristic $c_{j}: \xi=\xi_{j}(\tau)(j>p, \tau \leq t)$, which intersects the $p$-th weak discontinuity $x=x_{p}(t)$ at a point $B\left(t_{B}, x_{B}\right)$. In the meantime, the $i$-th characteristic $c_{i}: \xi=\xi_{i}(\tau)(\tau \leq t)$ passing through $A$ intersects the boundary $x=\left(\lambda(0)+\delta_{0}\right) t$ of $D_{i}^{\mathrm{T}}$ at a point $C\left(t_{C}, x_{C}\right)$. By (2.33) and (2.38), using Stokes' formula on the domain $A B O C$, we get

$$
\begin{aligned}
& \int_{t_{B}}^{t}\left|w_{i}^{(p)}\left(\lambda_{j}\left(u^{(p)}\right)-\lambda\left(u^{(p)}\right)\right)\left(\tau, \xi_{j}(\tau)\right)\right| \mathrm{d} \tau \\
& \quad \leq \int_{O C}\left|w_{i}^{(p)}\left(\lambda(0)+\delta_{0}-\lambda\left(u^{(p)}\right)\right)\left(\tau,\left(\lambda(0)+\delta_{0}\right) \tau\right)\right| \mathrm{d} \tau+
\end{aligned}
$$

$$
\begin{align*}
& \iint_{A B O C}\left|\sum_{j, k=1}^{n} \Gamma_{i j k}\left(u^{(p)}\right) w_{j}^{(p)} w_{k}^{(p)}(t, x)\right| \mathrm{d} t \mathrm{~d} x+ \\
& \iint_{A B O C}\left|\sum_{j, k=1}^{n} Q_{i j k}\left(u^{(p)}\right) w_{j}^{(p)} u_{k}^{(p)}(t, x)\right| \mathrm{d} t \mathrm{~d} x \tag{3.21}
\end{align*}
$$

In view of (2.40), (2.42) and (3.4), the third term on the right hand of the above inequality can be rewritten as

$$
\begin{align*}
& \iint_{A B O C}\left|\sum_{j, k=1}^{n} Q_{i j k}\left(u^{(p)}\right) w_{j}^{(p)} w_{k}^{(p)}(t, x)\right| \mathrm{d} t \mathrm{~d} x  \tag{3.22}\\
& \quad=\iint_{A B O C}\left|\left(\sum_{\substack{j \in\{1, \ldots, p\} \\
k \in\{p+1, \ldots, n\}}}+\sum_{\substack{j \in\{p+1, \ldots, n\} \\
k \in\{1, \ldots, p\}}}+\sum_{\substack{j, k \in\{p+1, \ldots, n\} \\
j \neq k}}\right) Q_{i j k}\left(u^{(p)}\right) w_{j}^{(p)} w_{k}^{(p)}(t, x)\right| \mathrm{d} t \mathrm{~d} x
\end{align*}
$$

Then noting (3.1), (3.4) and the estimate of the first and second terms on the right hand side of (3.21), from (3.21) and (3.22) it follows that

$$
\begin{align*}
\int_{c_{j}}\left|w_{i}^{(p)}\right| \mathrm{d} \tau= & \int_{t_{B}}^{t}\left|w_{i}^{(p)}\left(\tau, \xi_{j}(\tau)\right)\right| \mathrm{d} \tau \leq C\left\{W_{\infty}^{c}(T)+W_{\infty}^{c}(T) W_{1}(T)+\left(W_{\infty}^{c}(T)\right)^{2}+\right. \\
& \left.U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)\right\} \tag{3.23}
\end{align*}
$$

by Lemma 3.2 in [9].
For $i=p+1, \ldots, n-1$, passing through any given point $A(t, x) \in D_{i}^{\mathrm{T}} \cap R_{i}(T)$, we draw the $j$-th characteristic $c_{j}: \xi=\xi_{j}(\tau)(\tau \leq t)$. When $j>i, c_{j}$ intersects the $i$-th weak discontinuity $x=x_{i}(t)$ at a point $B\left(t_{B}, x_{B}\right)$; while when $j<i, c_{j}$ intersects the boundary $x=\left(x_{i}(0)+\delta_{0}\right) t$ of the domain $D_{i}^{\mathrm{T}}$ at a point $\widetilde{B}\left(t_{\widetilde{B}}, x_{\widetilde{B}}\right)$. In the meantime, the $i$-th characteristic $c_{i}: \xi=\xi_{i}(\tau)(\tau \leq$ $t$ ) passing through $A$ intersects the boundary $x=\left(\lambda_{i}(0)+\delta_{0}\right) t$ of $D_{i}^{\mathrm{T}}$ at a point $C\left(t_{C}, x_{C}\right)$. Thanks to (2.35), (2.42), (3.1) and (3.4), using Stokes' formula on the domain $A B O C$ or $A C \tilde{B}$, by Lemma 3.2 in [9] we obtain

$$
\begin{align*}
\int_{c_{j}}\left|w_{i}^{(i)}\right| \mathrm{d} \tau= & \int_{t_{B}\left(\text { or } t_{\tilde{B}}\right)}^{t}\left|w_{i}^{(i)}\left(\tau, \xi_{j}(\tau)\right)\right| \mathrm{d} \tau \leq C\left\{W_{\infty}^{c}(T)+W_{\infty}^{c}(T) W_{1}(T)+\left(W_{\infty}^{c}(T)\right)^{2}+\right. \\
& \left.U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)\right\} \tag{3.24}
\end{align*}
$$

For $i=n$, passing through any given point $A(t, x) \in D_{n}^{T} \bigcap R_{n}(T)$, both the $j$-th characteristic $c_{j}: \xi=\xi_{j}(\tau)(\tau \leq t, j<n)$ and the $n$-th characteristic $c_{n}: \xi=\xi_{n}(\tau)(\tau \leq t)$ intersects the $x$-axis at points $B\left(0, x_{B}\right)$ and $C\left(0, x_{C}\right)$ respectively. By involving Stokes' formula on the domain $A C B$, similarly we have

$$
\begin{align*}
\int_{c_{j}}\left|w_{n}^{(n)}\right| \mathrm{d} \tau \leq & C\left\{W_{\infty}^{c}(T)+W_{\infty}^{c}(T) W_{1}(T)+\left(W_{\infty}^{c}(T)\right)^{2}+\right. \\
& \left.U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)\right\} \tag{3.25}
\end{align*}
$$

On the other hand, we can similarly estimate

$$
\begin{equation*}
\int_{c_{j} \cap R_{p-1}(T)}\left|w_{i}^{(p-1)}(t, x)\right| \mathrm{d} t \quad(i=1, \ldots, p, j=p+1, \ldots, n) \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{c_{j} \cap R_{i-1}(T)}\left|w_{i}^{(i-1)}(t, x)\right| \mathrm{d} t \quad(i=p+1, \ldots, n, j \neq i) . \tag{3.27}
\end{equation*}
$$

Therefore, we infer that

$$
\begin{align*}
\widetilde{W}_{1}(T) \leq & C\left\{W_{\infty}^{c}(T)+W_{\infty}^{c}(T) W_{1}(T)+\left(W_{\infty}^{c}(T)\right)^{2}+\right. \\
& \left.U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)\right\} \tag{3.28}
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
W_{1}(T) \leq & C\left\{W_{\infty}^{c}(T)+W_{\infty}^{c}(T) W_{1}(T)+\left(W_{\infty}^{c}(T)\right)^{2}+\right. \\
& \left.U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)\right\} \tag{3.29}
\end{align*}
$$

We now estimate $U_{\infty}^{c}(T)$.
When $A(t, x) \in R_{l}(T) \backslash D_{i}^{\mathrm{T}}(i \in\{1, \ldots, p\}, l \in\{p, \ldots, n-1\})$, integrating (2.7) along $c_{i}$ from 0 to $t$ and noting (2.37) gives

$$
\begin{equation*}
u_{i}^{(l)}(t, x)=J_{1}^{c}+J_{2}^{c} \tag{3.30}
\end{equation*}
$$

where $c_{i}$ is the $i$-th characteristic passing through the point $A$, and

$$
\begin{align*}
J_{1}^{c}= & u_{i}^{(n)}\left(0, x_{i 0}\right)+\int_{0}^{t_{i n}} \sum_{j, k=1}^{n} \rho_{i j k}\left(u^{(n)}\right) u_{j}^{(n)} w_{k}^{(n)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \sum_{m=l+2}^{n} \int_{t_{i m}}^{t_{i, m-1}} \sum_{j, k=1}^{n} \rho_{i j k}\left(u^{(m-1)}\right) u_{j}^{(m-1)} w_{k}^{(m-1)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{t_{i, l+1}}^{t} \sum_{j, k=1}^{n} \rho_{i j k}\left(u^{(l)}\right) u_{j}^{(l)} w_{k}^{(l)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.31}
\end{align*}
$$

and

$$
\begin{align*}
J_{2}^{c}= & \int_{0}^{t_{i n}} \sum_{j, k=1}^{n} P_{i j k}\left(u^{(n)}\right) u_{j}^{(n)} u_{k}^{(n)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \sum_{m=l+2}^{n} \int_{t_{i m}}^{t_{i, m-1}} \sum_{j, k=1}^{n} P_{i j m}\left(u^{(m-1)}\right) u_{j}^{(m-1)} u_{k}^{(m-1)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{t_{i, l+1}}^{t} \sum_{j, k=1}^{n} P_{i j k}\left(u^{(l)}\right) u_{j}^{(l)} u_{k}^{(l)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.32}
\end{align*}
$$

while when $A \in R_{n}(T) \backslash D_{i}^{\mathrm{T}}(i \in\{1, \ldots, p\})$, we have

$$
\begin{align*}
u_{i}^{(n)}(t, x)= & u_{i}^{(n)}\left(0, x_{i 0}\right)+\int_{0}^{t} \sum_{j, k=1}^{n} \rho_{i j k}\left(u^{(n)}\right) u_{j}^{(n)} u_{k}^{(n)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau+ \\
& \int_{0}^{t} \sum_{j, k=1}^{n} P_{i j k}\left(u^{(n)}\right) u_{j}^{(n)} u_{k}^{(n)}\left(\tau, \xi_{i}(\tau)\right) \mathrm{d} \tau \tag{3.33}
\end{align*}
$$

Using (2.14), (2.15) and (2.39), by an analogous proof to (3.15) we find

$$
\left(1+\left|x-\lambda_{i}(0) t\right|\right)^{1+\mu}\left|u_{i}^{(l)}(t, x)\right| \leq C\left\{\theta+U_{\infty}^{c}(T) \widetilde{W}_{1}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)+\right.
$$

$$
\begin{equation*}
\left.\widetilde{U}_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) \widetilde{U}_{1}(T)+\left(U_{\infty}^{c}(T)\right)^{2}\right\} \tag{3.34}
\end{equation*}
$$

On the other hand, when $A(t, x) \in R_{l}(T) \backslash D_{i}^{T}(i \in\{p+1, \ldots, n\}, l \in\{p-1, \ldots, n\})$, noting (2.14), (2.15) and (2.41), we can similarly estimate. Thus, we have

$$
\begin{align*}
U_{\infty}^{c}(T) \leq & C\left\{\theta+U_{\infty}^{c}(T) \widetilde{W}_{1}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)+\right. \\
& \left.\widetilde{U}_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) \widetilde{U}_{1}(T)+\left(U_{\infty}^{c}(T)\right)^{2}\right\} . \tag{3.35}
\end{align*}
$$

We now estimate $\widetilde{U}_{1}(T)$.
For $i=1, \ldots, p$, similarly to (3.21), by (2.17) and noting (2.37), using Stokes' formula on the domain $A B O C$, we get

$$
\begin{align*}
& \int_{t_{B}}^{t}\left|u_{i}^{(p)}\left(\lambda_{j}\left(u^{(p)}\right)-\lambda\left(u^{(p)}\right)\right)\left(\tau, \xi_{j}(\tau)\right)\right| \mathrm{d} \tau \\
& \quad \leq \int_{O C}\left|u_{i}^{(p)}\left(\lambda(0)+\delta_{0}-\lambda\left(u^{(p)}\right)\right)\left(\tau,\left(\lambda(0)+\delta_{0}\right) \tau\right)\right| \mathrm{d} \tau+ \\
& \quad \iint_{A B O C}\left|\sum_{j, k=1}^{n} F_{i j k}\left(u^{(p)}\right) u_{j}^{(p)} w_{k}^{(p)}(t, x)\right| \mathrm{d} t \mathrm{~d} x+ \\
& \quad \iint_{A B O C}\left|\sum_{j, k=1}^{n} P_{i j k}\left(u^{(p)}\right) u_{j}^{(p)} u_{k}^{(p)}(t, x)\right| \mathrm{d} t \mathrm{~d} x . \tag{3.36}
\end{align*}
$$

Applying (2.39) and (2.41), the third term on the right hand of the above inequality can be rewritten as

$$
\begin{align*}
& \iint_{A B O C}\left|\sum_{j, k=1}^{n} P_{i j k}\left(u^{(p)}\right) u_{j}^{(p)} u_{k}^{(p)}(t, x)\right| \mathrm{d} t \mathrm{~d} x  \tag{3.37}\\
& \quad=\iint_{A B O C}\left|\left(\sum_{\substack{j \in\{\{, \ldots, p\} \\
k \in p+1, \ldots, n\}}}+\sum_{\substack{f \in\{p+, \ldots, \ldots\} \\
k \in\{1, \ldots, p\}}}+\sum_{\substack{j, k \in\{p+1, \ldots, n\} \\
j \neq k}}\right) P_{i j k}\left(u^{(p)}\right) u_{j}^{(p)} u_{k}^{(p)}(t, x)\right| \mathrm{d} t \mathrm{~d} x .
\end{align*}
$$

Taking into account the estimate of the first and second terms on the right hand side of (3.36), by (3.1), (3.4) and Lemma 3.2 in [9], from (3.36) and (3.37) it follows that

$$
\begin{gather*}
\int_{c_{j}}\left|u_{i}^{(p)}\right| \mathrm{d} \tau \leq C\left\{U_{\infty}^{c}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{1}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)+\right. \\
\left.U_{\infty}(T) U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) U_{\infty}^{c}(T)+\left(U_{\infty}^{c}(T)\right)^{2}\right\} \tag{3.38}
\end{gather*}
$$

For $i=p+1, \ldots, n$, noting (2.41), we can similarly deduce that

$$
\begin{gather*}
\int_{c_{j}}\left|u_{i}^{(i)}\right| \mathrm{d} \tau \leq C\left\{\theta+U_{\infty}^{c}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{1}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)+\right. \\
\left.U_{\infty}(T) U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) U_{\infty}^{c}(T)+\left(U_{\infty}^{c}(T)\right)^{2}\right\} \tag{3.39}
\end{gather*}
$$

On the other hand, we can similarly estimate

$$
\begin{equation*}
\int_{c_{j} \cap R_{p-1}(T)}\left|u_{i}^{(p-1)}(t, x)\right| \mathrm{d} t \quad(i=1, \ldots, p, j=p+1, \ldots, n) \tag{3.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{c_{j} \cap R_{i-1}(T)}\left|u_{i}^{(i-1)}(t, x)\right| \mathrm{d} t \quad(i=p+1, \ldots, n, j \neq i) \tag{3.41}
\end{equation*}
$$

Hence, we get

$$
\begin{gather*}
\widetilde{U}_{1}(T) \leq C\left\{\theta+U_{\infty}^{c}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{1}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)+\right. \\
\left.U_{\infty}(T) U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) U_{\infty}^{c}(T)+\left(U_{\infty}^{c}(T)\right)^{2}\right\} . \tag{3.42}
\end{gather*}
$$

By an analogous argument, we can prove

$$
\begin{align*}
U_{1}(T) \leq & C\left\{\theta+U_{\infty}^{c}(T)+U_{1}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{1}(T)+U_{\infty}^{c}(T) W_{\infty}^{c}(T)+\right. \\
& \left.U_{\infty}(T) U_{\infty}^{c}(T) W_{1}(T)+U_{1}(T) U_{\infty}^{c}(T)+\left(U_{\infty}^{c}(T)\right)^{2}\right\} \tag{3.43}
\end{align*}
$$

The combination of (3.20), (3.28), (3.29), (3.35), (3.42) and (3.43) gives (3.7)-(3.10) (see [12]). This completes the proof of Lemma 3.2.

Proof of Theorem 1.1 To prove the sufficiency part of Theorem 1.1, we only need to estimate $U_{\infty}(T)$ and $W_{\infty}(T)$. For any given point $(t, x) \in R(T)$, similarly to [2], by Lemma 3.2 we can get

$$
\begin{equation*}
|u(t, x)| \leq C\left\{\theta+W_{\infty}^{c}(T)+\widetilde{W}_{1}(T)+U_{\infty}^{c}(T)+\widetilde{U}_{1}(T)\right\} \leq C \theta \tag{3.44}
\end{equation*}
$$

This gives the validity of hypothesis (3.4), and

$$
\begin{align*}
W_{\infty}(T) \leq & C\left\{\theta+\left(W_{\infty}^{c}(T)\right)^{2}+W_{\infty}^{c}(T) W_{\infty}(T)+U_{\infty}^{c}(T)\left(W_{\infty}(T)\right)^{2}+\right. \\
& \left.U_{\infty}^{c}(T) W_{\infty}^{c}(T)+U_{\infty}(T) W_{\infty}^{c}(T)+U_{\infty}^{c}(T) W_{\infty}(T)\right\} \\
\leq & C \theta\left\{1+W_{\infty}(T)+\left(W_{\infty}(T)\right)^{2}\right\} \tag{3.45}
\end{align*}
$$

which implies

$$
\begin{equation*}
W_{\infty}(T) \leq C \theta \tag{3.46}
\end{equation*}
$$

Finally, we prove the necessity part of Theorem 1.1. In normalized coordinates, by (1.13), for $i=1, \ldots, p$, there holds

$$
a_{i k}\left(\sum_{h=1}^{p} u_{h} e_{h}\right) \equiv \begin{cases}\lambda\left(\sum_{h=1}^{p} u_{h} e_{h}\right), & k=i  \tag{3.47}\\ 0, & k \neq i\end{cases}
$$

and by (1.14), for $i=p+1, \ldots, n$, there holds

$$
a_{i k}\left(u_{i} e_{i}\right) \equiv \begin{cases}\lambda_{i}\left(u_{i} e_{i}\right), & k=i  \tag{3.48}\\ 0, & k \neq i\end{cases}
$$

Then similarly to the proof of the necessity part of Theorem 1.1 in [2], noting (1.16) and (1.17), we can prove the necessity part.

## References

[1] Fei GUO. Global weakly discontinuous solutions to the Cauchy problem with a kind of non-smooth initial data for inhomogeneous quasilinear hyperbolic systems. Gongcheng Shuxue Xuebao, 2007, 24(3): 414-430.
[2] Fei GUO. Global weakly discontinuous solutions to the Cauchy problem for general quasilinear hyperbolic systems with characteristics with constant multiplicity. submitted to Appl. Math. J. Chinese Univ. B.
[3] Dexing KONG. Cauchy Problem for Quasilinear Hyperbolic Systems. Mathematical Society of Japan, Tokyo, 2000.
[4] Tatsien LI. Une remarque sur les coordonnées normalisées et ses applications aux systèmes hyperboliques quasi linéaires. C. R. Acad. Sci. Paris Sér. I Math., 2000, 331(6): 447-452.
[5] Tatsien LI. A Remark on the Normalized Coordinates and Its Applications to Quasilinear Hyperbolic Systems. in Optimal Control and Partial Differential Equations, J. L. Menaldi et al. (eds.), IOS Press, 2001, 181-187.
[6] Tatsien LI. Global Classical Solutions for Quasilinear Hyperbolic Systems. John Wiley \& Sons, Ltd., Chichester, 1994.
[7] Tatsien LI, Dexing KONG, Yi ZHOU. Global classical solutions for quasilinear nonstrictly hyperbolic systems. Nonlinear Stud., 1996, 3(2): 203-229.
[8] Tatsien LI, Libin WANG. Global existence of classical solutions to the Cauchy problem on a semi-bounded initial axis for quasilinear hyperbolic systems. Nonlinear Anal., 2004, 56(7): 961-974.
[9] Tatsien LI, Libin WANG. Global existence of weakly discontinuous solutions to the Cauchy problem with a kind of non-smooth initial data for quasilinear hyperbolic systems. Chinese Ann. Math. Ser. B, 2004, 25(3): 319-334.
[10] Tatsien LI, Wenci YU. Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University, Mathematics Department, Durham, NC, 1985.
[11] Tatsien LI, Yi ZHOU, Dexing KONG. Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems. Comm. Partial Differential Equations, 1994, 19(7-8): 1263-1317.
[12] Tatsien LI, Yi ZHOU, Dexing KONG. Global classical solutions for general quasilinear hyperbolic systems with decay initial data. Nonlinear Anal., 1997, 28(8): 1299-1332.
[13] Taiping LIU. Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations. J. Differential Equations, 1979, 33(1): 92-111.
[14] Libin WANG. A remark on the Cauchy problem for quasilinear hyperbolic systems with characteristics of constant multiplicity. J. Fudan Univ. Nat. Sci., 2001, 40(6): 633-636. (in Chinese)
[15] Peixia WU. Global classical solutions to Cauchy problem for general first order quasilinear hyperbolic systems. Chinese Ann. Math. Ser. A, 2006, 27(1): 93-108.


[^0]:    Received February 8, 2011; Accepted September 1, 2011
    Supported by the National Natural Science Foundation of China (Grant Nos. 11071141; 11271192), China Postdoctoral Science Foundation (Grant No. 20100481161), the Postdoctoral Foundation of Jiangsu Province (Grant No. 1001042C), Qing Lan Project of Jiangsu Province and the Natural Science Foundation of the Jiangsu Higher Education Committee of China (Grant No. 11KJA110001) and the Natural Science Foundation of Jiangsu Provience (Grant No. BK2011777).
    E-mail address: guof@njnu.edu.cn

