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Abstract This paper considers the Cauchy problem with a kind of non-smooth initial data

for general inhomogeneous quasilinear hyperbolic systems with characteristics with constant

multiplicity. Under the matching condition, based on the refined fomulas on the decomposi-

tion of waves, we obtain a necessary and sufficient condition to guarantee the existence and

uniqueness of global weakly discontinuous solution to the Cauchy problem.
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1. Introduction and main results

Consider the following first order inhomogeneous quasilinear hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= B(u), (1.1)

where u = (u1, . . . , un)T is the unknown vector function of (t, x), A(u) is an n × n matrix with

suitably smooth entries aij(u) (i, j = 1, . . . , n), and B(u) is a vector function with suitably

smooth elements bi(u) (i = 1, . . . , n).

By hyperbolicity, for any given u on the domain under consideration, A(u) has n real eigen-

values λ1(u), . . . , λn(u) and a complete set of left (resp., right) eigenvectors. For i = 1, . . . , n, let

li(u) = (li1(u), . . . , lin(u)) (resp., ri(u) = (ri1(u), . . . , rin(u))T) be a left (resp., right) eigenvector

corresponding to λi(u):

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (1.2)

We have

det |lij(u)| 6= 0 (equivalently, det |rij(u)| 6= 0). (1.3)
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Without loss of generality, we assume that

li(u)rj(u) ≡ δij (i, j = 1, . . . , n) (1.4)

and

ri(u)T ri(u) ≡ 1 (i = 1, . . . , n), (1.5)

where δij denotes the Kronecker’s symbol.

If B(u) ≡ 0, for the initial data

t = 0 : u = φ(x) (−∞ < x < +∞), (1.6)

where φ(x) is a C1 vector function with bounded C1 norm and satisfies certain small and decaying

property, it was proved that Cauchy problem (1.1) and (1.6) admits a unique global C1 solution

u = u(t, x) with small C1 norm for all t ∈ R, if and only if system (1.1) is weakly linearly

degenerate (for strictly hyperbolic system [4, 5, 11, 12]; for the non-strictly hyperbolic system

with characteristics with constant multiplicity [7, 14]. Also see [8]).

Recently, Li and Wang [9] studied the Cauchy problem of homogenous quasilinear strictly

hyperbolic system (1.1) (i.e., B(u) ≡ 0) with a kind of non-smooth initial data

t = 0 : u =

{
ul(x), x ≤ 0,

ur(x), x ≥ 0,
(1.7)

where ul(x) and ur(x) are C1 vector functions on x ≤ 0 and x ≥ 0, respectively, with

ul(0) = ur(0) and u′
l(0) 6= u′

r(0) (1.8)

and satisfy the following small and decaying property

θ , sup
x≤0

{(1 − x)1+µ(|ul(x)| + |u′
l(x)|)} + sup

x≥0
{(1 + x)1+µ(|ur(x)| + |u′

r(x)|)} ≪ 1, (1.9)

where µ > 0 is a constant. They proved that Cauchy problem (1.1) and (1.7) admits a unique

global weakly discontinuous solution u = u(t, x) for all t ∈ R if and only if system (1.1) is weakly

linearly degenerate. If B(u) satisfies the matching condition, we have generalized their result to

the inhomogeneous case [1]. However, in case of B(u) ≡ 0, if system (1.1) possesses characteristics

with constant multiplicity, under the assumption that normalized coordinates exist, a necessary

and sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous

solutions has been obtained in [2].

In this paper, we will investigate the inhomogeneous global weakly discontinuous solution

to the quasilinear hyperbolic system (1.1) with characteristics with constant multiplicity.

For hyperbolic system (1.1) with characteristics with constant multiplicity, all λi(u), lij(u)

and rij(u) (i, j = 1, . . . , n) have the same regularity as aij(u) (i, j = 1, . . . , n).

Without loss of generality, we suppose that, in a neighbourhood of u = 0,

λ(u) , λ1(u) ≡ · · · ≡ λp(u) < λp+1(u) < · · · < λn(u) (p ≥ 1), (1.10)

where 1 ≤ p ≤ n. As p = 1, system (1.1) is strictly hyperbolic; as p > 1, system (1.1) is a

non-strictly hyperbolic systems with characteristics with constant multiplicity. Here we will deal

with the latter.
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The main difficulty we face is how to deal with the propagation of hyperbolic waves in the

inhomogeneous term B(u). For this purpose, we introduce the concept of matching condition

(Def. 1.1) and present a more refined formula on the decomposition of waves.

To state our result precisely, we first give the following three definition: the matching

condition, normalized coordinates and weak linear degeneracy.

Definition 1.1 B(u) satisfies the matching condition if there exists normalized transformation

and in normalized coordinates

B
( p∑

h=1

uheh

)
≡ 0, ∀|uh| small (h = 1, . . . , p) (1.11)

and

B(ujej) ≡ 0, ∀ |uj| small (j = p + 1, . . . , n). (1.12)

Definition 1.2 ([7]) If there exists an invertible smooth transformation u = u(ũ) (u(0) = 0)

such that in ũ-space

r̃i

( p∑

h=1

ũheh

)
≡ ei, ∀ |ũh| small (i, h = 1, . . . , p) (1.13)

and

r̃j(ũjej) ≡ ej , ∀ |ũj| small (j = p + 1, . . . , n), (1.14)

in which for k = 1, . . . , n,

ek = (0, . . . , 0,
(k)

1 , 0, . . . , 0)T, (1.15)

then the transformation is called a normalized transformation, and the corresponding unknown

variables ũ = (ũ1, . . . , ũn)T are called normalized variables or normalized coordinates.

Definition 1.3 ([7]) The i-th characteristic λi(u) is weakly linearly degenerate, if there exists

a normalized transformation and in normalized coordinates

λi

( p∑

h=1

ũheh

)
≡ λ(0), ∀ |ũh| small (h = 1, . . . , p), when i ∈ {1, . . . , p}; (1.16)

λi(ũiei) ≡ λi(0), ∀ |ũi| small , when i ∈ {p + 1, . . . , n}. (1.17)

When all characteristics λi(u) (i = 1, . . . , n) are weakly linearly degenerate, system (1.1) is weakly

linearly degenerate.

Our main result is as follows

Theorem 1.1 Suppose that in a neighbourhood of u = 0, A(u), B(u) ∈ C2 and the matching

condition is satisfied. Furthermore, assume that there exist normalized coordinates. Then there

exists θ0 > 0 so small that for any given initial data satisfying (1.8)–(1.9) with θ ∈ (0, θ0],

Cauchy problem (1.1) and (1.7) admits a unique global weakly discontinuous solution u = u(t, x)

containing n − p + 1 weak discontinuities x = xk(t) (k = p, . . . , n), where x = xk(t) (xk(0) = 0)

denotes a k-th weak discontinuity passing through the origin (0, 0), if and only if system (1.1)
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is weakly linearly degenerate. Precisely speaking, the solution u = u(t, x) has the following

structure:

u = u(t, x) =





u(p−1)(t, x), (t, x) ∈ Rp−1,

u(l)(t, x), (t, x) ∈ Rl (l = p, . . . , n − 1),

u(n)(t, x), (t, x) ∈ Rn,

(1.18)

in which u(l)(t, x) ∈ C1 satisfies system (1.1) in the classical sense on Rl (l = p − 1, . . . , n) with

Rl =





{(t, x) | t ≥ 0, x ≤ xp(t)} (l = p − 1),

{(t, x) | t ≥ 0, xl(t) ≤ x ≤ xl+1(t)} (l = p, . . . , n − 1),

{(t, x) | t ≥ 0, x ≥ xn(t)} (l = n).

(1.19)

Moreover, for k = p, . . . , n,

u(k−1)(t, xk(t)) = u(k)(t, xk(t)), (1.20)

dxk(t)

dt
= λk(u(k−1)(t, xk(t))) = λk(u(k)(t, xk(t))). (1.21)

Remark 1.1 In Theorem 1.1 some weak discontinuities may degenerate.

2. Decomposition of waves

In this section, we will derive a more refined formula on decomposition of waves. To our

knowledge, the decomposition of waves is due to Liu [13] to study the formation of singularities

in the nonlinear waves for quasilinear hyperbolic partial differential equations.

For i = 1, . . . , n, let

wi = li(u)ux (2.1)

and

βi(u) = li(u)B(u). (2.2)

By (1.4), it is easy to get

ux =

n∑

k=1

wkrk(u) (2.3)

and

B(u) =
n∑

k=1

βk(u)rk(u). (2.4)

Let
d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(i = 1, . . . , n) (2.5)

denote the directional derivative with respect to t along the i-th characteristic dx
dt

= λi(u). We

have
du

dit
=

∑

k 6=i

(λi(u) − λk(u))wkrk(u) + B(u). (2.6)

Then, in normalized coordinates (if any!), it is easy to get

dui

dit
=

n∑

j,k=1

ρijk(u)ujwk +

n∑

j=1

( n∑

k=1

ρ̄ijk(u)βk(u)
)
uj + rii(u)βi(u), (2.7)
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where

ρijk(u) =

{
llρ

(1)
ijk(u), when i = 1, . . . , p,

ρ
(1)
ijk(u) + ρ

(2)
ijk(u), when i = p + 1, . . . , n

(2.8)

with

ρ
(1)
ijk(u) =





(λi(u) − λk(u))

∫ 1

0

∂rki

∂uj

(τu1, . . . , τuk−1, uk, τuk+1, . . . , τun)dτ,

j = 1, . . . , n, k = p + 1, . . . , n and j 6= k,

0, otherwise

(2.9)

and

ρ
(2)
ijk(u) =





(λi(u) − λk(u))

∫ 1

0

∂rki

∂uj

(u1, . . . , up, τup+1, . . . , . . . , τun)dτ,

j = p + 1, . . . , n and k = 1, . . . , p,

0, otherwise,

(2.10)

ρ̄ijk(u) =

{
ρ
(3)
ijk(u), when i = 1, . . . , p,

ρ
(4)
ijk(u), when i = p + 1, . . . , n

(2.11)

with

ρ
(3)
ijk(u) =





∫ 1

0

∂rki

∂uj

(u1, . . . , up, τup+1, . . . , τun)dτ,

j = p + 1, . . . , n, k = 1, . . . , p and k 6= i,
∫ 1

0

∂rki

∂uj

(τu1, . . . , τuk−1, uk, τuk+1, . . . , τun)dτ,

j = 1, . . . , n, k = p + 1, . . . , n and j 6= k,

0, otherwise

(2.12)

and

ρ
(4)
ijk(u) =





∫ 1

0

∂rki

∂uj

(u1, . . . , up, τup+1, . . . , τun)dτ,

j = p + 1, . . . , n, k = 1, . . . , p,
∫ 1

0

∂rki

∂uj

(τu1, . . . , τuk−1, uk, τuk+1, . . . , τun)dτ,

j = 1, . . . , n, k = p + 1, . . . , n, k 6= i and j 6= k,

0, otherwise

(2.13)

Obviously,

ρiji(u) ≡ 0, ∀ i, j, (2.14)

ρijk(u) ≡ 0, ∀ i, ∀ j, k ∈ {1, . . . , p} (2.15)

and

ρ̄ijj(u) ≡ 0, ∀ i, j. (2.16)

Noting (2.3) and (2.7), we have

d[ui(dx−λi(u)dt)] =
[ n∑

j,k=1

Fijk(u)ujwk+

n∑

j=1

( n∑

k=1

ρ̄ijk(u)βk(u)
)
uj+rii(u)βi(u)

]
dt∧dx, (2.17)



704 Fei GUO

where

Fijk(u) = ρijk(u) + ∇λj(u)rk(u)δij . (2.18)

By (2.14), we have

Fijj(u) ≡ 0, ∀ j 6= i (2.19)

and

Fiii(u) = ∇λi(u)ri(u), ∀ i. (2.20)

By (2.15), we get

Fijk(u) = ∇λi(u)rk(u)δij , ∀ i, ∀ j, k ∈ {1, . . . , p}. (2.21)

Hence, when λi(u) is weakly linearly degenerate, in normalized coordinates, from (1.13), (1.14),

(1.16) and (1.17) it follows that

Fijk

( p∑

h=1

uheh

)
= ∇λ

( p∑

h=1

uheh

)
rk

( p∑

h=1

uheh

)
δij ≡ 0,

∀ i, j, k ∈ {1, . . . , p}, ∀ |uh| small (h = 1, . . . , p)

(2.22)

and

Fiii(uiei) = ∇λi(uiei)ri(uiei) ≡ 0, ∀ |ui| small (i = p + 1, . . . , n). (2.23)

On the other hand, we have [1, 15]

dwi

dit
=

n∑

j,k=1

γijk(u)wjwk +

n∑

j=1

( n∑

k=1

Bijk(u)βk(u) + νij(u)
)
wj , (2.24)

where

γijk(u) =
1

2
{(λj(u) − λk(u))li(u)∇rk(u)rj(u) −∇λk(u)rj(u)δik + (j|k)}, (2.25)

Bijk(u) = −li(u)∇rj(u)rk(u) (2.26)

and

νij(u) = li(u)∇B(u)rj(u), (2.27)

in which (j|k) stands for all terms obtained by changing j and k in the previous terms. Hence

γijj(u) ≡ 0, ∀ j 6= i (2.28)

and

γiii(u) = −▽λi(u)ri(u), ∀ i. (2.29)

Moreover, we have

γijk(u) ≡ 0, ∀ i ∈ {p + 1, . . . , n}, ∀ j, k ∈ {1, . . . , p}. (2.30)

Furthermore, when λi(u) is weakly linearly degenerate, in normalized coordinates it follows from

(1.13), (1.14), (1.16) and (1.17) that

γijk

( p∑

h=1

uheh

)
≡ 0, ∀ i, j, k ∈ {1, . . . , p}, ∀ |uh| small (h = 1, . . . , p) (2.31)
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and

γiii(uiei) ≡ 0, ∀ |ui| small (i = p + 1, . . . , n). (2.32)

Noting (2.3), by (2.24) we have

d[wi(dx − λi(u)dt)] =
[ n∑

j,k=1

Γijk(u)wjwk +

n∑

j=1

( n∑

k=1

Bijk(u)βk(u) + νij(u)
)
wj

]
dt ∧ dx, (2.33)

where

Γijk(u) =
1

2
(λj(u) − λk(u))li(u)[∇rk(u)rj(u) −∇rj(u)rk(u)]. (2.34)

Obviously,

Γijj(u) ≡ 0, ∀ i, j (2.35)

and

Γijk(u) ≡ 0, ∀ i, ∀ j, k ∈ {1, . . . , p}. (2.36)

To simplify (2.7), (2.17), (2.24) and (2.33), similarly to the proof of Lemma 2.1 in [1], we

can prove the following lemma, which plays an important role in the proof of Lemma 3.2.

Lemma 2.1 Suppose that in a neighbourhood of u = 0, A(u) ∈ C2, B(u) ∈ C2 satisfies the

matching condition. Then, in normalized coordinates, ∀ |u| small, ∀ i, we have

n∑

j=1

( n∑

k=1

ρ̄ijk(u)βk(u)
)
uj + rii(u)βi(u) =

n∑

j,k=1

Pijk(u)ujuk (2.37)

and
n∑

j=1

( n∑

k=1

Bijk(u)βk(u) + νij(u)
)
wj =

n∑

j,k=1

Qijk(u)ukwj , (2.38)

where Pijk(u) and Qijk(u) are continuous functions of u in a neighbourhood of u = 0. Moreover,

for i = 1, . . . , p, we have

Pijk(u) ≡ 0, ∀ |u| small, ∀ j, k ∈ {1, . . . , p}, (2.39)

and

Qijk(u) ≡ 0, ∀ |u| small, ∀ j, k ∈ {1, . . . , p}; (2.40)

while for i = 1, . . . , n, there hold

Pijj(u) ≡ 0, ∀ |u| small, ∀ j ∈ {1, . . . , n} (2.41)

and

Qijj(u) ≡ 0, ∀ |u| small, ∀ j ∈ {1, . . . , n}. (2.42)

3. Proof of Theorem 1.1

The main result in this paper can be proved in a way similar to the proof of Theorem 1.1

in [1]. Here we point out only the essentially different part.
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Noting (1.10), there exist positive constants δ and δ0 so small that

λi+1(u) − λi(u
′) ≥ 2δ0, ∀ |u|, |u′| ≤ δ (i = p, . . . , n − 1) (3.1)

and

|λi(u) − λi(u
′)| ≤

δ0

2
, ∀ |u|, |u′| ≤ δ (i = 1, . . . , n). (3.2)

Without loss of generality, we may assume that

λi(0) > δ0 (i = 1, . . . , n). (3.3)

For the time being we assume that on any given existence domain R(T ) = {(t, x) | 0 ≤ t ≤

T,−∞ < x < ∞} of the weakly discontinuous solution u = u(t, x) to Cauchy problem (1.1) and

(1.7), we have

|u(t, x)| ≤ δ, ∀ (t, x) ∈ R(T ). (3.4)

In the proof of Theorem 1.1, we will explain that this hypothesis is reasonable.

Let

Rl(T ) =





{(t, x) | 0 ≤ t ≤ T, x ≤ xp(t)} (l = p − 1),

{(t, x) | 0 ≤ t ≤ T, xl(t) ≤ x ≤ xl+1(t)} (l = p, . . . , n − 1),

{(t, x) | 0 ≤ t ≤ T, x ≥ xn(t)} (l = n)

and

DT
i =





{(t, x) | 0 ≤ t ≤ T, x ≤ (λ(0) + δ0)t} (i = 1, . . . , p),

{(t, x) | 0 ≤ t ≤ T, (λi(0) − δ0)t ≤ x ≤ (λi(0) + δ0)t} (i = p + 1, . . . , n − 1),

{(t, x) | 0 ≤ t ≤ T, x ≥ (λn(0) − δ0)t} (i = n).

Obviously,

DT
1 = · · · = DT

p

and
n⋃

i=1

DT
i ⊂ R(T ).

Let

w(l) = (w
(l)
1 , . . . , w(l)

n ) (l = p − 1, . . . , n)

with

w
(l)
i = li(u

(l))u(l)
x (i = 1, . . . , n),

W c
∞(T ) = max

{
max

i=1,...,p
max

l=p,...,n
sup

(t,x)∈Rl(T )\DT
i

{(1 + |x − λi(0)t|)1+µ|w
(l)
i (t, x)|},

max
i=p+1,...,n

max
l=p−1,...,n

sup
(t,x)∈Rl(T )\DT

i

{(1 + |x − λi(0)t|)1+µ|w
(l)
i (t, x)|}

}
,

W̃1(T ) = max
{

max
i=1,...,p

max
j=p+1,...,n

{sup
cj

∫

cj∩Rp−1(T )

|w
(p−1)
i (t, x)|dt + sup

cj

∫

cj∩Rp(T )

|w
(p)
i (t, x)|dt},

max
i=p+1,...,n

max
j 6=i

{sup
cj

∫

cj∩Ri−1(T )

|w
(i−1)
i (t, x)|dt + sup

cj

∫

cj∩Ri(T )

|w
(i)
i (t, x)|dt}

}
,
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where cj denotes any given j-th characteristic on DT
i ,

W1(T ) = max
{

max
i=1,...,p

sup
0≤t≤T

{∫ xp(t)

a(t)

|w
(p−1)
i (t, x)|dx +

∫ b(t)

xp(t)

|w
(p)
i (t, x)|dx

}
,

max
i=p+1,...,n

sup
0≤t≤T

{∫ xi(t)

a(t)

|w
(i−1)
i (t, x)|dx +

∫ b(t)

xi(t)

|w
(i)
i (t, x)|dx

}}
,

where

a(t) =

{
−∞, if i = 1, . . . , p,

(λi(0) − δ0)t, if i = p + 1, . . . , n,

b(t) =

{
(λi(0) + δ0)t, if i = 1, . . . , n − 1,

+ ∞, if i = n

and

U∞(T ) = ‖u(t, x)‖L∞(R(T )),

W∞(T ) =

n∑

l=p−1

‖w(l)(t, x)‖L∞(Rl(T )).

Similarly, we can define U c
∞(T ), Ũ1(T ) and U1(T ).

Lemma 3.1 ([9]) On the p-th weak discontinuity x = xp(t), we have

w
(p−1)
i = w

(p)
i (i = p + 1, . . . , n); (3.5)

while on the k-th weak discontinuity x = xk(t) (k = p + 1, . . . , n), we have

w
(k−1)
i = w

(k)
i (i = 1, . . . , k − 1, k + 1, . . . , n). (3.6)

Lemma 3.2 Suppose that in a neighbourhood of u = 0, A(u) ∈ C2, system (1.1) is weakly

linearly degenerate, and B(u) ∈ C2 satisfies the matching condition. Suppose furthermore that

the initial data satisfy (1.9). Suppose finally that there exist normalized coordinates. Then, in

normalized coordinates there exists θ0 > 0 so small that for any given θ ∈ (0, θ0], we have the

following uniform a priori estimates on R(T ):

W c
∞(T ) ≤ κ1θ, (3.7)

W̃1(T ), W1(T ) ≤ κ2θ, (3.8)

U c
∞(T ) ≤ κ3θ (3.9)

and

Ũ1(T ), U1(T ) ≤ κ4θ, (3.10)

where κi (i = 1, 2, 3, 4) are positive constants independent of θ and T.

Proof For simplicity and without loss of generality, in the sequel we assume u = (u1, . . . , un)T

are normalized variables.

We first estimate W c
∞(T ).
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For any given i ∈ {1, . . . , n}, passing through any fixed point A(t, x) ∈ R(T ) \DT
i , we draw

the i-th characteristic ci : ξ = ξ(τ) (τ ≤ t) which intersects the x-axis at a point (0, xi0). When

A ∈ Rl(T ) \DT
i (i ∈ {1, . . . , p}, l ∈ {p, . . . , n− 1}), by (2.38), integrating (2.24) along ci from 0

to t and noting (2.28) and (3.6) gives

w
(l)
i (t, x) = Ic

1 + Ic
2 , (3.11)

where

Ic
1 =w

(n)
i (0, xi0) +

∫ tin

0

n∑

j,k=1

γijk(u(n))w
(n)
j w

(n)
k (τ, ξi(τ))dτ+

n∑

m=l+2

∫ ti,m−1

tim

n∑

j,k=1

γijk(u(m−1))w
(m−1)
j w

(m−1)
k (τ, ξi(τ))dτ+

∫ t

ti,l+1

n∑

j,k=1

γijk(u(l))w
(l)
j w

(l)
k (τ, ξi(τ))dτ (3.12)

and

Ic
2 =

∫ tin

0

n∑

j,k=1

Qijk(u(n))w
(n)
j u

(n)
k (τ, ξi(τ))dτ+

n∑

m=l+2

∫ ti,m−1

tim

n∑

j,k=1

Qijm(u(m−1))w
(m−1)
j u

(m−1)
k (τ, ξi(τ))dτ+

∫ t

ti,l+1

n∑

j,k=1

Qijk(u(l))w
(l)
j u

(l)
k (τ, ξi(τ))dτ ; (3.13)

while when A ∈ Rn(T ) \ DT
i (i ∈ {1, . . . , p}), we have

w
(n)
i (t, x) =w

(n)
i (0, xi0) +

∫ t

0

n∑

j,k=1

γijk(u(n))w
(n)
j w

(n)
k (τ, ξi(τ))dτ+

∫ t

0

n∑

j,k=1

Qijk(u(n))w
(n)
j u

(n)
k (τ, ξi(τ))dτ, (3.14)

here and hereafter, (tim, xm(tim)) denotes the intersection point of ci with the m-th weak dis-

continuity x = xm(t) (m = p, . . . , n). Then noting (2.40), (2.42), (3.4) and |ξi(τ)−λj(0)τ | ≥ δ0τ

when (τ, ξ(τ))∈̄DT
j , by using Lemma 3.2 in [9] and the estimate of Ic

1 in [2] we find

(1 + |x − λi(0)t|)1+µ|w
(l)
i (t, x)| ≤C{θ + W c

∞(T )W̃1(T ) + (W c
∞(T ))2+

Ũ1(T )W c
∞(T ) + U c

∞(T )W̃1(T ) + U c
∞(T )W c

∞(T )}, (3.15)

here and henceforth, C denotes a different positive constant independent of θ and T .

On the other hand, when A ∈ Rl(T ) \ DT
i (i ∈ {p + 1, . . . , n}, p ≤ l < i), noting (3.5), (3.6)

and integrating (2.24) from 0 to t yields

w
(l)
i (t, x) = Ĩc

1 + Ĩc
2 , (3.16)
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where

Ĩc
1 =w

(p−1)
i (0, xi0) +

∫ tip

0

n∑

j,k=1

γijk(u(p−1))w
(p−1)
j w

(p−1)
k (τ, ξi(τ))dτ+

l−1∑

m=p

∫ ti,m+1

tim

n∑

j,k=1

γijk(u(m))w
(m)
j w

(m)
k (τ, ξi(τ))dτ+

∫ t

til

n∑

j,k=1

γijk(u(l))w
(l)
j w

(l)
k (τ, ξi(τ))dτ (3.17)

and

Ĩc
2 =

∫ tip

0

n∑

j,k=1

Qijk(u(p−1))w
(p−1)
j u(p−1)

m (τ, ξi(τ))dτ+

l−1∑

m=p

∫ ti,m+1

tim

n∑

j,k=1

Qijm(u(m))w
(m)
j u

(m)
k (τ, ξi(τ))dτ+

∫ t

til

n∑

j,k=1

Qijk(u(l))w
(l)
j u

(l)
k (τ, ξi(τ))dτ ; (3.18)

when A ∈ Rp−1(T ) \ DT
i (i ∈ {p + 1, . . . , n}), we obtain

w
(p−1)
i (t, x) =w

(p−1)
i (0, xi0) +

∫ t

0

n∑

j,k=1

γijk(u(p−1))w
(p−1)
j w

(p−1)
k (τ, ξi(τ))dτ+

∫ t

0

n∑

j,k=1

Qijk(u(p−1))w
(p−1)
j u

(p−1)
k (τ, ξi(τ))dτ. (3.19)

In these two cases, noting (2.28), (2.30) and (2.42), we can get (3.15) similarly.

While when A ∈ Rl(T ) \ DT
i (i ∈ {p + 1, . . . , n}, l ≥ i), noting (2.28) and (3.6), (3.11) still

holds. Note when i = n, by the definition of DT
n , (3.11) disappears. In this case, we deduce

(3.15) similarly.

Thus, we have

W c
∞(T ) ≤C{θ + W c

∞(T )W̃1(T ) + (W c
∞(T ))2+

Ũ1(T )W c
∞(T ) + U c

∞(T )W̃1(T ) + U c
∞(T )W c

∞(T )}. (3.20)

We now estimate W̃1(T ).

For i = 1, . . . , p, passing through any given point A(t, x) ∈ DT
i

⋂
Rp(T ), we draw the j-

th characteristic cj : ξ = ξj(τ) (j > p, τ ≤ t), which intersects the p-th weak discontinuity

x = xp(t) at a point B(tB , xB). In the meantime, the i-th characteristic ci : ξ = ξi(τ) (τ ≤ t)

passing through A intersects the boundary x = (λ(0) + δ0)t of DT
i at a point C(tC , xC). By

(2.33) and (2.38), using Stokes’ formula on the domain ABOC, we get
∫ t

tB

|w
(p)
i

(
λj(u

(p)) − λ(u(p))
)
(τ, ξj(τ))|dτ

≤

∫

OC

|w
(p)
i

(
λ(0) + δ0 − λ(u(p))

)
(τ, (λ(0) + δ0)τ)|dτ+
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∫∫

ABOC

∣∣∣
n∑

j,k=1

Γijk(u(p))w
(p)
j w

(p)
k (t, x)

∣∣∣dtdx+

∫∫

ABOC

∣∣∣
n∑

j,k=1

Qijk(u(p))w
(p)
j u

(p)
k (t, x)

∣∣∣dtdx. (3.21)

In view of (2.40), (2.42) and (3.4), the third term on the right hand of the above inequality can

be rewritten as
∫∫

ABOC

∣∣∣
n∑

j,k=1

Qijk(u(p))w
(p)
j w

(p)
k (t, x)

∣∣∣dtdx (3.22)

=

∫∫

ABOC

∣∣∣
( ∑

j∈{1,...,p}
k∈{p+1,...,n}

+
∑

j∈{p+1,...,n}
k∈{1,...,p}

+
∑

j,k∈{p+1,...,n}
j 6=k

)
Qijk(u(p))w

(p)
j w

(p)
k (t, x)

∣∣∣dtdx.

Then noting (3.1), (3.4) and the estimate of the first and second terms on the right hand side of

(3.21), from (3.21) and (3.22) it follows that
∫

cj

|w
(p)
i |dτ =

∫ t

tB

|w
(p)
i (τ, ξj(τ))|dτ ≤ C{W c

∞(T ) + W c
∞(T )W1(T ) + (W c

∞(T ))2+

U c
∞(T )W1(T ) + U1(T )W c

∞(T ) + U c
∞(T )W c

∞(T )} (3.23)

by Lemma 3.2 in [9].

For i = p+1, . . . , n−1, passing through any given point A(t, x) ∈ DT
i

⋂
Ri(T ), we draw the

j-th characteristic cj : ξ = ξj(τ) (τ ≤ t). When j > i, cj intersects the i-th weak discontinuity

x = xi(t) at a point B(tB , xB); while when j < i, cj intersects the boundary x = (xi(0) + δ0)t of

the domain DT
i at a point B̃(t

B̃
, x

B̃
). In the meantime, the i-th characteristic ci : ξ = ξi(τ) (τ ≤

t) passing through A intersects the boundary x = (λi(0) + δ0)t of DT
i at a point C(tC , xC).

Thanks to (2.35), (2.42), (3.1) and (3.4), using Stokes’ formula on the domain ABOC or ACB̃,

by Lemma 3.2 in [9] we obtain
∫

cj

|w
(i)
i |dτ =

∫ t

tB(or t
B̃

)

|w
(i)
i (τ, ξj(τ))|dτ ≤ C{W c

∞(T ) + W c
∞(T )W1(T ) + (W c

∞(T ))2+

U c
∞(T )W1(T ) + U1(T )W c

∞(T ) + U c
∞(T )W c

∞(T )}. (3.24)

For i = n, passing through any given point A(t, x) ∈ DT
n

⋂
Rn(T ), both the j-th character-

istic cj : ξ = ξj(τ) (τ ≤ t, j < n) and the n-th characteristic cn : ξ = ξn(τ) (τ ≤ t) intersects the

x-axis at points B(0, xB) and C(0, xC) respectively. By involving Stokes’ formula on the domain

ACB, similarly we have
∫

cj

|w(n)
n |dτ ≤C{W c

∞(T ) + W c
∞(T )W1(T ) + (W c

∞(T ))2+

U c
∞(T )W1(T ) + U1(T )W c

∞(T ) + U c
∞(T )W c

∞(T )}. (3.25)

On the other hand, we can similarly estimate
∫

cj∩Rp−1(T )

|w
(p−1)
i (t, x)|dt (i = 1, . . . , p, j = p + 1, . . . , n) (3.26)
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and ∫

cj∩Ri−1(T )

|w
(i−1)
i (t, x)|dt (i = p + 1, . . . , n, j 6= i). (3.27)

Therefore, we infer that

W̃1(T ) ≤C{W c
∞(T ) + W c

∞(T )W1(T ) + (W c
∞(T ))2+

U c
∞(T )W1(T ) + U1(T )W c

∞(T ) + U c
∞(T )W c

∞(T )}. (3.28)

Similarly, we get

W1(T ) ≤C{W c
∞(T ) + W c

∞(T )W1(T ) + (W c
∞(T ))2+

U c
∞(T )W1(T ) + U1(T )W c

∞(T ) + U c
∞(T )W c

∞(T )}. (3.29)

We now estimate U c
∞(T ).

When A(t, x) ∈ Rl(T ) \ DT
i (i ∈ {1, . . . , p}, l ∈ {p, . . . , n − 1}), integrating (2.7) along ci

from 0 to t and noting (2.37) gives

u
(l)
i (t, x) = Jc

1 + Jc
2 , (3.30)

where ci is the i-th characteristic passing through the point A, and

Jc
1 =u

(n)
i (0, xi0) +

∫ tin

0

n∑

j,k=1

ρijk(u(n))u
(n)
j w

(n)
k (τ, ξi(τ))dτ+

n∑

m=l+2

∫ ti,m−1

tim

n∑

j,k=1

ρijk(u(m−1))u
(m−1)
j w

(m−1)
k (τ, ξi(τ))dτ+

∫ t

ti,l+1

n∑

j,k=1

ρijk(u(l))u
(l)
j w

(l)
k (τ, ξi(τ))dτ (3.31)

and

Jc
2 =

∫ tin

0

n∑

j,k=1

Pijk(u(n))u
(n)
j u

(n)
k (τ, ξi(τ))dτ+

n∑

m=l+2

∫ ti,m−1

tim

n∑

j,k=1

Pijm(u(m−1))u
(m−1)
j u

(m−1)
k (τ, ξi(τ))dτ+

∫ t

ti,l+1

n∑

j,k=1

Pijk(u(l))u
(l)
j u

(l)
k (τ, ξi(τ))dτ ; (3.32)

while when A ∈ Rn(T ) \ DT
i (i ∈ {1, . . . , p}), we have

u
(n)
i (t, x) =u

(n)
i (0, xi0) +

∫ t

0

n∑

j,k=1

ρijk(u(n))u
(n)
j u

(n)
k (τ, ξi(τ))dτ+

∫ t

0

n∑

j,k=1

Pijk(u(n))u
(n)
j u

(n)
k (τ, ξi(τ))dτ, (3.33)

Using (2.14), (2.15) and (2.39), by an analogous proof to (3.15) we find

(1 + |x − λi(0)t|)1+µ|u
(l)
i (t, x)| ≤C{θ + U c

∞(T )W̃1(T ) + U c
∞(T )W c

∞(T )+
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Ũ1(T )W c
∞(T ) + U c

∞(T )Ũ1(T ) + (U c
∞(T ))2}. (3.34)

On the other hand, when A(t, x) ∈ Rl(T ) \ DT
i (i ∈ {p + 1, . . . , n}, l ∈ {p − 1, . . . , n}),

noting (2.14), (2.15) and (2.41), we can similarly estimate. Thus, we have

U c
∞(T ) ≤C{θ + U c

∞(T )W̃1(T ) + U c
∞(T )W c

∞(T )+

Ũ1(T )W c
∞(T ) + U c

∞(T )Ũ1(T ) + (U c
∞(T ))2}. (3.35)

We now estimate Ũ1(T ).

For i = 1, . . . , p, similarly to (3.21), by (2.17) and noting (2.37), using Stokes’ formula on

the domain ABOC, we get
∫ t

tB

|u
(p)
i

(
λj(u

(p)) − λ(u(p))
)
(τ, ξj(τ))|dτ

≤

∫

OC

|u
(p)
i

(
λ(0) + δ0 − λ(u(p))

)
(τ, (λ(0) + δ0)τ)|dτ+

∫∫

ABOC

∣∣∣
n∑

j,k=1

Fijk(u(p))u
(p)
j w

(p)
k (t, x)

∣∣∣dtdx+

∫∫

ABOC

∣∣∣
n∑

j,k=1

Pijk(u(p))u
(p)
j u

(p)
k (t, x)

∣∣∣dtdx. (3.36)

Applying (2.39) and (2.41), the third term on the right hand of the above inequality can be

rewritten as
∫∫

ABOC

∣∣∣
n∑

j,k=1

Pijk(u(p))u
(p)
j u

(p)
k (t, x)

∣∣∣dtdx (3.37)

=

∫∫

ABOC

∣∣∣
( ∑

j∈{1,...,p}
k∈{p+1,...,n}

+
∑

j∈{p+1,...,n}
k∈{1,...,p}

+
∑

j,k∈{p+1,...,n}
j 6=k

)
Pijk(u(p))u

(p)
j u

(p)
k (t, x)

∣∣∣dtdx.

Taking into account the estimate of the first and second terms on the right hand side of (3.36),

by (3.1), (3.4) and Lemma 3.2 in [9], from (3.36) and (3.37) it follows that
∫

cj

|u
(p)
i |dτ ≤C{U c

∞(T ) + U1(T )W c
∞(T ) + U c

∞(T )W1(T ) + U c
∞(T )W c

∞(T )+

U∞(T )U c
∞(T )W1(T ) + U1(T )U c

∞(T ) + (U c
∞(T ))2}. (3.38)

For i = p + 1, . . . , n, noting (2.41), we can similarly deduce that
∫

cj

|u
(i)
i |dτ ≤C{θ + U c

∞(T ) + U1(T )W c
∞(T ) + U c

∞(T )W1(T ) + U c
∞(T )W c

∞(T )+

U∞(T )U c
∞(T )W1(T ) + U1(T )U c

∞(T ) + (U c
∞(T ))2}. (3.39)

On the other hand, we can similarly estimate
∫

cj∩Rp−1(T )

|u
(p−1)
i (t, x)|dt (i = 1, . . . , p, j = p + 1, . . . , n) (3.40)

and ∫

cj∩Ri−1(T )

|u
(i−1)
i (t, x)|dt (i = p + 1, . . . , n, j 6= i). (3.41)
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Hence, we get

Ũ1(T ) ≤C{θ + U c
∞(T ) + U1(T )W c

∞(T ) + U c
∞(T )W1(T ) + U c

∞(T )W c
∞(T )+

U∞(T )U c
∞(T )W1(T ) + U1(T )U c

∞(T ) + (U c
∞(T ))2}. (3.42)

By an analogous argument, we can prove

U1(T ) ≤C{θ + U c
∞(T ) + U1(T )W c

∞(T ) + U c
∞(T )W1(T ) + U c

∞(T )W c
∞(T )+

U∞(T )U c
∞(T )W1(T ) + U1(T )U c

∞(T ) + (U c
∞(T ))2}. (3.43)

The combination of (3.20), (3.28), (3.29), (3.35), (3.42) and (3.43) gives (3.7)–(3.10) (see

[12]). This completes the proof of Lemma 3.2. �

Proof of Theorem 1.1 To prove the sufficiency part of Theorem 1.1, we only need to estimate

U∞(T ) and W∞(T ). For any given point (t, x) ∈ R(T ), similarly to [2], by Lemma 3.2 we can

get

|u(t, x)| ≤ C{θ + W c
∞(T ) + W̃1(T ) + U c

∞(T ) + Ũ1(T )} ≤ Cθ. (3.44)

This gives the validity of hypothesis (3.4), and

W∞(T ) ≤C{θ + (W c
∞(T ))2 + W c

∞(T )W∞(T ) + U c
∞(T )(W∞(T ))2+

U c
∞(T )W c

∞(T ) + U∞(T )W c
∞(T ) + U c

∞(T )W∞(T )}

≤Cθ{1 + W∞(T ) + (W∞(T ))2}, (3.45)

which implies

W∞(T ) ≤ Cθ. (3.46)

Finally, we prove the necessity part of Theorem 1.1. In normalized coordinates, by (1.13),

for i = 1, . . . , p, there holds

aik

( p∑

h=1

uheh

)
≡





λ
( p∑

h=1

uheh

)
, k = i,

0, k 6= i

(3.47)

and by (1.14), for i = p + 1, . . . , n, there holds

aik(uiei) ≡

{
λi(uiei), k = i,

0, k 6= i.
(3.48)

Then similarly to the proof of the necessity part of Theorem 1.1 in [2], noting (1.16) and (1.17),

we can prove the necessity part. �
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