
Journal of Mathematical Research with Applications

Nov., 2012, Vol. 32, No. 6, pp. 735–742

DOI:10.3770/j.issn:2095-2651.2012.06.013

Http://jmre.dlut.edu.cn

A New Algorithm for MLE with Interval Censored Data

Conghua CHENG1,∗, Jinyuan CHEN2

1. School of Mathematics and Computation Science, Zhanjiang Normal University,

Guangdong 524048. P. R. China;

2. School of Mathematics and Statistics, Lanzhou University, Gansu 730000, P. R. China

Abstract In this paper, we study the two-parameter maximum likelihood estimation (MLE)

problem for the GE distribution with consideration of interval data. In the presence of interval

data, the analytical forms for the restricted MLE of the parameters of GE distribution do not

exist. Since interval data is kind of incomplete data, the EM algorithm can be applied to

compute the MLEs of the parameters. However the EM algorithm could be less effective.

To improve effectiveness, an equivalent lifetime method is employed. The two methods are

discussed via simulation studies.
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1. Introduction

The two parameter GE distribution was introduced by Gupta and Kundu [1]. The GE

distribution, density function and survival function have the following forms:

F (x) = (1 − e−λx)α, (1)

f(x) = αλ(1 − e−λx)α−1e−λx, (2)

R(x) = 1 − (1 − e−λx)α, (3)

where λ, α, x > 0, λ and α are the scale parameter and shape parameter of GE distribution

respectively. GE distribution with parameters λ and α is denoted by GE(α, λ). The GE dis-

tribution has lots of interesting properties which can be referred to Gupta and Kundu [2, 3].

In recent years, it is observed that the two-parameter GE(α, λ) can be used quite effectively in

analyzing many lifetime data, particularly in place of two-parameter gamma and two-parameter

Weibull distributions. It is observed that in many situations GE distribution provides better fit

than Weibull distribution, gamma distribution or log-normal distribution [4–7].

GE distribution has been studied in many literatures and has lots of applications in the field

other than lifetime distributions [8–11]. Many papers considered the parameter estimation of the
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GE distribution for complete sample case in the literature. Mitra and Kundu [12] analyzed the

GE distribution with left censored data. Pradhan and Kundu [13] considered statistical inference

of the parameters of the GE distribution in presence of progressive censoring. However, few

papers considered the estimation of the GE distribution with interval data, which is a common

form of data in lifetime analysis or reliability theory.

In this paper, we study the estimations of the shape parameter α and the scale parameter

λ in GE distribution with consideration of interval data, right censored data, including complete

data. In presence of the interval data and the right censored data, regular MLE method can be

applied, but there are no analytical solutions for the parameters α and λ. The EM algorithm

can be applied to solve the estimation problem of GE distribution with the three types of data.

However the EM algorithm could be less effective. We apply an equivalent lifetime method to the

problems. The equivalent lifetime method was proposed by Tan [14]. This method of estimation

for exponential distribution and Weibull distribution has been successfully applied by Tan [15].

The rest of this paper is organized as follows. In Section 2, we discuss the MLEs. In Section

3, we introduce the equivalent lifetime method for MLEs of the parameters. Simulation study

and some discussions are given in Section 4.

2. Maximum likelihood estimation

With n observed data x1, x2, . . . , xn, m right censored data c1, c2, . . . , cm and l interval data

(a1, b1), (a2, b2), . . . , (al, bl), the log likelihood function is

log(L) =

n∑

i=1

log f(xi) +

m∑

i=1

log R(ci) +

l∑

i=1

log(F (bi) − F (ai))

=n log α + n logλ + (α − 1)

n∑

i=1

log(1 − e−λxi) − λ

n∑

i=1

xi+

m∑

i=1

log(1 − (1 − e−λci)α) +

l∑

i=1

log((1 − e−λbi)α − (1 − e−λai)α). (4)

Taking derivatives with respect to parameters α and λ respectively and setting them to be

zero, we get the log likelihood equations

∂ log(L)

∂α
=

n

α
+

n∑

i=1

log(1 − e−λxi) −

m∑

i=1

(1 − e−λci)α log(1 − e−λci)

1 − (1 − e−λci)α
+

l∑

i=1

(1 − e−λbi)α log(1 − e−λbi) − (1 − e−λai)α log(1 − e−λai)

(1 − e−λbi)α − (1 − e−λai)α
= 0, (5)

∂ log(L)

∂λ
=

n

λ
+ (α − 1)

n∑

i=1

xie
−λxi

1 − e−λxi

−

n∑

i=1

xi −

m∑

i=1

αci(1 − e−λci)α−1e−λci

1 − (1 − e−λci)α
+

l∑

i=1

αai(1 − e−λai)αe−λai − αbi(1 − e−λbi)αe−λbi

(1 − e−λbi)α − (1 − e−λai)α
= 0. (6)

In the presence of the right censored data and the interval data, from (5) and (6), we can see the
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log likelihood equations are so complex that the two parameters are highly correlative. We can

no longer obtain the MLE of α and λ in an analytical form. Since interval data and censored

data are kind of incomplete data [16], we propose to use EM algorithm to compute the MLEs

of α and λ. There are some obstacles in the EM algorithm. First, it is well known that the

EM algorithm may converge slowly even in some seemingly innocuous problems. It will be seen

when we do some simulation studies in Section 4. Another issue is that in order to obtain the

estimations of the parameters, we have to solve a boring equation which involves some boring

integrals. Therefore, it may be less effective and efficient in computation. In order to overcome

those obstacles, we use an equivalent method in the following section.

3. Maximum likelihood estimation via equivalent method

The equivalent method combines the GE-to-Exponential transformation and the equivalent

lifetime method. First, we give an algorithm to estimate the failure rate of exponential distribu-

tion and a transformation with GE random variable to exponential random variable. Then, we

solve the estimation problem for GE distribution through an equivalent method.

3.1 MLE of failure rate in exponential distribution

For exponential distribution FE(x) = 1−e−µx, with n complete data x1, x2, . . . , xn, m right

censored data c1, c2, . . . , cm, it is well known that the MLE of µ is

µ̂ =
n

n∑
h=1

xh +
m∑

j=1

cj

. (7)

In addition, there are l interval data (a1, b1), (a2, b2), . . . , (al, bl). The l pseudo values x∗

i (µ),

i = 1, 2, . . . , l can be used to replace the intervals, where, x∗

i (µ)s are the conditional MTTF, that

is,

x∗

i (µ) = E(Xi|ai ≤ Xi ≤ bi) =
aiRE(ai) − biRE(bi)

RE(ai) − RE(bi)
+

1

µ
,

where Xi is an exponential random variable following FE(x) and RE(x) = e−µx.

Then, the estimation of failure rate µ is

µ̂ =
n + l

n∑
h=1

xh +
m∑

j=1

cj +
l∑

i=1

x∗

i (µ)

. (8)

We can use an iterative method to get µ̂ with certain precision. There is an algorithm to

estimate failure rate from interval data, right censored data and complete data from exponential

distribution as follows:

Algorithm 1 MLE of failure rate for the exponential distribution with interval data, right

censored data and complete data.

With n complete data x1, x2, . . . , xn, m right censored data c1, c2, . . . , cm and l interval data

(a1, b1), (a2, b2), . . . , (al, bl) from an exponential distribution, the following procedure is executed:



738 Conghua CHENG and Jinyuan CHEN

(i) Initialize a value of µ̂.

(ii) Calculate equivalent failure time x∗

i for failure interval (ai, bi), i = 1, 2, . . . , l,.

(iii) Update failure rate

µ̂′ =
n + l

n∑
i=1

xi +
m∑

i=1

ci +
l∑

i=1

x∗

i (µ̂)

.

(iv) If µ̂′ = µ̂ with certain precision, stop. Otherwise, let µ̂ = µ̂′ and go to step (ii).

3.2 The equivalent method to MLE of GE distribution

It is well known that a random variable X follows the GE(α, λ) distribution with pdf

f(x; α, λ), then the random variable Y = − log(1 − e−λX) follows the exponential distribution

with failure rate α. From the discussion, we have known that: since the function − log(1− e−λx)

is a decreasing function, for a given data set data x1, x2, . . . , xn; c1, c2, . . . , cm; (a1, b1), (a2, b2),

. . ., (al, bl) that follow GE(α, λ), the complete data are transformed to − log(1−e−λx1), − log(1−

e−λx2), . . ., − log(1 − e−λxn); the right censored data are transformed to (0,− log(1 − e−λc1)),

(0,− log(1 − e−λc2)), . . . , (0,− log(1 − e−λcm)); the interval data are transformed to (− log(1 −

e−λb1),− log(1 − e−λa1)), (− log(1 − e−λb2),− log(1 − e−λa2)), . . . , (− log(1 − e−λbl),− log(1 −

e−λal)), if the left end points are not zeros; otherwise, they will be transformed to right censored

data − log(1 − e−λbi)s. The derived data follow an exponential distribution with failure rate α.

We have known that the derived data follow an exponential distribution, then the estimation

failure rate is (8).

We have transformed the GE data to exponential data. Assuming the value of λ is known,

using (8), we can estimate the exponential failure rata α which is a function of λ. We know that

estimation of failure rate is very fast and always converges by using the equivalent failure and

equivalent failure time. Once we have the estimation of α̂ = α(λ), substituting α̂ = α(λ) into

the log likelihood function (4), we can get the MLE for λ.

Now we state the above procedure as the following algorithm.

Algorithm 2 Two-parameter MLE of the GE distribution with interval data.

With n failure terminated data x1, x2, . . . , xn, m right censored data c1, c2, . . . , cm and l

interval data (a1, b1), (a2, b2), . . . , (al, bl), we present the following algorithm:

(i) Select a value of λ.

(ii) Transform x1, x2, . . . , xn; c1, c2, . . . , cm; (a1, b1), (a2, b2), . . . , (al, bl) to − log(1− e−λx1),

− log(1−e−λx2), . . . ,− log(1−e−λxn); (0,− log(1−e−λc1)), (0,− log(1−e−λc2)), . . . , (0,− log(1−

e−λcm)); (− log(1− e−λb1),− log(1− e−λa1)), (− log(1− e−λb2),− log(1− e−λa2)), . . . , (− log(1−

e−λbl), − log(1 − e−λal)), or right censored data − log (1 − e−λbi)s.

(iii) Estimate failure rate α from the derived data − log (1 − e−λx1),− log (1 − e−λx2), . . . ,

− log(1− e−λxn); (0,− log(1− e−λc1)), (0,− log(1− e−λc2)), . . . , (0,− log(1− e−λcl)); (− log(1−

e−λb1),− log(1 − e−λa1)), (− log (1 − e−λb2),− log(1 − e−λa2)), . . . , (− log(1 − e−λbl),− log(1 −

e−λal)), or right censored data − log (1 − e−λbi)s, using Algorithm 1.
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(iv) Substitute α(λ) into (4), and calculate the log likelihood function.

(v) Repeat steps (i)–(iv) until the maximum of (iv) is reached, output λ and corresponding

α.

4. Simulation study

In this section, to see the overall performance of the method, we perform some numerical

experiments to demonstrate the method for several parameter values in different sample size.

As a reference, we apply the traditional EM algorithm to estimate the parameters. We will

see the estimation accuracy of the methods in different situations. All the computations are

implemented by using MATLAB.

4.1 Generate interval data sets

We set sample sizes as small n = 50, moderate n = 100, large n = 200 and λ = 0.5.

Regarding the shape parameter α, we choose six typical values as α = 1, 2 and 3. Particularly,

α = 1, represent the exponential distribution.

In this study, we consider three types of data: complete data, interval data and right censored

data. Let p be the percentage of complete data in a data set. Then 1 − p is the percentage of

interval data and right censored data in a data set. To check the impact of the uncertainty on

estimation accuracy, we select 4 values of p as 0, 0.3, 0.7 and 1. In the 0 case, there are no

complete data in a data set. In the 0.3 and 0.7 case, the percentages of complete data are 0.3

and 0.7. In the 1 case, there are all complete data.

With the combination of different settings for α, in every case we generate a data set using

the following steps:

(i) Generate an observation U from the uniform distribution U(0, 1).

(ii) Calculate X = − 1

λ
log(1−U

1

α ). Then X is a sample from the GE distribution GE(α, λ).

(iii) Set the intervals as [0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6), [6, 7), [7, 8), [8,∞). Generate

a U(0, 1) observation V independent of U . If v < p, X is classified as a complete sample. If

v ≥ p and X is located in a finite interval, X is classified as an interval sample, otherwise, it is

a right censored sample.

(iv) Repeat steps (i)–(iii) until the sample size is reached.

4.2 Parameter estimations and discussions

In each case we replicate the calculation 1000 times and get the average estimations of α

and λ. The setting ML is calculated from (4) with the setting parameter value. All of the

results are listed in Table 1. When the sample size is 200 and p = 0, we provide the histograms

of the simulation data and the fitted densities functions in Figures 1 using the equivalent method.
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equivalent method EM algorithm

size α p setting ML ML α̂ λ̂ λ̂ α̂ ML

n = 50 1.0 p = 0.0 -83.3963 -82.4419 1.0825 0.5371 0.5236 1.0633 -81.9377

p = 0.3 -84.1432 -83.1623 1.0731 0.5283 0.5239 1.0784 -83.8403

p = 0.7 -84.5979 -83.6294 1.0692 0.5254 0.5230 1.0634 -83.6852

p = 1.0 -84.9173 -83.9374 1.0585 0.5222 0.5213 1.0555 -83.9877

2.0 p = 0.0 -98.2168 -97.3185 2.0324 0.5114 0.5216 2.1750 -98.7875

p = 0.3 -98.6579 -97.7197 2.1023 0.5184 0.5288 2.2067 -98.4807

p = 0.7 -99.4924 -98.4835 2.1307 0.5191 0.5178 2.1552 -99.1984

p = 1.0 -100.3204 -99.3063 2.1362 0.5159 0.5166 2.1384 -99.2330

3.0 p = 0.0 -101.4066 -100.4910 3.0883 0.5157 0.5177 3.2867 -103.6868

p = 0.3 -102.2739 -101.4027 3.1347 0.5162 0.5183 3.2595 -103.6275

p = 0.7 -103.6778 -102.6377 3.2145 0.5196 0.5136 3.2127 -103.9751

p = 1.0 -105.0988 -104.1014 3.2416 0.5134 0.5153 3.2270 -103.9149

n = 80 1.0 p = 0.0 -167.0553 -166.1567 1.0313 0.5209 0.5137 1.0406 -167.0422

p = 0.3 -167.6069 -166.7014 1.0298 0.5178 0.5159 1.0400 -167.3922

p = 0.7 -169.1165 -168.1189 1.0280 0.5110 0.5110 1.0310 -168.4670

p = 1.0 -169.3164 -168.2284 1.0350 0.5151 0.5117 1.0234 -168.1549

2.0 p = 0.0 -195.8735 -194.9820 2.0031 0.5118 0.5116 2.0727 -198.4385

p = 0.3 -196.9629 -195.9912 2.0252 0.5114 0.5116 2.0842 -198.6556

p = 0.7 -198.4974 -197.4922 2.0564 0.5118 0.5094 2.0706 -199.0234

p = 1.0 -199.3088 -198.3580 2.0754 0.5132 0.5079 2.0693 -199.3006

3.0 p = 0.0 -202.6538 -201.8891 2.9306 0.5063 0.5120 3.1863 -208.0535

p = 0.3 -205.0362 -204.1488 2.9542 0.5039 0.5098 3.1190 -208.1668

p = 0.7 -207.4354 -206.4655 3.0671 0.5082 0.5115 3.1435 -207.9823

p = 1.0 -209.5895 -208.5227 3.1428 0.5093 0.5100 3.1342 -208.2657

3.5 p = 0.0 -203.4895 -202.7987 3.4299 0.5085 0.5121 3.7070 -210.4784

p = 0.3 -206.2178 -205.3851 3.4596 0.5073 0.5091 3.6460 -210.8267

p = 0.7 -209.2520 -208.2883 3.6125 0.5106 0.5109 3.6957 -210.7667

p = 1.0 -212.4449 -211.4314 3.6401 0.5066 0.5075 3.6478 -211.2825

n = 200 1.0 p = 0.0 -334.8853 -334.0348 1.0067 0.5105 0.5076 1.0245 -336.7433

p = 0.3 -336.3680 -335.3974 1.0027 0.5058 0.5083 1.0158 -336.1827

p = 0.7 -337.3694 -336.3915 1.0116 0.5070 0.5059 1.0103 -336.9715

p = 1.0 -338.7647 -337.8155 1.0131 0.5054 0.5065 1.0134 -337.4768

2.0 p = 0.0 -392.1438 -391.3173 1.9536 0.5048 0.5066 2.0489 -398.4290

p = 0.3 -394.5352 -393.6400 1.9827 0.5051 0.5037 2.0384 -399.3595

p = 0.7 -397.7724 -396.8234 2.0116 0.5044 0.5081 2.0491 -398.0801

p = 1.0 -399.7609 -398.7501 2.0408 0.5059 0.5059 2.0330 -398.5579

3.0 p = 0.0 -405.5254 -404.8504 2.8751 0.5032 0.5075 3.0923 -416.8965

p = 0.3 -408.6492 -407.8302 2.9560 0.5069 0.5040 3.0634 -418.0014

p = 0.7 -414.9834 -414.0240 3.0041 0.5038 0.5061 3.0725 -417.2950

p = 1.0 -418.7975 -417.7791 3.0661 0.5050 0.5048 3.0668 -417.8325

Table 1 Summary of parameter estimates in simulations
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Figure 1 The histograms of simulation data and fitted density functions via equivalent method

From the results of Table 1 and Figure 1, we observe the following:

(i) The histograms of the simulation data and the fitted density functions in Figure 1

indicate that the estimations provide a good fittings for the simulative data sets.

(ii) The simulation results show that the two methods are robust and effective to deal with

interval data with respect to α and λ.

(iii) For fixed p, as the sample sizes grow, the accuracy of the estimations of α is improved

as expected.

(iv) The estimations of λ are accurate in all cases. Certainly, the accuracy is improved as

the sample sizes increase. When n = 200 and α = 3, the estimations are 0.5032, 0.5069, 0.5038,

0.5050 and 0.5075, 0.5040, 0.5061, 0.5048 corresponding to equivalent method and EM algorithm

for 4 values of p.

(v) The log likelihood values are almost equal to the setting ML calculated from the setting

parameter values, which indicates that the methods are feasible.

(vi) The estimations of α and λ via equivalent method are more accurate than the estima-

tions via EM algorithm when the sample is small or moderate. However, when the sample size

is large, the conclusion is opposite.

(vii) In computations, the more loss the information has, the more time the convergence

of the EM algorithm will take. We find that the time to converge in p = 0 case is much longer

than that in p = 1 case. So we recommend to use the equivalent method to obtain the parameter

estimations when the sample size is large.
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