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Abstract In this paper, we study gradient estimates for the nonlinear heat equation u;—Au =
aulogu, on compact Riemannian manifold with or without boundary. We get a Hamilton
type gradient estimate for the positive smooth solution to the equation on close manifold, and
obtain a Li-Yau type gradient estimate for the positive smooth solution to the equation on
compact manifold with nonconvex boundary.
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1. Introduction

Let (M™,g) be a compact manifold with or without boundary. We consider the gradient

estimates for the nonlinear heat equation
uy — Au = aulogu, (1.1)

on (M™,g). Here a € R is a constant. This heat equation can be considered as the negative
gradient heat flow to W-functional [1], which is closely related to the Log-Sobolev inequalities
on Riemannian manifold. Some results have been obtained by many researchers [2-7]. In [5] and
[6], Ma obtained several gradient estimates of the positve solution to (1.1). Specially, he got the

following two theorems,

Theorem 1.1 Assume that the closed Riemannian manifold (M™, g) has the non-negative Ricci
curvature condition, i.e., Rc > 0. Let u > 0 be a positive smooth solution to (1.1). Assume
that sup,;u < 1 at the initial time and a < 0. Let f = —logu. Then we have, for all t > 0,
sup,su < 1 and

V1 < f.

The same estimate is true for (1.1) on complete Riemannian manifolds when the maximum

principle can be applied.
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Theorem 1.2 Assume that the compact Riemannian manifold (M, g) has non-negative Ricci
curvature. When a <0 in (1.1), let w > 0 be a positive smooth solution to (1.1). Let f = logu.
Then we have, for all t > 0,

n
Af—— <
! 2t—0’

and in other words,

n
fi—af +|Vf>< 5

The same result is also true for (1.1) on complete Riemannian manifold provided the maximum
principle is applicable.

One of our purposes in this paper is to get a similar result to Theorem 1.1.

Theorem 1.3 Let (M",g) be closed Riemannian manifold, and R;; > —Kg;;, K > 0. Assume
u be a bounded positive smooth solution to (1.1) on M x [0,+00), such that 0 < u(x,t) < A,
where A > 1 is a positive constant. Let f = —logu,g = f +log A = log %. And assume a < 0.

Then we have,
e(t)|Vyl* <y,
that is,
9 A
POV < log —,
where

p(t) =

le D00 f a+2K #0;
t if a+2K =0.

Remark 1.1 In [5], the author left a question, whether can we derive the Hamilton type gradient
estimate for positive solutions to the equation (1.1). Our result partially answers the question
of Ma in [5].

Another problem we want to consider in this paper is to establish the Li-Yau type gra-
dient estimates of (1.1) on compact manifold with nonconvex boundary. Let (M™,g) be an
n-dimensional compact Riemannian manifold with boundary oM. Let 8% be the outward point-
ing unit normal vector to M, and denote by Il the second fundamental form of OM with
respect to 8%. Our goal is to derive estimates on the derivatives of positive solutions u(z,t) on

M x (0,400) of the nonlinear equation

{ u — Au = aulogu (12)

Zulon =0

where a € R.

Definition 1.1 ([8,9]) OM is said to satisfy the “interior rolling R-ball” condition if for each
point p € OM there is a geodesic ball Bq(g), centered at ¢ € M with radius %, such that
{p} = By(£)NOM and B,(£) c M.

When a = 0 in (1.2), Wang obtained global gradient estimates of the positive solutions in
[8].
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Theorem 1.4 Let (M™,g) be an n-dimensional compact Riemannian manifold with boundary
OM. Suppose that OM satisfies the “interior rolling R-ball” condition. Let K and H be non-
negative constants such that the Ricci curvature Ricys of M is bounded below by —K and the
second fundamental form II of 9M is bounded below by —H. By choosing R small, we have for
any positive solution u(z,t) of (1.2) on M x (0,+00) and a = 0,

Vul|? C
|1;| _aﬂg_l'i_C?a

u t

u

on M x (0,+00), for all constant
1
a>(1+H)?* and 0<f<s3,

where
na?(a—1)%(1 + H)*
(2-8)1=p)(a—(1+H)*)?*

o = 6na(a—1)(1+H)'K  309n2a3(a—1)(1+ H)'°H
T a1 (o = (14 H)2) R

C, =

We also have the following result for (1.2), as is similar to Theorem 1.4.

Theorem 1.5 Let (M™,g) be an n-dimensional compact Riemannian manifold with boundary
OM . Suppose that OM satisfies the “interior rolling R-ball” condition. Let K and H be non-
negative constants such that the Ricci curvature Ricys of M is bounded below by —K and the
second fundamental form II of 9M is bounded below by —H. By choosing R small, we have for
any positive solution u(z,t) of (1.2) on M x (0,+00),

Vul|? C
| Zl —i—aalogu—a& <210, (1.3)
U U t

on M x (0,+00), for all constant

1
a€R, oz>(1+H)QandO<ﬁ<§,

where
o = no’(a—1)%(1 + H)*
TR0 - — 1+ HP)?
~ 4vV2na?(a—1)(1+ H)'K
Co = (o - (1+ H2)?2) + Dy.
And we choose
D V2na(a —1)(1 + H)3(|D] + 2alal)
0 — )

(= (1+ H)?)

where if a < 0, we choose

D _7;{?‘_0‘((1115;2 {200~ 20— (201 + e e 1)1;1{(3}1 D, %)Jr
64

64na®H?(1+ H)° }

—H*(1+H)?) + CEESIEE

B
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and if a > 0, we choose

b _7;{?‘_0‘((11 ig)é {200 —2a(1 + H)” — (201 + m A= 1);}1;(3}1 D, %H
64

64na’H?(1+ H)S
ZHY(1+ H)?) + }
R P 1RE
Remark 1.2 If a = 0, Theorem 1.5 recovers Theorem 1.4.

The rest of the paper is organized as follows. In Section 2, we give the proof of Theorem

1.3. In Section 3, we prove Theorem 1.5, then using the theorem we get a corollary.

2. Hamilton type gradient estimate
We use a modification of the argument of [5], [10] and [11] to prove Theorem 1.3.

Proof of Theorem 1.3 Let f = —logu, g = f + log A = log %. Then we have

99 _of _
E—AQ—E—AJC—@JC—WﬂQ- (2.1)

Using the Bochner formula,

A|VFI2 =2|D*f]? + 2(Vf,VASf) + 2Rc(V £, V).

Compute,

0] 0]
SIVI— ANVIP = 291 V(G — Af) ~ 2D? 1~ 2Re(V 1, V).

Using (2.1), we have
D 19412~ ANIP = 20912 ~ 2(VS,VIVSP) - 24D? I~ 2Re(V 1,V ).

USiIlg Rij > _Kgij7 we have

O 19412~ ANVIP < 20[V S~ 2(V1, VIV IP) + 2KV (22)
Let 1_e—(at+2E)t .
(p(t)_{w lf a+2K7AO,
t if a+2K =0.
Then,

Colt) = —(a+ 2K)p(t) + 1. (2.3)
Let L = ¢(t)|[Vg|*> —g=o@®)|Vf]*> = (f +log A), by (2.2). Then
%L — AL <[¢'(t) + (2a+ 2K)p(t) = 1|V f|* = 20| D* f|* = 2(V [, VL)+
a(L — ¢(1)|Vg|*) + alog A
=[¢'(t) + (a+2K)p(t) = 1|V [ = 20| D* > = 2(V [, VL)+
al + alog A.
Using a <0, A > 1, ¢(t) > 0 and (2.3), we get

%L — AL < =2(Vf,VL)+alL.
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Let G = e L. Then 5
G = AG < —2(V,VG).

Applying the maximum principle to G, we know that G < 0. That is,
p(t)|Vg]* —g <0,

which is the desired gradient estimate of Hamilton type. Then we complete the proof of Theorem
1.3.0

3. Li-Yau type gradient estimate

In this section, let (M™, g) be an n-dimensional compact Riemannian manifold with bound-
ary OM. Let 8% be the outward pointing unit normal vector to M, and denote by I the second
fundamental form of OM with respect to %. Our goal is to derive estimates on the derivatives
of positive solutions u(z,t) on M x (0,400) of the nonlinear equation (1.2).

Modifying the argument of [8] and [11], we give the proof of Theorem 1.5.

Proof of Theorem 1.5 Following [8] (or [9]), we define a function on M by ¢(x) = w(rg)),

where r(z) denotes the distance from x € M to M and 1(r) is a nonnegative C*-function
defined on [0, +0c0) such that

Yy <H if rel0,1/2);
Y(r)y=H if re][l,+o0),
with 1(0) = 0, 0 < ¢/(r) < 2H, /(0) = H and ¢" > —H. Let f = logu. Then 2 — Af =
af + |V £|?. For every ¢ > 0, consider
F(x,t) = t[(1+ o)) (|Vf*(x,t) + &) + aaf(x,t) — afi(z,t)).

For any fixed T' < 400, since F(z,t) is continuous on M x [0, T, there exists (p,tq) € M x [0, T
at which F' achieves its maximum. We may assume that F(p,to) > 0 as otherwise the inequality
(1.3) follows trivially.

Claim 1 p € M\OM.
In fact, if p € OM, then %—f(p, to) > 0. Let eq, €9, ..., e, be an orthonormal frame at p with

en = v. Notice that f, = f, = = = 0 on OM. Therefore, denoting x(z) = (1 + ¢(z))?, we have
oF 5 <
0< %(pa to) = to(a—fﬂvﬂ? +¢e)+ 2)(2 fifiv + aaf, — afi)(p;to).

i=1
Since f, =0 on M and ty > 0, we conclude that
8_X. 1 22?:1fifi'u >

v x IVf]2+e

at (p7 tO) .
By a direct computation, one shows that

> fifiw=—II(Vf, V) < HVf*.

=1
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Thus at (p, o), if we choose R < 1, then
ox 1 230, fifuw < _2H 20|V f[?
ov  x IVfI2+e — R |Vf|?+e
This is a contradiction and the claim follows.
Thus, F(z,t) achieves its maximum at (p,to) € (M\OM) x (0, T).
Hence at (p,tg), VF =0 9F > 0 and AF < 0. In the following, all the computations are

ot
performed at the point (p,tp) and the summation convention is used with 7 and j both moving

<0.

between 1 and n. Direct computation gives us
AF =t(Dx- (VS + ) + XAV +2(Vx, VIV 2+
aalf — a(Af)t)
—t(Ax- (VS + )+ 2 + fifisg) + 2V VIV )+
aalAf — a(Af)t).
Since
fifiji = fifiji + Ric(V 1,V f) > (VI,VA[) = K|V f|?
and Af = f; — [Vf|? — af, we obtain
OF 2t - (V2 +€) + 20(F3 + (T, VAS = KT+
2V, VIV +aalsf — alfi = VS = af).).

And,
E,=x(IVfI? +e) +aaf —afs +t(x|VfI] + aaf: — afsw).

Thus 0 > AF — 25 implies,
0 2t| AX(IVFI? +e) + 2xf5 = 2KX|V P + 2V, V(fe —af = [V f[*))+
2(Vx, VIVI?) + aasf + (a =)V | = X(VF? +¢) —aaf +af,
=tleAx + (Ax — 2Kx — 2aX)|Vf|* + 2xf], + aa f] — §+
t2(Vx, VIVFI?) = 2x(V [, VIVFI?) + 2a(V [, V f0)).
Using
VE =t[([Vf]?+&)Vx +XxVIVf]? + aaV [ —aV f] =0,
SO
=2V, VIVI?) +2a(VF V fi) = 2(V [ + )V - VX + 20a|V f[?,
combining Young inequality 2apby < Bad + %b% (6> 0), we get

F
0 >tleAx + (Ax — 2K x — 2ax + 2aa)|V f|* + 2x fj—i-aaAf] - ?—f—

26(Vx, VIVF) + 2tV + ) (Vx, V)
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F
22xtfi2j +aatAf +t(Ax — 2K x — 2ax + 20a)|Vf|* + etAy — T

4t
E|V><|2|Vf|2 = Btff = 2VXIIV I = te| Vx| — te|Vf|?

4
2(2x—6)tfi2j + aatANf +t <Ax— 2Kx — 2ax + 2aa — B|Vx|2 —a> |V f*—

F
26| VX VI + et(Dx = [Vx[*) = -

Since

foj > Zfi > (O fu)? _ (A (VS +af = fo)?

n n

)

and

(aa)®, 8

aatAf < Tt—i— Zt(Af)2,

SO

(2x — 3p3)t?
n

4
t2(Ax — 2Kx — 2ax + 20a — B|Vx|2 —&)|Vf*+

0= (VI +af = fo)? = 28| V||V F P+

e2(Ay — |Vx|?) - F — (0‘? £, (3.1)

Claim 2
(1= B)(a—(1+H)*)? 2¢?
(0 —1)2(1 + H)* (VP +e)+af = f) - 3

In fact, as in [8], using the inequality ag > (1 — 3)(ao + bo)? — %bg, we conclude that

(VP +af = fi)* =

2
(V2 +af— )2 > (1=B)(VIP+e+af — fi)?— 2%,

On the other hand, F > 0 at (p,t), hence x(|Vf|*> + €) + aaf — af; > 0, that is,
Je—af < (VP +o). (3.2)

Therefore
) ,  (1—=pB)(a—(1+H)?)?
(= BNIVIP +e+af - g - LD T
(a = (1+H)?)
(CRDIET I
a— 2

O I VAP +9) + af - £)].
Using (3.2) and a > (1 + H)? > x > 1, we get,
(a=(1+H)?)
(a— 1)1+ H)?

(XUVSI? +e) +af — fo)?

= (L =B)[(IVIP +e+af = fi)+ VI +2)+af = £)| x

(VS +e+af = f) -

(IVFP +e+af —fo) + (X(VfI?+e)+af - fi) >0,

and
(a—(1+H)?

(|vf|2+€+a’f_ft)_ (04—1)(1+H>2

(X(IVF? +e) +af = fo)
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1
— m[(wﬂ“‘ tetaf—f)la—1)(1+H)?*— (a—(1+H)?*)x

(VS +2) +af = )]
= o TaE @ D+ HP = (= (1 HP(VIR +0+

(1 +
[0 =1)(1+ H)? = (a = (1 + H))](af = fi)}
1

= e DO+ a4 1) = (VP )

a((1 +H> ~1)(af - fi)}

> 1+ H)? +a(l+ H)? - x|

(@ 1)(1 TH)y {1001
((1+ H? = DxJ(V P +e)
=|VfP+e>0.

From above two inequalities, Claim 2 is verified.
Using Claim 2 and (3.1), we obtain

(2x = 38)° (1 = B)(a — (1 + H)?)?

02— (a— 1201+ 0

(><(|Vf|2 +e)+af —fi) -
4
22|V x||V [P+ t2(Ax — 2K x — 2ax + 20a — B|VX|2 —)|VFI2+

2¢(2x - 36),
npg
Let y = x(|Vf|> +¢) and z = f; — af. Then
1

et*(Ax — Vx| -

1 o 1 9
(y—Z)—[a(y—aZ)Jr—a Y=y —az)”+(— Yy —az)
-1
> 1 g2y 2y 3.4
BT +(= oY (3.4)
where in the last line, we have used y — az = % > 0.

Combining (3.3) and (3. 4) we get
(2x = 381 = B)(a — (1 + H)?)?
02 na2(a TRt A

(2x — 381 - B)t*(a — (1 + H)?)? ,
no?(l+ H)4 4

F? —F+

= 282| Vx|V P+

4
t2(Ax — 2Kx — 2ax + 20a — B|Vx|2 —&)|VfI*+

(0a)? ,
— e 3.9
)= (3.5)
To compute A¢, as in [9] (or [8]), we let OM(R) = {x € M| r(z) < R} and Kg be the upper

bound of the sectional curvature in 9M (R). We choose R satisfying the following two inequalities,

et’(Ax — |Vx|? -

H 1
Kgrtan(Ry/Kpg) < 5 + 3
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and

H 1
< =
\/K_Rtan(R\/KR) <3
then on—)HBH+1) H
n—
> — - =.
£é 2 R R?
Therefore,
Ax =2(1+4 ¢)A¢ +2|Ve|?
2n—1)H(BH+1) H
Hence,

5 - B)(a — %)?
e ra o LR

4
(Ax — 2K x — 2ax + 2aa — B|VX|2 —e)|V£|?

— (1 + H)?)? 5
%f —8H(1+ H)y? + |2aa —2ax — (C3 + 2K (1 + H)*+
64

As in [8], consider Ay? — By% — Cy, where A is positive constant. Using the inequality 2agby <

>
(3.6)

a? + b, clearly we get

> gt ooy de il B, o B
Ay" = By® —Cy =3y + 5y = By + 2y —(C+ 7)y
A B? A B?
S22 57 _ Ao 57 2 _ 2
25y —(Crgly=5y —(C+ )y +D* =D
> - D?, (3.7)
where D? = (ng_j)z.
Applying (3.7) to (3.6), we conclude from (3.5) that
2y — 28)(1 — — (1 + H)?)?
)o B IO0-Bla- L+ HPP L,
na?(a—1)2(1+ H)*
2e(2x — 2 2
oy~ vyl - EECAD) ey (00 (35)
np p
2
where D? = (CJ;I%A)Z, and A = %, B=8H(1+ H) and
B 20a —2a — (C3 +2K(1+ H)> + G H* (1 + H)? +¢) if a<O0;
20a —2a(1+ H)* = (C3 +2K(1+ H)> + $H*(1+ H)? +¢) if a>0.
That is e e I oy
1 6 1
D:\/ﬁa(+)(0+ no (-i-))
a—(1+H)? (a— (14 H)?)?
From (3.8), we get
1++1+4+4P
F< +—+Q, (3.9)

2P
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where
p_ X380 = B)a—(1+H)*)?
- na?(a —1)2(1 + H)4 ’
and ) 5
Q=(D*+ %)ﬂ — et (Ay — Vx| — 25(2);7515))'
But ;
|Vf|2—|—aaf—aftSX(|Vf|2+€)+aaf—o¢ft:?. (3.10)

Thus by (3.9), (3.10) and letting ¢ — 0, we have
V> + aaf — af; <na*(a —1)*(1 + H)*x
1+ \/1 +8(D2 + %)ﬁ(a — 1+ H)2)2/no2(a — 1)2(1 4 H)?

2(2x = 38)(1 = B)(a — (1 + H)?)?t

2v2(| DI+ <L) t(a—(1+H)?)
na(a—1)2(1 + H)*(2 + ﬁa(g_l)(1+H) )

2(2x — 3B8)(1 = B)(a — (1 + H)?)t ’

where if a < 0, we choose

< \/ﬁa(1+H)2 , 64, ) 64na2H2(1+H)6
= o (1 mye 200 2 (G KU HP g R ) 4 = ey b
and if a > 0, we choose
~ _\/ﬁOZ(l‘FH)Q 2 9 64 9 )
D= i me (2ee— 200+ H)" = (G + 2K (14 H)" 4 - HE(1 4+ H))+

64na?H?(1 + H)G}
(a—(1+H)??)?
In conclusion, |Vf|?> + aaf — af; < % + Cy, where
o = na?(a—1)2(1 + H)*
LT x50 -B)la— L+ HPP
< na?(a—1)2(1 + H)*
T2-380 =P (a— 1+ H)

and Ve ,
4v/2na*(a —1)(1+ H)'K
< .
Oy < (o - (1+ H2)2) + Dy
We choose .
Do — V2na(a — 1)(1 + H)*(|D| + 2alal)
’ (o= (1+H)?) ’
where if a < 0, we choose
. na(l+ H)? 64, 5. 64na’H?(1+ H)S
D=-———>-{2qa —2a— —H*(1+H
o — (L Hy 200 72 (Gt I I+ T e
and if a > 0, we choose
. 2
D ZM{QCML —2a(1+ H)* — (Cs + 6—;H2(1 + H)*)+

a— (1+H)
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64na?H?(1+ H)S
(= (1+ H)?)?

}’

where on—1)HBH +1) H
O = 2(1 + H) (22 - + 7).

Then we complete the proof of Theorem 1.5. [J

Using Theorem 1.5, we get a corollary,

Corollary 3.1 Let M and u be as in Theorem 1.5. If the boundary 0M of M is convex, i.e.,
H =0, then for a > 1 we have

C
IV +aaf —af, < 74-1—057

where Cy = L“z and Cs = 2‘/371012K + 2v/2a2|a|(n + v/n). If furthermore the Ricci curvature of

M is also nonnegamve, then
VI +af = fi < 5 +2V2lal(n + V/n),

where a € R.

Remark 3.1 Comparing Corollary 3.1 with Theorem 1.2, Corollary 3.1 may be improved. But
now we have not found the method to improve it.

In fact, choose H = 0 and let 3 approach to 0 in Theorem 1.5, we can get
C
IVfI?+aaf —af < 74 +Cs,

where Cy = L“z and C5 = 2‘f”a2K +2v/202|al(n + v/n).

Furthermore, letting K =0 and a — 1, we can get
n
VIP+af = fr < o +2V2al(n+ V),

where a € R.
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